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ABSTRACT 
The renormalIzation group method is extended in case of logarithmic 

problems-to include the imaginary parts of Croon's functions and vertices, 
which have been neglected in the earlier versions of the theory. The rela
tionship between multiplicative renormaligation and scaling of the char
acteristic energy is demonstrated and is used to investigate the x-ray 
absorption and Kondo problems. The properly defined invariant couplings 
depend on a single variable, the scaling energy, and are real, as expected 
physically. The scaling laws are rederived on this more rigorous basis. It 
is shewn that the .Imaginary parts of the Green's functions and vertices give 
no contribution to the scaling laws. In particular in the Kondo problem the 
scaling laws obcained earlier remain intact, indicating that, in this improved 
theory as well the potential scattering is not renormalized and is not coupled 
to the exchange scattering. 

РЕЗЮМЕ 
Дается такое обобщение метода группы ренормировок, которые в случае лога

рифмических задач позволяет учитывать мнимуе часть функции Грина и вершинных 
функций, которая не была раньше учтена. Показывается взаимосвязь между методом 
мультипликативной перенормировки и скэлингом характеристикой энергии. Взаимо-
связь указанных двух методов испольэуетсн в исследованиях по поглощение рентге
новских лучей и эффекту Кондо. Правильно определенная эффективная константа 
связи зависит только от одной переменной, от энергии скэличга и является вещест 
венной как ожидается на основе физических соображений. Дается строгий вывод 
законов подобия. Показано, что мнимая часть Функций Грина и вершинных функций 
не дает вклада в законы подобия. В случае исследования по эффекту Кондо соот
ветствующие законы подобия не изменяется н результате учета мнимых частей, что 
указывает на то,что в этой улучшенной теории потенциальное рассеяние не ренор-
мируется и оно не связано с обменным взаимодействием. 

KIVONAT 
Logaritmikus problémák esetén kiterjesztettük a renormálási csoport

módszert a Green-függvények és vertexek imaginárius részének figyelembevéte
lére, mert ezt a korábbi elméletek elhagyták. Megmutatjuk, hogy a multiplika-
tiv renormálás és a karakterisztikus energia skálázása egyenértékű, s ezt fel
használjuk a röntgenabszorpció és a Kondo-probléma vizsgálatára. A helyesen 
definiált invariáns csatolás csak egy változótól, a skálaenergiától függ, és 
valós, ahogyan ez fizikailag várható. Levezetjük a skálatörvényeket ezen az 
uj módon. Megmutatjuk, hogy a Green-függ\'ények és vertexek imaginárius részei 
nem adnak járulékot a skálatörvényekhez. A Kondo-probléma esetén a korábban 
kapott skálatörvényeket kapjuk változatlanul. Ebben a javított elméletben 
sem renormálódik a potenciálszórás és nem csatolódik az s-d szórással. 



I* Introduction 

Multiplicative renormalization and the renorma-
lization group have been first introduced in quantum 

1 2 electrodynamics • where the divergent charge and 
mass corrections have been renormalized to get the 
observable finite charge and mass. Since then this 
method has been widely used in quantum field theory» 
The same renormalization group approach has been 
applied in solid state physics by Abrikosov and 

"\ A. 

Migdal as well as by Fowler and Zawadowski to inves
tigate infrared divergences in the Kondo problem and 

5 6 7 
by Zawadowski in the x-ray absorption problem • • 
By analogy with quantum electrodynamics an "invariant 
charge" was introduced, the energy /or temperature/ 
dependence of which characterizes the behaviour of 
the system. Por the Kondo problem this invariant 
charge is a smooth function of its variable without 
any singularity at the Kondo energy E K /or Kondo 
temperature T K/ f tending to a finite value at E=0 
/or T*0/, As a consequence the low energy or low 
temperature /T<fcl'K/ behaviour of the physical quan
tities is given by power laws. 

Another recent attempt to derive scaling laws for 
the Kondo problem was made by Anderson et al. in a 

q sophisticated manner and later by Anderson7 in a 



pedestrian way. In the former cane the Kondo problem 
was formulated ae a succession of spin flips. The 
system's readjustment after each spin flip can be 
described analogously to the x~ray absorption ргосепз 
By making a scale transformation of the characteristic 
time elapsing between successive spin flips Anderson 
et al. have found scaling laws relating the equivalent 
anisotropic Kondo models. These scaling laws have been 
rederived by Anderson by scaling the characteristic 
energy /cut-off energy/ of the Kondo problem. 

The two abovementloned approaches yielded diffe
rent scaling laws and led to different conclusions 
concerning the equivalent Kondo problems. Zav/adowski 
and the present author have shown that an extension 
of Anderson's simple scaling idea to higher orders 
gives the same scaling laws ao the renormalization 
group method. Inopite of this there is still a 
disagreement in the interpretation. The difficulty of 

the Kondo problem is that the invariant coupling tends 
to infinity or to a value of the order of unity, while 
the scaling laws are known for small values of the 
invariant coupling only. Wc are not going to discuss 
these two possibilities, a review of our present 
understanding of the Kondo problem can be found in the 

11 12 13 
papers by Anderson , Fowl er and Zawadowoki . Here 
we concentrate our attontion to other aspects of re-
normalization and ocaling. 

The proper definition of the "invariant charge" 
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or invariant coupling is not ееttied in either of 
the above mentioned approaches. Though the invariant 
charge is determined via complex Сгееп§в functions 
and vertices, it is expected to be real to have phy
sically reasonable meaning. Hitherto either the 
imaginary parts have been neglected, or the invariant 
coupling has been determined in a particular range 
of the variables where no imaginary part exists* The 
aim of the present paper is to give an unambiguous 
definition of the invariant coupling for logarithmic 
problems and to derive the scaling laws by taking 
into account the imaginary parts of the Green's func
tions and vertices* 

In Sec« II the relationship between multiplicative 
renormalization of the Green's function and vertices and 
scaling of the characteristic energy is discussed for 
logarithmic problems. This relationship allows ue to 
define an invariant coupling which in special cases 
coincides with the usual definition* The invariant 
couplings are determined in Sec* III and IV for the 
x-ray absorption problem and the Kondo problem, respec
tively. They are in fact real as it is demonstrated 
on these two examples and depend on the scaling energy 
only« The scaling laws obtained in this way coincide 
with those obtained by Fowler and Zawadowski, indica
ting that the imaginary parts have no bearing on the 
scaling laws« By investigating the T matrix of the 



_ 4 -

Kondo problem it is shown that even if the invariant 
coupling were known9 all the skeleton graphs should 
have to be considered to get reliable expressions 
for the physical quantities. The discussion of the 
results is given in Sec» V. The anisotropic Kondo 
model is investigated in an Appendix» Here again the 
imaginary parts of the Green's functions and vertices 
leave intact the scaling laws derived earlier by 
Sólyom and Zawadowaki» 

II» Relationship between multiplicativenrenormalization 

and scaling in logarithmic problems 

Multiplicative renormalization is a simple trans
formation procedure in which the Green's functions, 
vertices and coupling constants are multiplied by 
real, frequency independent factors, z i # The requirement 
that the I)yson equation be satisfied by the original 
and transformed quantities as well, gives a relation 
between these factors. The arbitrariness in the 
choice of the multiplicative factors can be incor
porated into the Green's functions and vertices 
themselves by introducing an extra variable \ 9 the 
variation of which is equivalent to different choices 
of the Z.'B» Usually the physical solution corres
ponds to a particular choice of the dummy variable X, 
or to a particular set of the renormalizing factors. 



"*» 
«ЬАаамма** 

This classical formulation of multiplicative 
A renorraalization was used by Fowler and Zawadowski^ 

to get scaling laws for the Kondo problem» The 
imaginary part of the Green's function and vertices 
has been neglected, however, in this treatment* The 

3 same applies to the work of Abrikosov and Migdal . 
On the other hand the introduction of the variable 
X is not unambiguous. These two problems show the 
necessity to give a proper definition of the invariant 
coupling. This will be done here for logarithmic 
problems* 

Q 

Prom Anderson's approach-^ to the scaling laws 
for the Kondo problem we can infer that the cut-off 
energy can serve as a natural scaling parameter. On 
this ground, it is suggested here that, at least for 
logarithmic problems, multiplicative renormalization 
can be achieved without introducing the dummy 
variable X» 

Let ue take for illustration a system of interacting 
electrons with bare coupling constant g. The total 
Green's function and the total vertex is written in 
the form 

G - Ge a , /2*1/ 
and 

i-i p / 2 * 2 / 
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For simplicity the momentum variables are fixed at 
the Fermi momentum and only the frequency variables 
are retained. If the interaction is cut off at an 
energy t^ o f the Green's function and vertices depend, 
as a rule, on the relative energies ^ / ю с . 

Multiplicative renormalination is formulated 
usually aa the transformation 

G -^ -у_л G . or cL -*> Z., ck ; /2.3/ 

Г -* ^ Г , /2.4/ 

cj - * ^ л " г ^ г cj , / 2 . 5 / 

where z, is Independent of the frequency variable ы • 
In logarithmic problems we can try to avoid the 
introduction of an extra variable and to achieve this 
multiplicative renormalization by varying the cut-off 
u> c. Performing a simultaneous change of the cut-off 
co4to co0 and the bare coupling constant g to g', g* 
is determined from the requirement that 

•US-l'l -*Áz*,l)AZ..<l), /2.6/ 
P (î i t^i î L ^1 ' I 

\ -U УЕ л| r I м» ) л /2.8/ 

Whether this transformation to the primed vari
ables can be done with real z. is not a priori true 
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for any problem» Our guees is that these relatione 
can be satisfied for logarithmic problems* Such a 
treatment wae already presented by Menyhárd and the 
present author ^' for one-dimensional metallic 
systems, where the cut-off energy is in fact a good 
scaling parameter» We have shown that, at least up 
to third order in the coupling constants, the rela
tions analogous to eqa. /2.6/-/2.8/ can be satisfied 
with real z. which are independent of the frequency 
variables. It will be demonstrated here that the 
same holds for the x-ray absorption problem as well 
as for the Kondo problem. 

If relatione /2.6/-/2.8/ are obeyed, the cut-off 
dependent g f, the self-consistent solution of the 
equation 

n l Ы üb ^i ^ л I Л / У- с 1 q1 * q l У-*- '-»> o . ,^ '? ' . iLk i -J i / 2 9 / 

is called invariant coupling. Neglecting the imaginary 
parts of the Green's function and vertices, the deno
minator of /2.9/ can be normalised to unity at cu -UJ C 

and the usual definition of the invariant coupling ie 
recovered. 

l - ^ ^ t l M ' t . U /2.10/ 
The denominator in eq. /2#9/ will be very important 
in what follows to show that g 9 is real and independent 
of the frequencies, as expected. Although 6ч п у

вв' <* 
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is the combination which ie invariant under multi
plicative renormalization, it ia in general complex 
and the physically meaningful quantity is g*. With 
its knowledge several physical quantities can be 
calculated by solving a Lie differential equation. 

Let A be»physical quantity which depends on the 
relative energy u>/u>0 and obeys multiplicative renorma-
lization, i.e. 

This equation can be cast into a differential form 

£ k A M - T ^ O A U, №)\ж1 , /2.12/ 
where x в UJ/U>0 л According to this Lie equation the 
behaviour of A at x is governed by the behaviour of 
the invariant coupling g* at the same x. Prom a series 
expansion of the right-hand side of this equation in 
terms of the invariant coupling, the integration of 
eq. /2.12/ yields a summed up expression for A. This 
procedure keeping the first few terms of the series 
expansion gives a reasonable approximation in that 
case only if the invariant coupling is email in the 
interesting energy range, which, unfortunately, is 
not true for many problems and therefore only quali
tative conclusions can be drawn from the results of 
this method« 
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It ehould be emphaeized that the usual multi
plicative renormalization procedure with introduction 

of the extra variable ~k ±a more general than the 
treatment presented here. In the case of Andereonfe 
model of dilute magnetic alloys, for example, where 
simple scale transformation can be done approximately 
only , the standard multiplicative renormalization 

17 technique has to be used • 

III» X-ray absorption problem 

As a simple example we will treat very briefly 
the x-ray absorption problem« The reader is referred 
to the papers ' by Nozieree et al. for the physical 
problem and for the notations. Furthermore, as above, 
the renormalization of the deep-electron Green's 
function, d(to} and the reduced vertex Г are defined by 

Gy =• ^ 0 <L , /3.1/ 
and 

г « с } г . /3.2/ 

The cut-off energy is denoted by j;0 in this section. 
The vertex will be calculated in a special case, namely 
when the energy of the conduction electrons is fixed 
at the Fermi energy and the remaining single variable 
is the deep-electron energy. It follows from the 

r 
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structure of the Dyson equation that the renorraa-
lization equations may have the form 

G (u> , U , cjM - -z., & ( w , $ 0 | <j) ( /3.3/ 

<U f' • V " ^i r (^ fo, <j) / /3.4/ 

r C g ^ Л - ^ ^ Т о ^ ) / /3.5/ 
^ = ̂ Ч ^ 7-, Q . /3.6/ 

First we have to show that these equations can be 
satisfied and then its consequences can be explored» 

The graphs of the response function or those of 
the vertex must not contain deep-electron closed 
loops| i.e. no conduction-electron self-energy has 
to be included in these diagrams« In other words the 
conduction-electron Green's function G should remain 
unrenormalized in calculating these quantities and 
therefore z-,=l. Por the deep-electron Green's func
tion and the vertex we get 

Л[Ц = \ +c£[_l~ ja-CirOM]4- ... f /3.7/ 

г и * 4-<f О f . - ^ 6 ^ * . . . , /3-е/ 
where G M is the step function. The self-consistent 
solution of eqs. /З.Э/-/3.6/ using eqs. /3.7/ and 
/3.8/ is 

^ i * 4 + <) ^ Jo +• ... , /3.9/ 
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7-ъ ^ * - <f **• Yo ь • " ' / э л о / 

V"-1 + & W'' • / З Л 1 / 

The renormalizing factors and the new couplings are 
in fact real, though d M and Г are complex. Applying 
the Lie equation for the invariant coupling iteelf, 
we get easily 

CÍ - «J / /3.12/ 
i.e. the coupling io not renormalized in the x-ray 
absorption problem. That is the probable reason why 

18 this problem can be solved exactly • 
The response function 

ХЫ -- ~W% -<*оЦ + е&[Аь -^ 0 КК-/злз / 
does not satisfy the criterion of multiplicative re-
normalization, neither *)( M / ^ M, which is usually 
used in renorraalization theory. This is probably due 
to the logarithmic nature of X , 0 ,M» Zawadowski 
pointed out that the logarithmic derivative of qi is 
the proper quantity to be used for such a treatment. 
In fact 

has good transformation properties. The Lie equation 
up to first order and its solution are 
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\M * с ^pC-i<j^") - с к" ^ ; /3.16/ 

with х в м / £ о # By integrating уЫ and determining the 
constant of integration from fitting to the perturba-
tional expression, we get 

TCW - ̂  [(éP- i] - ̂ 9 M f e ) M . /3.17/ 
This ie precisely the result of the self-consistent 
treatment of the x-ray absorption problem in the weak 
coupling limit. The remarkable feature of the calcu
lation is its simplicity. The power law aingularity 
comes out in a natural way. 

Analogously we get for the deep-electron Green's 
function 

.IW^-iT^MKyJ 1
 / / З Л 8 / 

which again corresponds to the result of the self-
-consiatent treatment. 

Zawadowoki used another method to determine the 
imaginary part of the Green's function. He performed 
the renormalization for tô O where the imaginary parts 
vanish and made an analytic continuation to tj>0 # 

dl(uxo) = «*p { «}* ^ ^o i , / З Л 9 / 

and therefore 
' Cl 

cL^yo) - ~p{<f{U £ - Ц - i J ( ^ ) . /3.20/ 
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The Green's function obtained by this procedure hae 
correct analytic properties« In the weak coupling 
limit the same form is reproduced ae above. 

IV« Scaling in the Kondo problem 

In Abrikosov'a pseudofennion representation 
for the spin operatora the Hamiltonian of the Kondo 
model is 

The potential scattering term has been included as 
in a consistent renormalization procedure V has to 
be taken into account throughout the calculation 
even if it is put equal to zero at the end« 

We can proceed similarly as for the x-ray ab
sorption problem and perform a multiplicative re-
normalization of the reduced vertices P . 

of the conduction-electron Green's function G and 
of the pseudofermion Green's function (̂  n fyd by 
real factors z^. 

We assume that multiplicative renormalization 
can be achieved in this case as well» by a change of 
the cut-off energy D, i,e. 

GL*,2>\ ]>') = ̂  G (u»,T>, I V), /4.3/ 
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сДо, 1)', j , v'J = Z t J. IU..-D, "J, v/j , /4.4/ 

r . C w . ^ ' . l ' . v ' l - zVfVtw.-D,-] .^) , /4 .5/ 

Г. К *>', Í. *'l = 2.V Г. (w. t». ] , W.. /4.6/ 

V a ^ 1 ^ 1 ^ ц V . / 4 # 8 / 

It is not at all trivial that these relations can be 
satisfied with real multiplicative factors, indepen
dent of the frequency variables. We will show that, 
at least up to a certain order, this scaling and 
multiplicative renormalization are consistent. 

Similarly as in the x-ray problem, there is no 
self-energy correction on the conduction-electron 
lines inside any diagram and therefore z,al# The in
variant couplings are defined as before, as the 
self-consistent solutions of the equations 

b», I. I - I f^y^y, д^У.уУ' '/4-9/ 
w'is! n vl V ^^•" D'^ V | Ht-.,T>,1.^ /4.10/ 

Again the denominators in eqs. /4-9/ and /4.10/ cancel 
the imaginary parts and the frequency dependences of 
the corresponding numerators. This is demonstrated 
first for the parquet diagrams. The vertex contribution 
is calculated up to third order in two limiting cases, 
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namely «hen a/ the conduction-electron energy £ or 
b/ the paeudofermlon energy из is retained as оingle 
variable* In case a/ we have 

+ 1 V ( ^ "ö ~ í H M.ll/ 

4 * * V Y - ••• , 
.*-

-ii . , t ' . /4.12/ 

V 

* b '" i ?"^^)-г £ - b ' l Y s^+4' V 

while in case b/ 

+ lV[«Kf - ÍTÖ(U.)]4.. . y A.13/ 

is obtained* In the parquet approximation the peeudo-

fermion lines are not renormal ized, d M « l and there

fore Sp»l* 
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Taking any of these particular choices of the 
variablen, the same expressions are obtained for 
the multiplicative factors z. and for the invariant 
couplings: 

i i 

Z b- \- 1§ U^ + ] Y ^ ^ +-... f /4.15/ 

l'*l(<-7?«-S - l Y ^ y * - - . ) , /4Л6/ 

This fact confirms a posteriori our original 
assumption that multiplicative renormalization can 
be achieved by scaling the cut-off energy and that 
the invariant couplings are independent of the 
frequency variables. Inserting eq. /4.16/ into the 
Lie equation /2.12/, simple integration gives 

Í 4 r j - ТТГГ^ • / 4 Л 8 / 

This result could have been obtained from 
first-order scaling already, i.e. taking the first 
corrections to the invariant couplings and solving 
the Lie equation in that approximation. This shows 
that, as far as the invariant couplings are concerned, 
first-order scaling is equivalent to the parquet 
approximation. Unfortunately this is not the case 
for the observable physical quantities. 
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It is noteworthy that by considering the 

imaginary parts as well, the invariant couplings 

remain intact, while the scattering matrices change 

drastically. The spinflip and spin non-flip parts 

of the scattering matrix, t and t, respectively, 

are knovni in the parquet approximation from the 

21 22 
works of Hamann and of Brenig and Götze 

X H = -7== 
^-£+* лЧ*-н) ' /4.19/ a, 

± M - I и to 
vT, 

t*?h + -^и+о T - 1 
where the Kondo temperature is given by 

/4.20/ 

Tw <* I v ^ " 0 - /4.21/ 

The scattering amplitudes can be expressed in terms 
of the invariant coupling and we get 

T(<I = 
У Ц Т Т З ' Ы - £ ; • " • Г ^ Trusts и) /4.22/ 

tU) = rr </}'(«! - Í «г 
ir; L {(ч-fui - f^T+'x1 -sisH) J / /4.23/ 

u> where x в =-- . The logarithmic derivatives of these 
expressions are rather involved functions which, 
when expanded, include arbitrarily high powers of 
J'/x/. Due to theoe terms, first or second-order 
scaling i3 not sufficient for T or t. As the in
variant coupling, J'/::/ is divergent at the Kondo 
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energy in this approximation, an infinite series 
summation is посеваary to get non-singular behaviour 
for the observable quantities at T R. 

Lower-order logarithmic torma come not only 
from the imaginary parts but from the real contri
butions of non-parquet diagrams as well* Going beyond 
the parquet approximation, new corrections will 
appear in the Invariant coupling, too. In calcula
ting the third-order non-parquet vertex corrections, 
we have retained the energy of the pseudofermlons, 
со • as single variable, 

J * L * /4.2V 

г„н - -t - i j l Y ^ * 1 * v Yl l>£ -^4-/*.25/ 
In this approximation the peeudofermion line i s also 

renormalised, 

aiui) = U Í [iVSlS^J ^ V ] [ « K ^ -Ст0М] + ... /4.26/ 
The self-consistent solution of eqe. / 4 . V - / 4 . 8 / , 
making use of eqe« A . 2V- /4 .26 / , i s 

<* - < *• H lV ^+<) + VVi *Л - - • , /4.27/ 

, f . , - i v . 1 T> / 4 . 2 8 / 

I / * • 29 / 
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J • ~» 

v'-v/ . / 4 ' 3 1 / 

The non-parquet diagramé give important contribution 
to the Lie equation for the invariant coupling, 

f (. ]Vl - H - I ' M S ^ -kl,t^^----l, /4.32/ 
l e . v ' i x l - o . / 4 - 3 3 / 

This is the same Lie equation as obtained by Abrikosov 
and Rugdal"5 and. by Fowler and Zawadowski . Abrikosov 
and Migdal^ have calculated explicitely also the term 
proportional to J , J in eq. /4#32/. 

Prom the present treatment which is more rigorous 
than theirs the Шlowing conclusionß can be drawn: 
ocaling of the cut-off energy is equivalent in the 
Hondo problem to multiplicative renormalization with 
real multiplicative factoro; the invariant couplings 
are real, the imaginary parts of the Green's functione 
and. vertices have no bearing on them and. consequently, 
as before, the exchange coupling and the potential 
scattering are not coupled to each other, the poten
tial scattering is not renorrnalized. 

So far the isotropic Kondo problem паз been 
investigated. Anderson's original ocaling laws were 

derived for the anisotropic Hondo model- Zawadowski 
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and the present author extended Anderson*в "poor 
man's method" to higher ordern. The scaling laws 
obtained in that way agree with eq. /4.32/ in the 
isotropic case. Several points of that calculation, 
however, have not been clarified completely. One of 
them ia the choice of the renormali^ed matrix element 
of the T matrix. The other problems were connected 
with the imaginary parts, which have been neglected 
everywhere, and with the choice of the energy va
riables in the scattering matrix. V/e will show in the 
Appendix that a consequent application of the renor-

malization group method yieldn automatically real 
invariant couplings for the anisotropic Kondo prob
lem, too, and the same scaling lawn are obtained as 

in Ref. 10. 

V. Discussion 

In the present paper a simple formulation of the 
multiplicative renormalization procedure has been 
presented for logarithmic problems. It is suggested, 
that for the Kondo problem, the x-ray absorption 
problem and for one-dimensional metallic systems 
multiplicative renormalization of the Green's func
tions, vertices and coupling constants is equivalent 
to the scaling of the cut-off energy. In these cases 
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there is no need to introduce the dummy variable X 

and an unambiguous definition of the invariant coupling 
can be given» 

The results of the present paper can be summa
rized as follows. First, we have shown that scaling 
of the cut-off energy and multiplicative renorma-
lization with real factors are in fact equivalent for 
the Kondo problem and x-ray absorption problem« The 
one-dimensional metallic systems have been investi
gated separately , where the absence of phase 
transition has been demonstrated* It has been shown 
that starting from complex Green's functions and 
vertices a real invariant coupling can be introduced 
which is independent of the frequency variables and 
depends on the scaling eiiergy only. The described 
procedure is applicable to logarithmic problems only. 
It seems that the introduction of the dummy variable 
\ cannot be avoided in other cases. 

Second, we have rederived the scaling laws both 
for the isotropic and anisotropic Kondo models by 
taking into account the imaginary parts of the 
Green's functions and vertices. It turns out that these 
imaginary parts do not modify the scaling laws and 
therefore the relations obtained by Abrikosov end 
Migdal^ as well as by Fowler and Zawadoweki4 for the 
isotropic case and by Sólyom and Zawadowski for the 
anisotropic one emerge intact. By this we have put 
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the scaling theory of the Kondo problem on a more 
rigorous basis« 

Provided the invariant coupling is known, it can 
be used in the Lie equation to determine observable 
physical quantities like susceptibility, resistivity 
etc» We have shown on the example of the scattering 
matrix that, although, in principle, the knowledge of 
the invariant coupling helps to determine the matrices 
X and t, in reality all the skeleton graphs have to 
be calculated to get reasonable results* In these 
quantities the imaginary part of the parquet diagrams 
and the contribution of the nonparquet diagrams are of 
the same order of magnitude and they all have to be 
taken into account. No reliable theory exists as yet how 
to treat this problem. In lack of such a treatment onl̂  
qualitative conclusions can be drawn from the renor-
malization group approach. For a detailed discussion 
of the scaling laws and their consequences the reader 
is referred to the papers of Abrikosov and Migdal , 
Fowler and Zawadowski , Anderson et al. and Zawadow3ki 
and the present author • 
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Appendix 

The anisotropic Kondo Hamiltonian is written in the 
form 
и..., = ь z с *:,, t ex. CX, I 

1 I * * < * 

3i Z С *, < ou,6- (s;;^>s;A<J /АЛ/ +- г"—г /- t fji "J-

In the particular caoe S«l/2 the structure of the full 
vertex is 

Por general values of the spin the spin products in 
the higher-order terms can not be cast into the 
simple form of eq« /A.2/ and more invariant couplings 
ought to be introduced. 
The following form is supposed for the scaling 
equations 

G(u>lT>,
f-}*,lI,vl]e z, C U D , JO-.v/j 

/A.3/ 

/A. 4/ 

/A. 5/ 
I i 

Г Л - Х Ъ , ] ^ ^ — - rjv.-n.^.vw, / A # 6 / 

/A, 8/ It Ä ^ < ^-i- ̂ J }*- / 
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>- = Zf' z[* 7,,, It , /A.9/ 

v/ - z , v.;; y . c v / / / А Л О / 

where, as before, the conduction-electron Green's 
function should not bo renormalieed and therefore 
z,=l. The perturbational result for the pseudofermion 
Green's function and vertices is 

АЫ-uUlMj; . ^г:г}^{^-^^ш'},... , / А Л 1 / 

ГЛ<-)- ( - ] . ? [ Í K f -•>6(")] * t 111 *£)?1 [>-£ - - O H ] ' 

! г > > /А.15/ 

r.M - i - U1* <-Н-* ^ V t ^ --ОМ].... / A , 1 V 

The self-coneistent solution of these equations easily 
gives 

v ' - v . / А Л 7 / 

These expressions yield the ваш« ecallng laws as In 
Bef. 10, 
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-*- ... 
. > 

- о 

/A.19/ 

/Л* 20/ 

These scaling laws have been discuosed by Zawadownki 
and the present author • Here we want to emphasize 
that fact that the imaginary parts of the Green's 
functiono and vertices cancel out in the invariant 
couplings^ they are real and independent of to • 
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