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ABSTRACT

The rcnormalization group method is extended in case of logarithmic
problems -to include the imaginary parts of Green’s functions and vertices,
which have been neglected in the earlier versions of the theory. The rela-
tionship between multiplicative renormalization and scaling of the char-
acteristic energy is demonstrated and is uscd to investigate the x-ray
absorption and Kondo problems. The properly defined invariant couplings
depend on a single variable, the scaling energy, and are real, as expected
physically. The scaling laws are rederived on this more rigorous basis. It
is shown that the imaginary parts of the Green’'s functions and vertices give
no contribution t( the scaling laws. In particular in the Kondo probler the
scaling laws obcained earlier remain intact, indicating that in this improved
theory as well the potential scatterina is not renormalized and is not coupled

to the exchange scattering.

PE3IOME

AaeTcs Takoe o6GobmeHHe MOTONA TPYNNW PCHOPMHPOBOK, KOTOpHEe B Cnydyae nora-
PHMHYECKHX 3anayd MNoO3BoJiISeT YUUTHBATE MHHMYIEr 4aCth QYHKIHHK U'OWHA M BepumHHHBIX
dyHKXUHR, KOoTOopas He OHNa paHrkile yuTtetia. HOKGAHBRACTCA BIAHMOCER3b MeXIlY MeTONOM
MYNABTHIVIMKATHBHOR HEPCHOPMHPOBKH M CKINHHIOM XJAPAKTEPHCTHKONR JHeprHi., BranMo-~
CBA3b YKAa3aHHHX OBYX METONOB MCMNONMBAYOTCH B MCUICIHOBAHHAX MO NOrJomendr peHTIe-
HOBCKHKX nyueft u 3¢PekTy KOoHHno. IllpaBunnho onpesiencHuana a2dpdeKTMBHAA KOHCTAHTA

CBAJK 3ABUCHT TOJNILKO OT OIHONI MNEpOMORiOI, OT JHCOPI'MHA CKONMUHIA H ABJIACTCA BemecT-

BeHHOfl KaK OXHOAETCH HA OCHORC PU3UUECKHX COoOotpaxeHWB. JlaeTca CTPOrufl BHBOIL
3aKOHOBP nopnoCusn. [lokaszatio, YTO MHHMas 4YacThL PYHKUNN 'PUHA H DBOPIMHHHX QYHKUHUDR
He JlaeT BKJalna B 3aKOHW nono6tusa,., B cnyuyae uccnenopaimns no 3dppexrty Kouno coor-~
BETCTBYMNUHHE 3aKOHH HMOHOOHA HE HIMEHA'TCA i pPo3ynbTaTe yyeTa MHHUMHXYX dYacTell, UTo
YKa3uBaeT Ha TO,'ITO B 3TOM YAYUMEHHOH TeOopHH NoTeHUHaAbHOEe paccesdHHe He peHop-
MHPYETCA H OHO H& CBA3aHO C OEMeHHEM BIaMMOIellcTBHEeM,

KIVONAT

Logaritmikus problémak esetén kiterjesztettidk a renormdlasi csoport-
médszert a Green-fiiggvények &és vertexek imaginarius részének figyelcembevéte-
lére, mert ezt a korabbi elméletek elhagytak. Megmutatjuk, hogy a multiplika-
tiv renormalids és a karakterisztikus energia skalazasa egyenértékil, s ezt fel-
haszn&ljuk a r¥ntgenabszorpcidé és a Kondo-probléma vizsgilatara. A helyesen
definialt invarians csatolas csak egy valtozot6l, a skdlaenergidtdl filgg, és
valés, ahogyan ez fizikailag varhatd. levezetjilk a skilatBrvényeket ezen az
uj médon. Megmutatjuk, hogy a Green-fliggvények és vertexek imagindrius részei
nem adnak jarulékot a skalatdrvényekhez. A Kondo-probléma esetén a kordbban
kapott skalat8rvényeket kapjuk valtozatlanul. Ebben a javitott elméletben
sem renormildédik a potencidlszdoras és nem csatoldédik az s-d szordassal.
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I Introduction

Multiplicative renormalization and the renorma-
liiation group have been first introduced in quantum
olectrodynamicsl’2 where the divergent charge and
mass corrections have been renormalized to get the
observable finite charge and mass. Since then this
method has been widely used in quantum field theory.
The same renormalization group approach has been
applied in solid state physico by Abrikosov and

4 to inves-~

Migdal3 as well as by Fowler and Zawadowski
tigate infrared divergences in the Kondo problem and
by Zawadowsk15 in the x~ray absorption problem6'7.
By analogy with quantum electrodynamics an "invariant
cbarge" was introduced, the energy /or temperature/
dependence of which characterizes the behaviour of
the system, For the Kondo problem this invariant
charge is a smooth function of its variable without
any singularity at the Kondo energy Ei. /or Kondo
temperature T/, tending to & finite value at E=0
/or Tm0/, As a consequence the low energy or low
temperature /T<<'1'K/ behaviour of the physical quan-
tities ie given by power lawsa.

Another recent attempt to derive scaling laws for

8

the Kondo problem was made by Anderson et al, in a

9

sophisticated manner and later by Anderzon” in a




pedestrian way. In the former cane® the Kondo problen
was formulated as a succeasion of spin flipse. The
system’s readjustment after each spin flip can be
described analogously to the x~ray absorption procena6.
By making a scale transformation of the characterisatic
time elapsing between successive spin flips Anderson
et al. have found scaling lawo relating the equivalent
anisotropic Kondo models, These scaling leaws have been
rederived by Anderson Ly scaling the characteristic
energy /cut-off eneryy/ of the Kondo problem.

The two abovementioned approaches yielded diffe-
rent scaling laws and led to different conclusions
concerning the equivalent Kondo problems., Zawadowski

10 have shown that an extension

and the presentauthor
of Anderson’s simple scaling idea to higher ordexrs
glves ihe same scaling laws as the renormalization
group mathod, Ingpite of this there is still a

disagreement in the interpretation. The difficulty of

the Kondo problem is that the invariant coupling tends
to infinity or to a value of the order of unity, while
- the scaling laws are known for omall values of the
invariant coupling only. We ore not going to discuss
these two possibilities, a review of our present
understanding of the Kondo problem can be found in the

11 12

papers by Anderson and ZawadownkilB. Here

s Fowler
we concentrate our attention to other aspects of re~
normalization and ccaling,.

The propor definition of the "invariant charge"
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or invariant coupling is not settled in either of

the above mentioned aprroaches., Though the invariant
charge is determined via complex Green’s functions
and vertices, it is expscted to be real to have phy-
sically reasonable meaning. liltherto either the
imaginary parts have been neglected, or the invariant
coupling has been determined in a particular range

of the variables where no imaginary part exists. The
aim of the present paper i=s to give an unambiguous
definition of the invariant coupling for logarithmic
problems and to derive the scaling laws by taking
into account the imaginary parts of the Green’s func-
tions and vertices.

In Sece II1 the relationship between multiplicative
rénormalization of the Green’s function and vertices and
scaling of the characteristic energy is discussed for
logarithmic problems, This relationship allows us tou
define an invariant coupling which in special cases
coincides with the usual definition, The invariant
couplings are determined in Sec. III and IV for the

x~ray absorption problem and the Kondo problem, respec-
tively., They are in fact real as it is demonstrated

on these two examples and depend on the scaling energy
only. The scaling laws obtained in this way coincide
with those obtained by Fowler and Zawadowski, indica~
ting that the imaginary parts have no bearing on the
scaling laws, By investigating the T matrix of the
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Kondo problem it is shown that even if the invariant
coupling were known, all the skeleton graphs should
have to be considered to get raliable expressions

for the physical quantities. The discussion of the
results is given in Sec. V. The anisotropic Kondo
model ims investigated in an Appendix. Here again the
imaginary parts of the Green’s functions and vertices

leave intact the sceling laws derived earlier by

S0lyom and Zawadowaki.

JI. Relationship between multiplicative renormalization

and scaling in logarithmic problems

Multiplicative renormalization is a simple trans-—
formation procedure in which the Green’s functions,

vertices and coupling constants are multiplied by

real, frequency independent factors, z.. The requirement

i
that the Dyson equation be satisfied by the original

and transformed quantities as well, gives a relation
between these factors. The arbitrariness in the

choice of the multiplicative factors can be incox-
porated into the Green’s functions and vertices
themselves by introducing an extra variable A, the
variation of which is equivalent to different choices
of the zi’e. Usually the physical solution corres-
ponds to a particular choice of the dummy variable X,

or to a particular set of the renormalizing factors.




This classical formulation of multiplicative
rencymalization was used by Fowler and Zawadowaki4
to get scaling laws for the Kondo problem. The
imaginary part of the Green’s function and vertices
has been neglected, however, in this treatment, The
same applies to the work of Abrikosov and Migda13.
On the other hand the introduction of the variable
A is not unambiguous., These two problems show the
necessity to give a proper definition of the invariant
couplinge This will be done here for legarithmic
problems. |

From Anderaon’s approach9 to the scaling laws
for the Kondo problem we can infer that the cut-off
energy can serve as & natural scaling parameter. On
this ground it is suggested here that, at least for
logarithmic problems, multiplicative renormalization
can be achieved without introducing the dummy
variable A.

Iet us take for illustration a system of interacting
electrons with bare coupling constant g. The total

Green’s function and the total vertex is written in

the form

G =G, d /2.1/
and
= /2.2/




For simplicity the momentum variables are fixed at
the Fermi momentum and only the frequency variables
are retained. If the interaction is cut off at an !
energy (V,, the Green’s function and vertices depend,
as a rule, on the relative energies w W,

Multiplicative renormalization is formulated

usually as the transformation

G > Z, Cr . or A — Z, CL ) /2. 3/
[:: - Z-l‘ \:: ) /20 4/
q —> 2;1 <2 Cj / /2.5/

where Zy is independent of the frequency variable w.
In logarithmic problems we can try to avoid the
introduction of an extra variable and to achieve this
nultiplicative renormalization by varying the cut-off
Wees Porforming a simultaneous change of the cut-of?
w, to (gl and the bare coupling constant g to g’, g’

is determined from the requirement that

A5, 49") =z, wo,g)d(wo.g), /2.6/ |
F We  2a “%‘ :i; ‘ ;
(O e e 3| /2.7/
= 2;4 w ' )P(b:;c"\::, %,L{i,%) I'
/2.8/

-1 wc We
q‘ = Z, (:,‘ .CJ) Zz(;;,g)a-
Whether this transformation to the primed vari-

ables can be done with real z;, is not & priori true |




- for any problem. Our gueas is that these relations
can be satisfied for logarithmic problems. Such a
treatment was already presented by Menyhdrd and the
present author14’15 for one-dimensional metallic
-systems, where the cut-off energy is in fact a good
scaling parameter. We have shown that, at least up
to third order in the coupling constants, the rela-
tions analogous to eqa. /2.6/~/2.8/ can be satisfied
with real 24 which are independent of the frequency
variables. I% will be demonstrated here that the
same holds for the x-ray absorption problem as well
as for the Kondo problem,

If relations /2.6/-~/2.8/ are obeyed, the éﬁt-off

dependent g?, the self-consistent solution of the

equation
W ¢ w W L, W
L ST L N T LIy
% C} P w‘ (\'L (Js wl‘ ‘ ) 1.2' ( .‘t.)._ ' ‘ 2. 9
C\Sr S ooar w3 4 ls g

is called invariant coupling. Neglecting the imaginary
parts of the Green’s function and vertices, ihe deno-
minator of /2.9/ can be normalized to unity at cu==u£
and the usual definition of the invariant coupling is

recovered,

G -

W LW
Finv =°3P(L:"])A(\TL'°&J- /2410/

The denominator in eq. /2.9/ will be very important
in what follows to show that g? is real and independent
of the freguencies, as expected. Although ginv=gf‘d2




is the combination which is invarient under multi-
plicative renormalizetion, it is in general complex
and the physically meaningful quantity is g'. With
its knowledge several physical quantities can be
calculated by solving a Lie differential equation.

Let A beaphysical quantity which depends on the
relative energy w/t, and obeys multiplicative renorma-

lization, i.e.

Al 9= = (wo.b}[\( & .9). /2.1

This equation can be cast into a differential form

2 0 Alxg) = XdEUKA(g q' ‘%Mw’ /2.12/

where x = w/w, . According to this Lie equation the
behaviour of A at x is governed by the behaviocur of
the invariant coupling g’ at the same x. From a series
expansion of the right-hand side of this equation in
terms of the invariant coupling, the integration of
8qe /2.12/ yields a summed up expression for A. This
procedure keeping the first few terms of the series
expansion gives a reasonable approximation in that
case only if the invariant coupling is small in the
interesting energy range, which, unfortunately, is
not true for many problems and therefors only quali-
tative conclusions can be drawn from the results of

this method,

:
¢ B SRS
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It should be emphamized that the usual multi-

plicative renormalization procedure with introduction

of the extra variable A is more general than the

~ treatment presented here., In the case of Anderson’s

model of dilute magnetic alloys, for example, where

simple scale transformation can be done approximately

onlyl6, the standard multiplicative renormalization

technique has to te used17.

I1I. X=-ray absorption problem

As a simple example we will treat very briefly
the x-ray absorption problem, The reader is referred
to the paper36’7 by Nozieres et al. for the physical
problem and for the notations, Furthermore, as above,
the renormalization of the deep-electron Green’s

~J

function, d(w) and the reduced vertex i' are defined by

Cj = C}o d /3.1/
and
[ = g r . /3e2/
The cut-off enorgy is denoted by {. in this section.
The vertex will be calculated in a special case, namely
when the energy of the conduction electrons is fixed

at the Fermi energy and the remaining single variable

is the deep-electron energy. It follows from the




"lO"

structure of the Dyson equation that the renorma-

lization equations may have the form

Glw, toigl= 2 Glo ¥, q], /3.3/
.d(%‘ﬂ\’:zlcl(‘ii‘cﬂ, /3.4/
E(ﬁ,?‘)zzg‘ 1"(35’—0'%), /3.5/
¢ =2 27 7,9 . /3.6/

First we have to show that these equations can be
satinfied and then its conaequencéa can be explored.
The graphs of the response function or those of
the vertex must not contain deep-electron closed
loops, i.e. no conduction-electrcn self-energy has
to be included in these diagrams. In other words the
conduction~electron Green'’s function G should remain
unrenormalized in calculating these quantities and
therefore zlnl. For the deep-electron Green’s func-

tion and the vertex we get
o((w‘ = A +%1 (_Qw\. L’%)'J — T O’\"J,]* /3.7/
E‘U¢| - 4__(¥'[QK %2 *iﬂ“@(“)]4-.‘./ /3.8/

where Olv] is the step function. The self-consistent
solution of eqs., /3.3/~/3.6/ using eqs. /3.7/ and
/308/ is

=4+cfﬂw%:+--- , /3.9/

-4
Zq
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N
Z:’:"*—-% Q““_g;*" / /3.10/
g =9 + o(q). /3.11/

. The renormalizing factors and the new couplings are

in fact real, though d(w) and I" are complex. Applying
the Lie equation for the invariant coupling itself,
we get easily

N /3.12/
i.e, the coupling is not renormalized in the x-ray
absorption problem, That is the probable reason why
this problem can be solved exactlyle.

The response function
. 2
’X(w' = - [Q,\ %’; -(W@(u}] + cb[ﬂh E —4mw @(U;]+.../3.13/

does not satisfy the criterion of multiplicative re-~
normalization, neither 'X‘hJ/XfWuLwhich is usually
used in renormalization theory. This is probably due
to the logarithmic nature of'fq@d. Za.wadowskil9
pointed out that the logarithmic derivative of X is
the proper quantity to be used for such a treatment.

In fact

1 0 ) '
qld=- 5 B oy (e - 0W]e 5

has good transformation properties., The Lie equation

up to first order and its solution are

D &y (]
'—“5%""' 3—‘:71% ’ /3015/
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XU = C apl-2g ] - €7 /3.16/

/

with x =W/t . By integrating (xl and determining the
constant of integration from fitting to the perturba-~

tional expresasion, we get

X (w) = ?j‘% [(% " 1] + mﬂ(wl(—?;y?. /3.17/

This is precisely the result of the self-consistent
treatment of the x-~ray absorption problem in the weak
coupling limit, The remarkable feature of the calcu-
lation is itssimplicity. The power law singularity
comes out in a natural way.

Analogously we get for the deep~electron Green'’s

function

LR

i 9
Alw] = 1= i7 g O() | (‘u?‘) , /3.18/

which again corresponds to the result of the self-
~consistent treatment,

Zawadowski5 used another method to determine the
imaginary part of the Green’s function. He performed
the renormalization for w<O wher: the imaginary parts
vanish and made an enalytic continuation to W>O,

d(w<0) = exp { cBl U :"';,g , /3.19/

and thersfore

d(w>0) = exp gl T “'“)1 = e (%’;)% /3.20/
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The Green’s function obtained by this procedure has
correct analytic properties. In the weak coupling

limit the same form is reproduced as above.

IV, Scaling i1 the Kondo problem

20

In Abrikosov’s”" pseudofermion representation

for the spin operators the Hamiltonian of the Kondo

model 1is
H;\‘k = 1N %:' Q S‘(p @Ga 66 Cl Z &(@xa\"lot. /4 1/
dﬂx K@

The potential scattering term has been included as
in a consistent renormalization procedure V has to
be taken into account throughout the calculation .
even if it is put equal to zero at the end.

We can proceed similarly as for the x~ray ab-
sorption problem and perform a multiplicative re-

o~

normalization of the reduced vertices [,

pyé

of the conduction-electron Green’s function G and

Meags = & 0o (pOys) + % T 8y Sps, /4%

of the pseudofermion Green’s function q,a Gl by
real factors z,.

We assume that multiplicative renormalization
can be achieved in this case aswell, by a change of

the cut=off energy D, i.e.

Glw, D, 7, V') = =, G(w,ﬁ. 1 Y
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dlo, D, 7 V) = 2z, dlw,D 1.v/], /4.4/
Ns(w.D'. A zy Izg(w,b,‘j,v), /4.5/
Cy (oD, 7 V) = 2 T (oD, 7, v, /4.6/
T=202"2.1, /4.7/
V' = 2z =z, V. /4_£3/.

It is not at all trivial that these relations can be
satisfied with real multiplicative factors, indepen-
dent of the frequency variables, We will show that,
at least up to a certain order, this scaling and
multiplicative renormalization are consistent.
Similarly as in the x-ray problem, there is no
self-energy correction on the conduction~electron
lines inside any diagram and therefore zy=1. The in-
variant couplings are defined as hefore, as the
self=-consistent solutions of the equations
}.‘_,1 Y -] PeloD 3V 1o ]V
‘o, o f‘ls(u,D’, 3"\” cl(‘w?;b'.y:\") 1 /4.9/

Tolw® 3V alw D3V 410/
Bl D JV) Al § V)
Again the denominators in eqs. /4.9/ and /4.10/ cancel

VIZ Jvl -V

the imaginary parts and the frequency dependences of
the corresponding numerators., This is demonstrated
first for the parquet diagrams., The vertex contribution

is calculated up to third order in two limiting cases,




2 0 L - " ,Lﬂ!m' S 5 ': l’ | ;
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namely when a/ the conduction-electron energy &£ or
b/ the pseudofermion energy w 1s retained as single

variable. In case a/ we have

o~
£ ¢

U (8) = 4 - e ( T ) < Ve nign €

ol

3

T . L
1 e s s pir) /8.11/
’ -}-LW}VQL(Q;\%*}_{W}&&JAE

LRSS v R VS e

~g |

[’:;‘OLE) = « - -\'“- -A\i‘g S(S"“,’MCT\E - ‘z_\‘ar\.'g :‘3{%\& £.

3 o /4.12/
Vi Z{_ ot SIS+ b T aiqe €

+ -&1(,‘%:.62'5(3‘”) O(cam& - %'Kl ’}QS:-I Skg‘f”
,‘L 1
- ‘?RL\« e 4+ ...
while in case b/
"ﬁﬁ_(w) = 4 - ’}g[h ‘5*:— —m@(w)]
| 1 W . z ,
‘ + ] g"[@u’f,‘ - t"‘"e(“)] o /4.13/

":;o (w) = 4 + &Hs' V') /8.14/

is obtained. In the parquet approximation the pseudo-
fermion lines are not renormalized, d(w)al apnd there-

fore saal.




..16-

Taking any of these particular choices of the
variables, the same expressions are obtained for

the multiplicative factors z; and for the invariant

couplings:
1324’18&“%*]1@1&1%+... , /4.15/
]'=}U*?§>"*~% *T'e"&f%u.)/ /4.16/
\/‘=\/, /4.17/

This fact confirms a posteriori our original
assumption that multiplicative renormalization can
be achieved by scaling the cut—-off energy and that
the invariant couplings are independent of the
frequency variables. Inserting eq. /4.16/ into the
Lie equation /2.12/, simple integration gives

\
1 (%J = ¥ S /4.18/
tede ey

This result could have been obtained from
first-order scaling already, i.e. taking the first
corrections to the invariant couplings and solving
the Lie equation in that approximation. This shows
that, as far as the invariant couplings are concerned,
first-order scaling is equivalent to the parquet
approximation, Unfortunately this is not the case

for the observable physical quantities.
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It is noteworthy that by considering the
imaginary parts as well, the invariant couplings
remain intact, while the scattering matrices change
drastically. The spinflip and spin non-flip parts
of the scattering matrix, T and t, respectively,

are knovn in the parquet approximation from the

works of Hamann21 and of Brenig and G6tze22
) {
e TR /4.1
W

'~ Ty
= el — - /4.20/
‘t'(w) ’71\'L [ ﬂ;\)‘ 5}31 s SQS-M 1]

where the Kondo temperature is given by

A 4 '}? T‘ﬁ =0 /4.21/

The scattering amplitudes can be expressed in terms

of the invariant coupling and we get

4
T 1(‘ = oo PR S —
( (/3 =4 im)" + xtSis+) ] /4.22/

Fix) = = | —=——x e e .
) 1.~L['{(4/J pRE LT 1J’/4.23/

where X = %% o The logarithmic derivatives of these
expressions arec rather involved functions which,
when expanded, include arbitrarily high powers of
J'/x/e Due to these terms, first or second-order
scaling i3 not sufficient for T or t, As the in-

variant coupling, J*/x/ is divergent at the Kondo

-
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energy in this approximation, an infinite series
summation 18 necessary to get non-singular behaviour
for the observable quantities at TK'

Lower-order logarithmic terms come not only
from the imaginary parts but from the real contri-
butions of non-parquet diagrams as well. Going beyond
the parquet approximation, new corrections will
appear in the invariant coupling, too. In calcula-
ting the third-order non-parquet vertex corrections,
we have retained the energy of the pseudofermions,

w, & s8ingle variable.
Pelo) =4 = Jg[o 5 ~in 0]

4 . z
+ 11'?1 [(»\ 5 — v G‘(l~‘)] /4.24/

T T V] [y e

ﬁo (w) = 4 - %. i']lglg(gﬂ‘ +Vlgl} [a&%ﬂ _;ﬂ-(l)(u)]+—/4.25/

In this approximation the pseudofermion linme is also

renormalized,

dlw) = 4+ 4 { Te'sts+) Vet by ~wBW)]+ ... /a.2e/
The self-consistent solution of eqs. /4.4/-/4.8/,
making use of eqs. /4.24/~/%4.26/, 18

\
2z x {T?L S(s+4) + Vet QA—'% Y a0y
|

| D, qragrD
'23=4-]QQWD*1?1 D

~ {1 Ustsm) - 1] e vis o+
| /4 29/
oz, = 4_%%‘81?1 S(S+4) FVL§1} &% +...,

S P b Lt e el e DS B

I
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2 4 2 4 Ky

‘ ) I 3
T=qlr=Tebgr g5« 4 Te e ], 780307

\ll’ V /4031/

.~ The non-parquet diagrams give important contribution

to the Iie equation for the invariant coupling,
D ! [ { . 1 pt, 2
R AL Ll-twWe v 2T We vl a3

S v =0 /4.33/

e

_This is the same ILie equation as obtained by Abrikosov
and Migd313 and by Fowler and Zawudowski4. Abrikosov
and Migd313 have calculated explicitely also the term
proportional to 33 in eq. /4.32/.

Prom the present treatment which ias more rigorous
than theirs the fillowing conclusions can be arawn:
gcaling of the cut-off energy is equivalent in the
Kondo problem to multiplicative renormalization with
real multiplicative factors; the invariant couplings
are real, the imaginary parta of the Green’s functions
and vertices have no bearing on them and consequently,
as before, the exchange coupling and the potential
ascattering are not coupled to each other, the poten-
tial scattering is not renormalized.

So far the imotropic Kondo problem has been

investigated. Anderson’s original scaling laws were

derived for the anieotropic Kondo model. Zawadowski




10 extended Anderson’s "poor

and the present author
man’s method" to higher orders, The scaling laws
obtained in that way agree with eq. /4.32/ in the
imotropic case, Several points of that calculation,
however, have not been clarified completely. One of
them ig the choice of the renormalized matrix element
of the T matrix. The other problems were connected
with the imaginary parts, which have been neglected
everywhere, and with the choice of the encrgy va-

riables in the scattering matrix. Ve will show in the

Appendix that a consequent application of the renor-

malization group method yields automatically real
invariant couplings for the anisotropic Kondo prob-

lem, too, and the same acaling laws are ohtained as

in Ref. 10,

Ve Discussion

In the present paper a simple formulation of the
multiplicative renormﬁlization procedure has been
presented for logarithmic problems, It is suggested
that for the Kondo problem, the x-ray absorption
problem and for one-dimensional metallic systems
multiplicative renormalization of the Green’s func-
tions, vertices and coupling constants is equivalent

to0 the scaling of the cut-~off energy. In these cases
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there is no need to introduce the dummy variable QA
and an unambiguous definition of the lnvariant coupling
can be given,

The results of the present paper can be summa-~
rized as follows, Iirat, we have shown that scaling
of the cut-off energy and multiplicative renorma-
lization with real factors are in fact equivalent for
the Kondo problem and x-ray absorption problem. The
one~dimensional metallic systems have been investi-

14’15, where the absence of phase

gated separately
transition has been demonstrated. It has been shown
that starting from complex Green’s functions and
vertices a real invariant coupling can be introduced
which is independent of the frequency variables and
depends on the scaling energy only. The deacribed
procedure is applicable to logarithmic problems onlye.
It seems that the introduction of the dummy variable
A cannot be avoided in other cases.

Second, we have rederived the scaling laws both
for the isotropic and anisotropic Kondo models by
taking 1into account the imaginary parts of the
Green’s functions and vertices, It turns out that these
imaginary parts do not modify the scaling laws and
therefore the relations obtained by Abrikosov end
Misdal3 as well as by Fowler and Zawadowuki4 for the
isotropic case and by Sélyom and zawadowsk1i1l® for the

anisotropic one emerge intact. By this we have put

——
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the scaling theory of the Kondo problem on a more
rigorous basis.

Provided the invariant coupling is known, it can
be used in the Lie equation to determine observable
phyéical quantities like susceptibility, resistivity
etc, We have shown on the example of the scattering
nmatrix that, although, in principle, the knowledge of
the invariant coupling helps to determine the matrices
T and t, in reality all the skeleton graphs have to
be calculated to get reasonable results, In these
quantities the imaginary part of fhe parquet diagrams
and the contribution of the nonparquet diagrams are of
the same order of magnitude and they all have to be
taken into account, No reliable theory exists as yet how
to treat this problem. In lack of such a treatment only
qualitative conclusions can be drawn from the renor-
malization group approache. For a detailed discussion
of the scaling laws and their consequences the reader
is referred to the papers of Abrikosov and MigdalB,
Fowler and Zawadowski?, Anderson et 21.8 and zawadowski

"and the present authorlo.
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Appendix

The anisotropic Kondo Hamiltonian is written in the

form
+ oz + z
At = ‘jl‘ 2, S 5 6_ O
Hu\f Z— ﬁt %'.( n((g c,‘,’ ak‘ th S
<(yd
+ . . - -,
4+ l: Zﬁ' de &ﬁ ak.ﬂ AQug (S‘*ﬁﬁld-‘-g“(‘ﬁ;") /A.1/
A(&’“S

V ¢ * Q " ]
+ IN e b b Qup Ap
In the particular case S*1/2 the structure of the full

vertex is

= _ jl i z z
I, = = Pz(\Sm_ﬁ‘ .
bys toee | JA.2/

+ ]3 U, «g,(p o S,:(; 0':3') + !ﬁ, cgdpchs .
For general valuea of the spin the spin products in
the higher~order terms can not be cast iﬁto the
simple form of eq. /A.2/ and more invariant couplings
ought to be introduced.
The following form is supposed for the scaling

equations

G(w, ‘D'I ‘}‘t‘ ) ’]‘1' V‘}

B

4 G w,D, , 2,‘/) _—
RIS Y,

A (v O I, Je V) =z dloD, e, TV
-~ . /A.4/
(o, D, e )e V= 20 T (0D T JeY), s/
M2 ( D -J—\‘Ji\ D Fz( D} e, V} /4.6/

3

[ ' M. -7 il w D T+ Tz
(U'D, ‘lt ']z’V)-- —s Po( !‘D! ‘1*--] 'V)' /A.7/

Je = 2z 24 fe /A.8/
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) -t -
l==2z0 2, 2, -, /Y
\/’ R -4 - "‘ " \‘/ /A. lO/

where, @as before, the conduction-electron Green's
function should not be renormalized and therefore
z1=1. The perturbational result for the pseudofermion

Green's function and vertices 1is

A(m)z (+,%[]§ +.{§ii4-2;;1]Qz[o“§§‘_uerJ] \EERRVIRINELY,
r‘ﬁ(‘k): ( ,_] elib\:) lﬂ‘b("‘)]*%(}i*tx;)()j[o “;f T\O( "i:
+AT Y giazvl}g[g‘\;ﬁ T /A 12/
L
e Bl won] e[ o]
I /A.13/
+ _:_ []: ""ili - I_M'I-ilgl [QL\:-: —C’cr@(u)]+ ver
/A.14/

Y N e N I

The self-consistent solution of these equations easily

glves |
\ D S
el et w2 (Tl
LR e g e ] /he15/
\ T S ST S 2 D
1x =]1{4—%§eb~:ﬁ* i br 5 4 i:.]tﬁle*.?*---}, /A. 16/

- /A 1T/

These expreesions yield the same scaling laws as in

Ref. 10,
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\ \
N N N T St

- O s ' /Ao 20/

These scaling laws have been discussed by Zawadowski

and the present author10

. Here we want to emphasize
that fact that the imaginary parts of the Green’s
functions and vertices cancel out in the invariant

couplings, they are real and independent of .,

. e WA e W
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