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1. Introduction 

In the algebraic description of a quantum field, first 
given in / l - 8 - , the Wightmann functions Wn (x,,...,x n) a r e 
collected to one functional W (f) on the algebra ti -•= (3 + i Ct 0 

of test-functions. Hence the Wightmann functional is 
uniquely determined by the hyperp'ane E л-кегШ, the 
kernel of W . The positivity of the Wightmann functional 
W leads to the property that the cone К of positive e le­

ments of ti0 l ies on one side of E w . The other proper­
ties of W , the locality, the spectrali ty and the invariance 
lead to the fact that E K contains a certain linear space 
L, the so-called Wightmann kernel. 

In this way the existence problem for quantum fields is 
transformed to the problem of finding all hyperplanes E „ 
in fl0 with the propert ies mentioned before. Therefore to 
prove the existence of Wightman (type) functionals with 
certain propert ies one can apply the well-known seperation 
theorems for convex sets in locally convex spaces. This 
method was outlined already in 6 - 7 . where it was proved 
the existence of certain functionals with +he property of 
positivity only. Further resul ts in this direction were 
obtained in 2<3- , where the existence of certain Lorentz 
invariant positive functionals could be proved. Recently 
in 9 / a general extension theorem for linear functionals 
on a subspace M of '.i„ to a Wightman (type) functional 
on ( i 0 was proved. In this paper we descr ibe a method 
to prove the existence of fields with certain properties 
by applying this general extension theorem. We give a 
simple proof on the exist^nf-p of a localinvariant quantum 
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field (without spectrality) different from a generalized free 
field. We are convinced of the possibility to prove in 
analogous way also the existence of quantum fields with 
more difficult propert ies (non-trivial fields). 

2. Geometric Interpretation of the Wightman Functionals 

A quantum field 0(x) (neutral, scalar) is uniquelly 
determined by the Wightman functional 

*<f> = 2 J * „ < * | . - . \ , И , > . x n)dx... .dx 
(1) 

W n ( x 1 , . . . , x n ) = < 0 | 0 ( x 1 ) . . . 0 ( x n ) | O > , 

f (x ...,x ) 6 ' S =§(R 4 n ) , 
П 1 D П 

where 
f =i f o-w-- f „<*i *n>>°>°-> 

is an element of the field algebra 

fl=,S0©,S1 ©'Sg© ... , S 0 =C. (2) 

б is the tensor algebra over the Schwartz space '§,=£ (R4). 
ft' is a locally convex topological * -algebra. The invo­
lution is defined by 

(f* ) (x. \ )=f (x„ x ) , (3) 
n 1 n n n 1 

the multiplication by 

( f . g ) n ( x i , . . . , x n ) = ^ f £ ( x 1 ) . . . , x ^ ) g k ( x ? + 1 , . . . > x n ) (4) 

and the topology г by the system of seminorms 

' H I M ! , „ = s y ]|f || , < 5> 
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where (у ) is an arb i t ra ry sequence of positive numbers, 
(u ) an a rb i t ra ry sequence of nonnegative integers and 
|| f || , v= 0,1,2,..., t n e denumerable system of semi-

norms defining the topology of •§ n . Some propert ies of 
the topology r and of another important topology r ^ in 
(3 a re investigated in 4 , s / . 

The hermitean part Ct0 of the field algebra ti is given 
by 

( V l f G f i ; f *= f | . ( 6 ) 

By Ко we denote the cone of positive elements generated 
by f*-f , f e (3 ,and by K = K0 i ts topological closure. К is 
also a cone /<>/. 

The Wightman functional W(f)is character ised by the 
following propert ies / , i ' s / • 

1. Positivity 

W(f)> 0 for f e К ' (7) 

and W(l)=l, where 1=11,0,0,...! is the unity elementof Q . 
In • / 9 / it is proved that the continuity of W is a consequence 
of the positivity. 

2. Locality 

W(f)=0 for f & \ f o c , (8) 

where l£oc is the two-sided ideal generated by the e le­
ments f„<*,,...,*„>-$, (-.«J . * j + , • - > - e . ( - ' x j + i •") • - ) 

2 
with g n ( x | x ) = 0 for (x + 1 - x . ) > 0. 

3. Spectralitv 

W(f)=0 forf 6 l s p , (9) 

where 1 S |, i s the linear space generated by f n(X|. . . ,x n) 
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with f (p,,....,p )= — L _ _ r e f (x„...,x )dx,...dx =0 
(2jr) 

к —Г n 

for S p . G V (the closed forward cone), Ipf =0 , 

к =1,2,..., n - 1 , 

4- Pgjjicarg tnvpriqnf-e 

W(f)=0 for f ' e I , (10) 
mv 

where Ij„ v is the linear space generated by the elements 
- l - i 

f

n ( X l x „ > = Sn < x l x „ ) - 8 п ( Л ( x l ~ a ) Л ( X n- a » 
= g n - U , a ) g E . 

Since W(f) is a positive functional, it is hermitean and 
therefore a real positive functional on the semiordered 
space 6 0 with the closed cone К . 

Let I = 3L*{ 1 g„c. ,1 s p , l l n v ) be the closed linear sub-
space generated by these three linear spaces. Since f*ei 
if f e I, the linear space I has the decomposition 

I - L + i L , < " ) 

where L is a real subspace of 6 0 .We call I r e spec ­
tively L the Wightman kernel. Collecting all mentioned 
propert ies we can say that a Wightman functional W(f) is 
a (real) linear functional on the real linear space Q0, sa ­
tisfying the following propert ies. 
Wightman functional 

a) W(f) ^ 0 for f С К 

(12) 
b) TC(f) = 0 for f S l 

c) W(l)=l 
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Let be E „ = kerW =1 Гц tl ( | ; W(f) = OI. 
Then E , is a hyperplane in Ct0. Since we assume the nor­
mality Ж1) = 1 the correspondence between Е л and W is 
unique. So we have proved 

L e m m a 1 
There is a one-to- one correspondence between a quantum 
field ?>(x) with the Wightman functional W and a hyperplane 
E w of fl0 with the properties (Fig. 1) 

a) the cone К lies on one side of E l v , 
/ (13) 

b) L г Е K . .. 

Thus the problem to determine all quantum fields Ф (x) 
(neutral, scalar) is equivalent to the problem to determine 
all hyperplanes E of tf0 with the propert ies (13). This 
conception of determining of the Wightman fields we had 
already formulated some years ago in r"'. Some resul ts 
in this direction have been obtained in 2 ! ' . where p ro­
pert ies of positive functionals of the Wightman - type 
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(satisfying not all conditions) are proved. Recently Wyss "-' 
proved some theorems about the extension of linear func­
tionals in б о to positive functionals. Let M be a subspace 
of fi0 containing the identity 1 and T( f)be a linear real 
functional on M normed by T( 1 )= 1 • T is then uniquely 
determined by its kernel 

kerT-i f GM; T(f) = 0 |. 

Q u e s t i o n : Under which conditions does there exist a 
Wightman functional W(f) being an extension of T, i.e. 
W(f) =T(f) for f с м ? 

That is equivalent to the question under which conditions 
there is a hyperplane E w satisfying (13) and containing 
L and kerT.The answer to this question is given by the 
following 

T h e o r e m 1 ' 
There exists an extension of T to a Wightman func­

tional W if and only if one of the following equivalent con­
ditions is satisfied: 

i) б о £ К + L + kerT , 
(14) 

ii) - 1 £ К + L + ker T , 

where the closure in K+L+kerTis taken with respect to 
the topology r (5). 

In what follows we shall demonstrate how one can prove 
the existence of quantum fields with certain properties, 
but we cannot yet exclude the trivial fields. 
3. Existence of Wightman Type Functionals 

The next lemmas are important for the method proving 
the existence of certain Wightman functionals which we 
shall demonstrate in what follows. 

L e m m a 2 
i) If f „ e i then 
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/ f (x ,...,x )dx ... dx =0 or equivalent 

f (0 0 ) = 0 . (15) 
П 

ii) If f e Г - i'(l„ Л. ) then 
[.„. . . v ( 1 6 ) 

/ f (x ,x)dx = 0 
P r o o f : 
i) For f € i ftll. o r l s | 1 or I i n v itfollows f"n(0 0) =0 

For instance, if f •€ 1 pm . has the form 

f=f (x ...,x )=g (...x. ,x ....) - g (....x. x. ...) 

then it is Г (0....0) = - r / f (x.,...,x )dx....dx =0. 

Analogous for f gl i l l v - l f f б-I s p ,Г(0,-..,0)=0 holds by defi­
nition. Since fj->f(0,...,0 ) is a l inear continuous func­
tional on Q , f„(0,..., 0)=0 holds for any f*=I = £(L Л Л. ). 

" Toe нр mv 
ii) If 

then / f (x ,...,x)dx=0 
J n 

and analogous for f = f e-1 
n mv 

In consequence of the continuity and linearity of the func­

tional f -» f fn(x ,...,x)dx 

we have proved (16) for any (QI'= £ (lioc , I i n v )• 
Let 9 be the algebra of all real polynomials p = 2 av t" , 
a , s-R in one real variable, equipped with the s trongest 
locally convex topology r j . The set К Ф of all positive 
polynomials, p(t) :>0 for all real t, is a cone in 9 
With this cone f becomes a semiordered space. 

L e m m a 3: 
Both the linear mappings of Q0 into f defined by 
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f =1 f0 ,f, (x , ) , f 2 ( x , , x 2 ) > . . . 1 -e S 0 

f ~*:tlt)mJ* 7T^f f - ( x - x n ) d x i - " d x " 
">-0 (2 n) 

X f (0 0)t 
n > 0 n 

(17) 

and 

f - f = f(t) = J t " f f (x x)dx (18) 

a r e continuous and positive, i.e. if f•€ К then f,feK<p . 

P r o o f : 
The mappings fn-*fn and f n -»f n a r e continuous on 

the subspace c^0= Ct ,/1 § n of the homogeneous elements of 
degree n. Since (Зд[г] is the topological direct sum of the 
^„o. the continuity of these mappings on fio is proved. 

Further , since the cones К and К fp a r e closed, theposi t i -
vitjfof the mappings (17) and (18) is proved, if we show 
(f^2}) <=K,p and (f+.Q^Km for every f e u . Now it is 
(r b . fxo о) = Г (о,...о)Г (о,...о) 

n n n 
and therefore 
< ^ n 2 

f - f= X t X f k (0, . . . ,0)l , (0„ . . ,0 )=]2t fm(0,...,0)| s0 

for all t, i .e. f + -f eK. ( 1 9 ) 

For (f +- f) we can conclude on the following way 

( f - 0 = X t X / f (x,...,x)t, (x,...x)dx 
i i > 0 k+£=n k * 

= / X X t k f~(x, . . .x) t f (x,...x)dx 
n>o k+e= n

 E 
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= Г [ 1 t m f m ( x x ) ! 2 d x > 0 (20) 

m> 0 

for all t • 

Now we can state and prove 
T h e o r e m 2 
Let 
M=l g = A l © M f ° ; A , M € R I , f =(0,0, f, ,0,...) ^ К 

with f2(0,0) ^ 0 and '! the linear functional on M de­
fined by T(f) --(i - 0 , T (1) -=1. 
Then there exists a Wightman functional Vf(g) (local, con­
vex, invariant) which is an extension of 1(g) . 

P r o o f : 
In consequence of Theorem 1 we have only to prove 

-1 ф К + L + кег Т . 
Now кег т = U ( - f t l Q f , ) , A c - К I. 
If -1 eK^L + kerT, then it would exist a sequence 

k a + l a + v a e K + L + кегТ, k a £ K , С a C - L , 

v a = A a ( - /31©f 2 ) e kerT W i th k G + l a + v a . -1 . 

la i is a directed set of indices. By applying the mapping 
(17) we obtain 

к + I + v —> -1 (21) 
*\ 

in У. From Lemma 2 (15) we get ( '"=0 and therefore 
it follows 

k a ( t ) + A a f 2 ( 0 ) t 2 - \ар - . - 1 ( 22) 

with respect to tiie topology ту of У. 
In consequence of Lemma 3 the zero-component of 
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к is positive and therefore <\"_"; 0 for « >« . 
Further we take a_t 0 such that F2(0,0)t (f - p ^0. 
Then C" (i j i A" ffj; (0 Од I - /i ) ••_ 0 for « >« „ 
This is a contradiction to (22), since from the convergence 
with respect to ту it follows the convergence for any i . 
Thus the Theorem is completely proved. 

Theorem 2 states the existence of a Wightman functio­
nal and consequently also of a field. Of course this Theorem 
says nothing about the existence of nontrivial fields, since 
we can find a free field Ф0(х) the Wigjitman functional 
W() of which is an extension of T ,i.e.Wo(f) = T( f ) . 
The proof of Theorem 2 is only the simplest example to 
demonstrate, how one can prove the existence of fields 
with the help of Theorem 1. 
A more general result we will obtain with the next Theo­
rem. We start with a test function g t (x , .x 2 ,x „,\^(i: of the 
form 

8 , ( x , - x , ' x , •* ) = h(x )u(x )u(x 3 ) h (x . ) (23) 

with the properties 

h(p)=h(-p)> 0, u(p) = u(-p) >_0 (24) 

Further we take h and u in such a way that supp h and 
supp u are compact and 

~ 2 - 2 
supp h С i p; p > 0 I , supp u С i p; p < 0 I (25) 

We can choose g t in such a way that 

/ g (x,x,x,x)dx =(2л) /S(p +p +p +p )h"(p )u(p )x 
4 I 2 о 4 1 * 

x u ( p 3 ) h ( p 4 ) d P l . . . d p 4 >0, (26) 

since for the point (РрР^Р.'уР.р in Fig. 2 the integrand on 
the right-hand side is positive. 
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Figure 2 

T h e o r e m 3 
Let M = I f =A l©f*g , ; A ji e R I be the linear subspace 

of (i о generated by 1 and g 4 and % f) = ,\ + )iji , 
T^g.t ) ^/3 > 0 a linear functional on M. 
Then there exists positive functional W(f) on Ct0 , 
which is a continuation of T and satisfies W(f)=0 for 

f £ L Г •L '+i 'L '= £ ( I . ,1 ). 
toe inv 

W(f) is then a Wightman-like functional. It is local and 
invariant. ByW we can construct afield ф(х) which s a t i s ­
fied all assumptions of the Wightman axioms except the 
spectrality. The field 0(x) obtained on this way i s different 
from the generalized free field, since 
W(g ) = <0\ф<Ь)ф(*)ф(и)ф(Ь)\0»0, 

4 
it holds Ф (u) = 0. 

gen g«.'n 

but for a generalized free field ф 
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Proof: 
Analogous to the proof of Theorem 2 we have only to 
prove 

- . 4 K + L ' + k e r T , ( 2 7 ) 

where ker T = I A(-0J ®g ) ; U R | . 
4 

Let k a + f a + v a 6 K + L ' + kerT, k a C K , f a e L ' and 
v a=A a(-j81 ©g^ekerT be a sequence with 

k

a

 + f a

+ v

a 1 (28) 

in (] о with respect to the topology r. Now we apply the 
mapping f —> f (18) and get 

k Q + (a + v a _ - l (29) 

By Lemma 2 ii) it is P" ^ 0. Therefore 

k a ( t ) + A a ( c t 4 - 0 ) — - l . (30) 

with c=/g 4(x,x,x,x)dx ^0 By the same conclusions as in 
the end of the proof of Theorem 2 (30) leads to a contra­
diction. Thus (28) is impossible and the Theorem is 
completely proved. 

Since for the points P | , p 2 p T p 4 of Fig. 2 g ^ . p ^ p p,)>0 
and p, , p, *p 2 . P | f p 2 +p 3 c v + ' . p + p 2 4-p 3 + p 4 =0 , 
g 4 is not an element of I . Therefore one can hope with 
methods analogous to those demonstrated before also to 
prove the existence of an extension W(f) of T(f), which 
satisfies W(f)=0 for fei . Then f(f) would be a full 
Wightman functional of a field different from the genera­
lized free fields. 
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