

K^oN INTERACTIONS – A COMPILATION

Particle Data Group

Fumiyo UCHIYAMA

Lawrence Berkeley Laboratory University of California Berkeley, California

and

James S. LOOS

Stanford Linear Accelerator Center Stanford University Stanford, California

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

Available in the Western Hemisphere and Far East from Lawrence Berkeley Leboratory, Berkeley; users elsewhere should order from CERN, Geneva K^ON Kinematics

$\begin{array}{cccc} P_{12b} & T_{1ab} & E_{c,m} & P_{c,m} & \frac{2}{4\pi \sqrt{2}} \\ (MeV/c) & (MeV) & (MeV) & (MeV) & (MeV/c) & (mb) \end{array}$	$\begin{array}{cccc} \mathcal{P}_{lab} & T_{lab} & \mathbf{L}_{c,m}, & \mathbf{P}_{c,m} & \mathrm{tr} \mathbf{k}^2 \\ & \mathbf{L}_{(AeV/c)} & (keV) & (keV) & (keV/c), & (nb) \end{array}$	$\begin{array}{c} P_{lab} & T_{lab} & P_{c,m} & P_{c,m} \\ (GeV/c) & (GeV) & (GeV) & (GeV/c) \end{array} = \begin{pmatrix} 4ek^2 \\ (chb) \end{pmatrix}$
P. Los. Tab. E. en. P. en. Tab. 0 0 1535 0 000000 0 0 1535 0 000000 0 0 1535 0 000000 0 0 1535 0 000000 0 0 1535 0 000000 0 1535 0 1300000 000000 0 1535 0 1300000 000000 10 1430 13 1300000 1300000 10 1440 13 1300000 1300000 100 14 1430 1400000 1400000 100 14 1430 1400000 1400000 100 14 1430 1400000 1400000 100 14 14000000000000000000000000000000000000	Party Party <th< td=""><td></td></th<>	
1107 710 1452 540 13.49 1120 740 132 540 13.49 1120 785 1470 532 14.49 1180 785 1470 532 14.41 1180 785 1470 534 14.40 1200 802 1489 576 13.44 1200 802 1489 576 13.44 1200 802 1489 576 13.44 1200 804 1489 576 13.44 1200 804 1497 601 13.44 1200 804 1012 407 13.45 1200 876 1012 407 12.45 1300 92 102.4 41.4 14.56 1300 92 102.4 41.4 14.56 1300 92 102.4 41.4 14.56 1300 92 1012.5 61.4 14.56	J. 1400. 2144 2445 988 3.01 1400. 2144 2445 988 3.01 1400. 2100 244 1002 5.01 1400. 2100 244 1002 5.01 1400. 2123 2447 1002 5.01 1400. 2123 2447 1005 4.43 1700. 2741 2506 1011 4.77 1700. 17 1518 1024 -441 1700. 2744 2507 1021 -4.61 1700. 2744 2517 1021 -4.61 1700. 2744 2517 1021 -4.61 1700. 2744 2517 1021 -4.61 1200.0 2044 2547 1021 -4.31 2800.0 2042 2772 1031 -4.32 2800.0 2042 2772 1031 -4.32 2800.0 2204 2001 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

COMPILATION OF K⁰_LN INTERACTIONS Particle Data Group

Fumiyo Uchiyama

Lawrence Berkeley Laboratory University of California Berkeley, California 94720

and

James S. Loos SLAC Stanford University Stanford, California 94305

ABSTRACT - We compile all 13 papers reporting K⁰_LN interactions. Cross sections, differential cross sections, angular distributions, forward differential cross sections, and the phase for regeneration are summarized. A brief synopsis is given for 7 experiments in progress at the time of this compilation. The cutoff date for this report was 1 January 1972^{**}

NOTICE sponsored by the inspared as an account of work the United States and the United States Covernment. Neither the states and the United States and the states the states and the United States and the states makes wards, subcontained and the states and the makes and the states and the states and the states the states and the states and the states and the percent of the states of any information, appartials would not infringe privately, would right, and the states and would not infringe privately, would right, the states and the sta

⁵ The Berkeley Particle Data Group is supported by the U.S. Atomic Energy Commission, the National Science Foundation, and the Office of Standard Reference Data of the National Bureau of Standards.

^{**} One exception is the Serpukhov experiment. Their results are displayed only in Section II.

TABLE OF CONTENTS

Section I. General Procedures				
A. Introduction · · · · · ·				• • 7
B. Scope of the Compilation ·				• • 8
C. Data Handling				• • 8
D. Collaboration with Other G	oups -		• • • · · ·	. 9
E. Other Cross-Section Compi	lations ·			. 9
F. Acknowledgments				- 10
Section II. <u>K^D p Interactions</u>				
A. Introduction and Discussion				. 13
B. Figures and Tables				
Part 1. Non-Regeneration	σ	$\frac{d\sigma}{dt}$, $\frac{dN}{d(\cos\theta)}$	$\frac{d\sigma}{dt} _{t=0}$	ф
$K^0_L p \rightarrow total$	17	•••••		
π+ Λ	18	22,23		
$\pi^{\dagger} \Sigma^{a}$	19	24,25		
$\pi^{\circ} \Sigma^{+}$	21			
Ү π π	21			
K ⁺ n	21			
Part 2. Regeneration				
K [°] _L p → K [°] _S p	28,29	30,31	32,33	34,35
Section III. Data Tape Listing				. 39
Section IV. Indices and Miscellaneous	Informa	tion		
A. Neutral K Experiments in P	rogress			. 53
B. Momentum Index			• • • • • • •	. 54
C. Keyword Index		. <i>.</i>		. 55
D. Reference List				- 56
 [1] BLUMENFELD, ET AL., [2] BRODY, ET AL., PHYS [3] BUCHANAN, ET AL., F [4] CHRISTENSCN, ET AL., [5] DARRIULAT, ET AL., [6] FIRESTONE, ET AL., [7] HKINS, PHYS. REV. [8] KADYK, ET AL., PHYS [9] KIM, PHYS. REV. LET [10] LEIPUNER, ET AL., INT) PHYS.) REV.) HYS. LE) PHYS. LI PHYS. LI PHYS. RI 156, 1) REV. (TERS 19 PHYS. RE PHYS. RE L. CONF	LETTERS 296, 58 LETTERS 378, 213 (REV. 140, 8 74 ETTERS 338, 433 EV. LETTERS 16, 3 444 (1967) LETTERS 17, 599 , 1074 (1967) V. 132, 2285 (191 . DN ELEM. PART(6)	(1969) (1971) 1971) (1965) (1970) 556 (1966) (1966) 53) CLES, AIX-FR	N-PR7VENCE, 235 (1961)
<pre>{12} MEISNER, ET AL., PH [13] SAYER, ET AL., PHYS</pre>	IYS. REV.	. D 3, 2553 (197) 169, 1045 (1968)	1)	

Section I.

GENERAL PROCEDURES

8

i. ell

Introduction

This is the fourth in a continuing series of reports on cross-section type data produced by the Particle Data Group. (The previous three reports were labeled UCRL-20000, but this and subsequent reports will be labeled LBL-50 through LBL-59.) In this series we collect and display total cross sections, differential cross sections, polarizations, and other similar data. Each report covers one input channel. This one is K⁰₇ N (the first one was on K⁺N, the second on YN, and the third on NN). In the near future we will bring out $\overline{N}N$ and $\pi^{\dagger}N$. Following later will be $\pi^{-}N$, K N, etc. All reports are complete from January 1968, and also contain selected results before that date. The reports will be updated periodically, as necessary.

The system from which these reports are derived is a computerized one, having at its nucleus a computer-searchable data tape containing information encoded from various articles. Sometime in the future we hope to be able to answer specific user requests for information from our data tape.

Listed below are the names of the many physicists who are working on, or have recently worked on, these reports:

I. System Development (LBL) Alan Rittenberg Arthur Rosenfeld

II. Encoding and Verifying Data, Editing Reports, Fitting Data James Enstrom (LBL) Zaven Guiragossian (Stanford) Victor Henri (LBL) 'Thomas Lasinski (LBL) Thomas Trippe (LBL) Fumiyo Uchiyama (LBL) III. Reading and Evaluating Articles, and Analyzing Compiled Data in: <u>m N Interactions</u> *Alan Thorndike (BNL)

Thomas Trippe (LBL) Frank Turkot (BNL) "[†]N Interactions Victor Henri (LBL) Thomas Lasinski (LBL) *Henry Lubatti (Univ. of Wash.) Thomas Trippe (LBL) Fred Winkelmann (SLAC) James Wolfson (M. I. T.) K N Interactions - below 2.0 GeV/c *Claude Brieman (CERN) Thomas Lasinski (LDL) K N Interactions - above 2.0 GeV/c J. Badier (Ecole Polytechnique) *Enzo Flaminio (BNL) G. Kayas (Ecole Polytechnique) Thomas Lasinski (LBL) **Brian Musgrave (ANL)** K⁰₁ N Interactions James Loos (SLAC) *Fumiyo Uchiyama (LBL) K[†]N Interactions Odette Benary (Tel-Aviv) Roger Bland (Ecole Polytechnique) Victor Henri (LBL) LeRoy Price (U.C. Irvine) Naomi Schmidt (Brandeis) Charles Wohl (Oxford) NN Interactions Gideon Alexander (Tel-Aviv) *Odette Benary (Tel-Aviv) LeRoy Price (U.C. Irvine) NN Interactions James Enstrom (LBL) *Tom Ferbel (Rochester) Zaven Guiragossian (Stanford) Paul Slattery (Rochester) Yoshio Sumi (Osaka) Barry Werner (Rochester) Toshihiro Yoshida (Kyoto) YN Interactions Gideon Alexander (Tel-Aviv) "Chairman"

*Odette Benary (Tel-Aviv)

LeRoy Price (U.C. Irvine)

If you have any suggestions for improving these reports, please let us know. Our address is:

> Particle Data Center Lawrence Berkeley Laboratory Berkeley, California 94720 (415) 843-2740, Ext. 6301 or 5885; nights, weekends, and holidays, call 642-0807.

> > Scope of the Compilations

1. We collect all experimental highenergy physics results that can be represented by simple tables or graphs, i.e., σ , $d\sigma/d\Omega$, polarizations, angular distributions, density matrices, etc.

We leave it to Data Summary Tape Libraries to store Dalitz plots or other ≥2dimensional displays (although the presence of such data is indicated on our KEYWORDS). In any case our printed compilations should serve as a necessary "table of contents" to a DST Library.

 The data come primarily from published journals, e.g., Physical Review, Physical Review Letters, Nuclear Physics, Physics Letters, Nuovo Cimento, etc.

We do also compile unpublished theses and conference reports — if the reports give enough information to permit a valid evaluation of the experiment and analysis.

We do <u>not record</u> data that appear in abstract form only, nor do we generally accept preprints unless the article has already been accepted for publication.

3. The compilation is to be <u>complete</u> from January 1968. Before that time we enter data that are particularly important. But the bulk of the pre-1968 papers will not be put into our system.

Data Handling

In order to make this compilation as accurate and complete as possible, a large

number of steps, involving several physicists and a secretary/assistant, are necessary. The list below indicates the most important steps that every article must go through in order to have its information entered onto the DATA TAPE (the magnetic tape that contains all of our data).

 a) The "reader," a physicit, finds a relevant article, reads it, marks the data to be encoded, and records on a special form certain additional information.

b) The article is logged in by the secretary/assistant, who also transcribes the bibliographic information, such as title, authors, abstract, etc., onto encoding forms.

c) A physicist, usually different from the reader, transcribes the <u>data</u> selected by the reader onto encoding forms. Additional data may be added at the discretion of this second physicist.

d) The encoding forms are keypunched.

e) The resulting deck is entered onto a temporary DATA TAPE by the program DATAPE. Gross errors (such as missing cards or information) are detected immediately by DATAPE. If there are such errors, the deck is corrected and processed.

f) When the data deck has been successfully processed, the temporary DATA TAPE is read by the program SKELM, which makes a listing of all the information stored for each article. This listing is examined carefully by the secretary/assistant and the encoding physicist. Any errors found are corrected and steps e) and f) repeated.

g) When no more errors can be found, the SKELM output is examined by the original reader and compared again with the article. Any further errors are corrected.

 h) Finally the encoding physicist makes a last check and marks the article to indicate it has had its final verification.

^{* &}quot;Chairman"

i) The article is entered onto a permanent DATA TAPE.

All the above is just to get the data onto the DATA TAPE. When preparing a report such as this, many additional tasks are involved. A few typical ones are:

 a) Collecting all the data on a particular set of reactions — plotting them, looking at systematic errors, removing obviously bad data from the graphs (but leaving it in the tables).

b) Ironing out normalization differences between experiments.

c) Worrying about the various ways in which different authors make resonance cuts and subtractions.

 d) Deciding what types of curves (if any) should be fit to certain classes of data.

Collaboration with Other Groups

Some physicists in Europe have formed a group called HERA (High Energy Reactions Analysis) to also compile cross-section data. We are trying to keep in close contact with one another in order to minimize duplication of effort both in programming and data collection.

We also cooperate with HERA on report distribution: LBL prints and distributes both HERA and cur reports for the Western Hemisphere and Japan, and CERN does the same for the rest of the world.

Other Cross-Section Compilations

We present below (in chronological order) all of the previous large cross-section compilations that we know of. In addition to just listing data, some of them have nice reviews, perform various fits to the data, etc.

• V.S. Barashenkov and V.M. Maltsev, Cross Sections for <u>Elementary Particle In</u>teractions, Fortsch. Physik 9, 549 (1961).

• V.S. Barashenkov and J. Patera, Cross Sections for <u>Antinucleon Production</u>, Fortsch. Physik <u>11</u>, 469 (1963) • V.S. Barashenkov and J. Patera,

Strange Particle Production, Fortsch. Physik 11, 479 (1963).

• M.N. Focacci and G. Giacomelli, <u>Pion-</u> Proton Elastic Scattering, CERN 66-18 (1966)

• J. T. Beale, S. D. Ecklund, and R. L. Walker, <u>Pion Photoproduction</u> Data Below 1.5 GeV, CALT-68-108 (1966).

• H. Yukawa, ed., Experimental Data on <u>Hadron Interactions</u> in GeV Region, Supplement of the Progress of Theoretical Physics (Kycto), Extra Number (1967).

• P.K. Williams, D.M. Levine, J.A. Koschik, References and Some <u>Two-Body</u> Data for High Energy Reactions, University of Michigan, 1967 (unpublished).

• G. Alexander, O. Benary, and U. Maor, Lata Compilation of <u>Proton-Proton Interactions</u> Between 1 and 32 GeV/c, Nucl. Phys. <u>B5</u>, 1 (1968).

• G. Alexander, O. Benary, and U. Maor, Data Compilation of Baryon-Baryon Interactions. (II) <u>Proton-Neutron</u> Collisions Between 1 and 27 GeV/c, Nucl. Phys. B7, 281 (1968).

• G. Alexander, O. Benary, U. Karshon, and U. Maor, Data Compilation of Baryon-Baryon Interactions. (III) <u>Hyperon-Proton</u> Collisions, Nucl. Phys. B10, 554 (1969).

• G. Giacomelli, P. Pini, and S. Stagni, A Compilation of <u>Pion-Nucleon Scattering</u> Data, CERN/HERA 69-1 (1969).

 B. Sadoulet, Data Compilation of <u>Anti-proton-Proton</u> Reactions into Antihyperon-Hyperon, CERN/HERA 69-2 (1969).

e G. Giacomelli, <u>A Compilation of Total</u> and <u>Total Elastic Cross Sections</u>, CERN/HERA 69-3 (1969).

• Particle Data Group (L.R. Price, N. Barash-Schmidt, O. Benary, R. W. Bland, A.H. Rosenfeld, C.G. Wohl), A Compilation of K⁺N Reactions, UCRL-20 000 K⁺N (1969).

• Particle Data Group (D.J. Herndon, A. Barbaro-Galtieri, A.H. Rosenfeld), mN Partial Wave Amplitudes; A Compilation, UCRL-20030 nN(1970).

Particle Data Group (O. Benary, N. Barash-Schmidt, L.R. Price, A.H. Rosenfeld,
 G. Alexander), <u>A Compilation of YN Reactions</u>,
 UCRL-20 000 YN (1970).

• G.C. Fox and C. Quigg, Compilation of <u>Elastic Scattering Data</u>, UCRL-20001 (Jan. 1970).

• P. Spillantini and V. Valente, A Collection of <u>Pion Photoproduction Data</u>. I — From the Threshold to 1.5 GeV, CERN/HERA 70-1 (1970).

 J. D. Hansen, D. R. O. Morrison, N. Tovey, E. Flaminio, Compilation of Cross Sections. I — <u>Proton Induced Reactions</u>, CERN/ HERA 70-7. (1970).

• E. Flaminio, J. D. Hansen, D. R. O. Morrison, N. fovey, Compilation of Cross Sections. II — <u>Antiproton Induced Reactions</u>, CERN/HER2. 70-3 (1970).

• E. Flaminio, J. D. Hansen, D. R. O. Morrison, N. Tovey, Compilation of Cross Sections. III — <u>K⁺ Induced Reactions</u>, CERN/ HERA 70-4 (1970).

• E. Flaminio, J. D. Hansen, D. R. C. Morrison, N. Tovey, Compilation of Cross Sections. $IV = \frac{\pi^{+} \text{ Induced Reactions, CERN}}{\mu \text{ERA } 70-5}$ (1970).

• E. Flaminio, J. D. Hansen, D. R. O. Morrison, Compilition of Cross Sections. V — <u>K⁻ Induced Reactions</u>, CERN/HERA 70-6 (1970)

 E. Flaminio, J. D. Hansen, D. R. O. Morrison, N. Tovey, Compilation of Cross Sections. VI — <u>π⁻ Induced Reactions</u>. CERN/ HERA 70-7 (1970).

• O. Benary, L.R. Price, G. Alexander, <u>NN and ND Interactions</u> (above 0.5 GeV/c) — A Compilation, UCRL-20000 NN (August 1970).

• P. Joos, Compilation of <u>Photoproduction</u> Data above 1.2 GeV, DESY/HERA 70-1.

Acknowledgments

We would like to thank Professor A. H. Rosenfeld for useful comments. We also wish to thank Dr. Alan Rittenberg for his careful reading of this hook and some of the programming, Ms. Jane Zoba for encoding the bibliographic information, Professor LeRoy Price for much of the development of the system, and Ms. Marjorie Hutchinson for her programming assistance.

Section II."

K⁰_LP INTERACTIONS

 $\frac{1}{2}$

and the second sec

A. Introduction and Discussion

We have compiled the rather scarce data on K_{L}^{0} -nucleon interactions. Very few experiments of this type have been completed although 7 are now in progress. This report includes all data published as of January 1, 1972 (13 publications on K_{L}^{0} p and none on K_{L}^{0} n). Note that charge symmetry may be used to equate certain final states produced by K_{D}^{0} or \overline{K}^{0} p with those produced by K^{+} n or K^{-} n interactions, respectively, using deuterium as a target. (for K^{+} n data see UCRL-20000 K^{+} N.)

There are several important advantages in using Leutral rather than charged K beams for studying KN interactions: (a) The isospin of the $\overline{K}^0 p$ system is purely I = 1, (b) some final states are more readily observed in $K^0 p$ or $\overline{K}^0 p$ interactions than are their charge – symmetric counterparts in \overline{K}^{\dagger} nor \overline{K}^{-} N interactions, (c) the K_{\perp}^0 beam consists of equal components of \overline{K}^0 and \overline{K}^0 so no relative normalization problems enter between reactions of opposite strangeness, and (d) data may be accumulated simultaneously across a wide momentum range thereby reducing normalization problems across the entire energy region.

In Part 1 we summarize the cross sections for various reactions versus laboratory momentum. The normalization of cross sections is always taken for a beam of K_{L}^{0} mesons and not K° or \overline{K}^{0} mesons. [For example, we quote $\sigma(K_{L}^{0}p + \pi^{+}\Lambda)$, which is equal to $1/2 \sigma(\overline{K}_{p}^{0} + \pi^{+}\Lambda)$.] Then differential cross sections and angular distributions are given. In general, data for P_{beam} below 1 or 2 GeV/c are plotted as $d\sigma/d\Omega$ or $dN/d(\cos \theta)$, whereas $d\sigma/dt$ is used for higher momenta. Information is presented first for S = -1 and then for S = + 1 final states.

<u>Part 2</u> the reaction $K_{L}^{0}p \rightarrow K_{S}^{0}p$ is treated separately. We quote the cross section, the differential cross section, the forward differential cross section, the modified regeneration amplitude, and the phase of the forward amplitude. We give here a brief discussion of definitions and notations. The amplitude for $K^0_L p \rightarrow K^0_S p$ may be expressed as

 $A(K_{2}^{3} \nabla \rightarrow K_{S}^{0}p) = \frac{1}{2} [A(K_{p}^{0} \rightarrow K_{p}^{0}) - A(\overline{K}_{p}^{0} \rightarrow \overline{K}_{p}^{0})].$ The phase of the forward amplitude, ϕ_{1} is defined as:

$$\phi = \arg \left[A(K_L^0 p \neq K_S^0 p)_{t=0} \right]$$

Note that in the literature, another phase the regeneration phase ϕ_f — is sometimes used, where $\phi_f = \arg [iA(K_L^0 p \rightarrow K_S^0 p)_{t=0}]$. The above amplitude is related to total cross sections via the optical theorem in the usual convention, e.g.,

$$\sigma_{tot}(K^{0}p) = \frac{4\pi}{k} \operatorname{Im} \left[A(K^{0}p \to K^{0}p)_{t=0} \right],$$

where k is the overall center-of-mass K⁰ momentum. The <u>modified regeneration</u> am<u>plitude</u> is defined at zero degrees as:

$$\mathbf{F} = \left| \mathbf{F} \right| e^{i\phi} = \frac{A(\mathbf{K}^{0}\mathbf{p} + \mathbf{K}^{0}\mathbf{p}_{t=0}^{1} - A(\overline{\mathbf{K}}^{0}\mathbf{p} + \overline{\mathbf{K}}^{0}\mathbf{p})_{t=0}^{1}}{k}$$
$$= \frac{2}{k} A(\mathbf{K}^{0}\mathbf{L}\mathbf{p} - \mathbf{K}^{0}\mathbf{S}\mathbf{p})_{t=0}^{1}.$$

The c.m. momentum k in the denominator makes F Lorentz invariant and gives a relation between the modified regeneration amplitude and the forward diffc: antial cross section free of kinematical factors.

The relationship between the modified regeneration amplitude and the forward cross section is obtained as follows:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{\pi}{k^2} \left| A(K_{\mathrm{L}}^{0} \mathbf{p} \neq K_{\mathrm{S}}^{0} \mathbf{p}) \right|^2.$$

Substituting $A(K_{L}^{0}p + K_{S}^{0}p)|_{t=0} = \frac{k}{2}F$ into the above equation,

$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,t}\right)_{t=0} = \frac{\pi}{4} \left|\mathbf{F}\right|^2.$$

F is customari'; expressed in mb while $\frac{d\sigma}{dt}$ is expressed in mb(GeV)⁻². The

conversion factor is obtained from $(\hbar c)^2 = (0.624)^2$ (GeV)² mb. Therefore the relationship between the modified regeneration amplitude and the forward differential cross section is:

 $\begin{aligned} \|F\|(mb) &= (0.624) \left[\left(\frac{4}{\pi}\right) \left(\frac{d\sigma}{dt}\right)_{t=0} (mb/GeV^2) \right]^{1/2}. \end{aligned}$ Note that because $\frac{d\sigma}{dt}$ is proportional to $|F|^2$ the percentage errors are related as follows:

$$\frac{\delta |\mathbf{F}|}{|\mathbf{F}|} = \frac{1}{2} \frac{\delta(\frac{\mathrm{d}\sigma}{\mathrm{d}t})}{(\frac{\mathrm{d}\sigma}{\mathrm{d}t})}_{t=0}$$

The study of $K_{LF}^{0} \rightarrow K_{S}^{0}p$ has been done both in bubble chamber experiments and in counter expariments with mutually consistent results for $\left(\frac{d\sigma}{dt}\right)_{t=0}$ and ϕ . The bubble chamber experiments measure $\left(\frac{d\sigma}{dt}\right)_{t=0}$ by extrapolation of the angular distribution to t=0, and determine by comparison to total cross-section measurements for K[±]n. The counter experiments measure $\left(\frac{d\sigma}{dt}\right)_{t=0}$ by determining the magnitude of the K's transmission (coherent) regeneration * rate from hydrogen, and measure \$\$ by observing an interference between the decay $K_{c}^{0} \rightarrow \pi^{+}\pi^{-}$ and the (CP-violating) decay $K_{\tau}^{0} \rightarrow \pi^{+}\pi^{-}$. It is always reassuring when two such different experimental techniques provide agreement in their results.

^{*}See page 65 of The CP Puzzle by P. K. Kabir (1968, Academic Press) and the references given therein for the regeneration phenomena of neutral K meson.

B. Part 1

Cross Sections

- a) KLP total cross section
- $\mathbf{b} = \mathbf{K}^{\mathbf{0}}_{\mathsf{L}} \mathbf{p} \to \pi^{\dagger} \Lambda$
- c) $K_{L}^{\circ} p \rightarrow \pi^{+} \Sigma_{\Lambda}^{\circ}$
- d) $K_{L}^{0} p \rightarrow \pi^{0} \Sigma^{+1}$
- _e) ⊤K<mark>°</mark>p -∞Yππ]
- f) K⁰_Lp→K⁺n.

Differential Cross Sections

- a) $K_{L}^{0}p \rightarrow \pi^{+}\Lambda$
- b) $K^{0}_{L}p \rightarrow \pi^{+}\Sigma^{0}$.

 - - 1999 1976 - 1974 1976 - 1974

Fig. 1. $K_{1,p}^{0}$ total cross section over full energy range of existing measurements.

Prem	(GeV/c)	S (GeV ²)	6	7 (mb))
.168	±.004	2.103	70.1	±15.0	5
.177	.005	2.109	50.L	9.7	\$
.187	.005	2.115	50.2	9.Z	
. 197	.005	2.122	51.5	7.8	6
209	.007	2.130	41.9	6.1	\$
. 223	.007	2.141	38.6	6.2	5
.239	.009	2.154	46.4	5.5	5
-258	.010	2.170	33.7	4.6	5
. 281	.013	2.190	31.0	3.9	5
308	.014	2.216	30.4	3.5	5
. 343	.021	2.252	26.0	2.9	- 5

S SEE DATA LISTING FOR POSSIBLE SYSTEMATIC ERRORS

Fig. 2. Cross section for $K_{L}^{0} p \rightarrow \pi^{\dagger} \Lambda$ over full energy range of existing measurements.

Pbeam .225	(GeV/c) S (GeV ²)			7 (mb	2	references		
	+.075	+.375	+	3.80	*1.60	***	LUERS	61
.360	+.180	2+271	1.50	.ju	•• •	LJEKS	¢1	AIX CONF 235
.345	+.215	2.299	5.40	1.21		ME1SNER	"1	PR D 3 2553
.500	+.150	2.443	2.10	. 50	* + =	LUFFS	01	ALX CTIF 255
.590	±.050	2.503	1.02	• ? 3	+-	MAHKINS	67	PR 156 1444

* DATA READ FRC3 GRAPH * See Data Listing -ur additional ccaments * cross sections are rendamalized using up-dated kul Life ti+e {3.17x10***8}

LUERS	clAIX CONF 235	HBC
HAAKENS	67PR 156 1444	HBC
MET SYER	71PR D 3 2253	нас

II-175

LABCEATORY REAM MUMENTUM + 8.49 +36 64975.	45F 261
	FRACTION
FEACTION Fit Protion - Deittijjjjjer die Bie Bie Bie Bie Bie Bie 11	PER CENT (1)
CELTAI12361++ + PROTON P1+ CMEGAI783) PROTON P1+ P1+ P1- P1- 121	43.5 14.0
CHEGA(783) - PI+ PI+ PI- PI0 (3) Etaisasi Proton PI+ PI+ PI+ PI- 12)	7.8 6.8
ETA(548) - P1+ PI- PIG [3]	
(C) INCLUDES EVENTS WHERE SOME OF THE BATTLES 131 FILTED FOS WASS AND/OR WIDTH, AND THEN TOW	UR RESUMANCES LISTED HAV NE FECTATING WITH EACH OTHER. K ONLY EVENTS APOVE (FITTED) HACKGODING.
	= = = = = = = = = =
DOUGLE-REGCE AVALYSIS OF THE REACTION PLA F . PLA RH	70 P AT "3.1 GEV/C. [PHYS. FFY. 03. 3051 (1970)]
218 J.W.LANSA, J.A.GAIDES, R.B.HILLWANN, C.EZELL IPURDUZ	JNIK., LAFAYETTE. INC., USAI
ABSTRACT A DDUBLE-REGGE-EXCHANGE HODEL IS COMPAR Hell described if two diagrams ipi-pomeranchukun	ED TO THE REACTION PI+ P + PI+ RHOD P AT 13.1 GEV/C. THE FEATTION (S EXCHANGE AND SHD-POMEPANCHURDS FACHANGE) ARE ADDED INCOMPRENTLY.
SFAM IS PJ+ CN PROTEN AT 13-1 GEV/C. THIS EXPERIMENT USES THE SLAC 62 TH. HYDROGEN BUBBLE AEY HORES - Course Porce Porce (Cours)	CHAMBER. A TOTAL OF 230000 FICTURES ARE REPORTED DW.
•••••••••••••••••••••••••••••••••••••••	
NU DATA PUNCHED FUR THIS ART	ICLF
DAD TEST OF C INVARIANCE IN THE 3 PE DECAY HODE OF THE F	TA 485™4. PHYS. LETTERS 25, 693 1146818
ALAPETRE ALEVECUE, A. WULLER, E. PAULT, D. REVEL, T. P. JLITCHETELD. L. K. RANGAN, A.M. SFGAR, J.R. SMITH, F. CHILTUN, 02D, SERV CACLANTI	TALLINE ECHTP, CHETOOFF NUR, SACLAR, CIR-SDA-AVETTE, FTANCET Jefjinner, Clmlftsher, Eleickup Lrutherford, Migh Fry Lady,
ANSTRAFT ETA + 3 PL DEFAVS (AVE BEFN STUDIED IN ASYMMETRY & + -QUREL +/- QUBAC CONSISTENT WITH C	a GEOLFFIELFE HURBER CHEMBER END THEER GALLTE PLOT SHOWL A RIGHT LEFT. INVARIANCE.
UFAM 15 P\$* C* DEUTEROM A1 .d2 GEV/C. This excepted uses the salar A2 CM Jeuterium Aube Rey Wirds = fraisen - Charge Consocrtum Twyarian	LT CHAMPER. A TOTAL OF HONOUN PICTURES ARE RESPONDED IN. THE DALITE PLOT
******	•••••••••••••••••••••••••••••••••••••••
NO DATA PUNCHED FOR THIS ART	IFLE
-*************************************	
STUDY OF THE DECAY HODE ATA + FIT PI- SANNA. UP	HYS. LETTERS 246. 4rd (1987))
ALLAPPINE, ALLEVEQUE, ALMULLER, F.PAULI, 0.4FFEL, 8.	THERFORD HIGH EY, LAR, FHILTUN,DIC.PERA,ENGLANGI Talling (Chife, Operunes Nuc, Saclay, Gir-Suf-Yyette, Paance)
ABSTRACT 100 FTA - DI+ DI- GAUMA DFCATS HAVE REE HAD GEN STUDIED ARTYTOUSLY TOPPSICS LETIEN 23. Pidi 10 0428 - 04035. HHE DATA BER ALSO CONSIST	N EXTRACTED FROM THE SAME FIL SAMPLE IN WHICH FIL & PIR BI- FIL SIDECARS BOUL STREEL THE BRANLING WATTI FEITH & PIR PI- CAMPA / FIR & BIR FI FINT ATTH C THRAELANES, THE CHARGE ASYMMETRY PEING & PILSUR & OLDER
LLDSELY RELATED REFERENCES Sei Also Prys. Litters 73, 600 (1966).	
BEAM IS PIN CH DEUTERON &1 .H2 (FV/F. This imperiated uses the sallar of ch deuteriam works	LE CHAMPERS - A TOTAL H HUDDOD PICT-MEE ARE RECORDED INS
KEY NUMDS + FTAISANS - CHARGE FUNJIGATION INVARIAS	ICF BRANCHING RATIO
AR TATA PUNCHEN DE TATS AN	
THE DELAY 175 + 61+ PT- PTO AND THE S-MANE FT PT PHD	Ng ShirTa - (Nu V) 1465T, 44AV 464 sileetii
221 P. D.LATCHAIELD INUTHENIGHT HIGH PN. LAN., CHILTON, DI	N. HEP
An TEAT ''''''''''''''''''''''''''''''''''	ار « توری اسلام» (الاسلام») و المحلوم (المحلوم (المحلوم) (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحل المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم) و المحلوم (المحلوم) و المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم) و المحلوم (المحلوم) و المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم (المحلوم) و المحلوم) و المحلوم (المحلوم) و المحلوم (
নাইজ বুঁি চীৰ চৰ চৰা চৰাইছিল। হিচাপে হৈ পিছিল চালিকে পিছিল জোৱা বিৰ্ণা উভিটেজ কিছে বিশেষ চিটি কেইটিজ পিছিল চালিকেটালৈ জোৱা বিজ্ঞানিত হৈ হাজৰিয়া বিজ্ঞানি কেইটি হৈছে বিজ্ঞানি বিজ্ঞানি বিজ্ঞানি বিজ্ঞানি বিজ্ঞানি বিজ্ঞানি বিজ্ঞানি বিজ্ঞানি	HLI CHAMAFD.
••••••	
NO DATA DESCRIPTION FOR THESE AD	

Cross section for $K_L^c p \rightarrow \pi^0 \Sigma^+$

$P_{beam}(GeV/c) \\ 0.385 + 0.215 \\ - 0.385$		σ(mb) 1, 94 ± 0.8		Reference Meisner
Meisner	71	PR D3	2553	нвс

Cross section for $K^0_L p \rightarrow Y \pi \pi$

Reaction	Pbeam		σ(m	b)	Reference
$ \begin{array}{l} \Lambda \pi^{+} \pi^{0} \\ \Sigma^{-} \pi^{+} \pi^{+} \end{array} $	0.59 ± 0.05 0.59 ± 0.05		0.07 ± 0.03 ±	0.03 0.02	Hawkin s Hawkins
Hawkins	67	PR	156	£ 444	нвс

Cross section for $K_{L}^{0}p \rightarrow K^{\dagger}n$

P _{beam} (GeV/c)	ơ(mb)	Reference
0.300 ± 0.300	1.61 ± 0.72	Meisner

141010101

71

нвс

Angular distribution for $K_L^0 p \rightarrow \pi^+ \Lambda$

P_{beem}= .16

P_{beam}= .225

							- Desta			
cos	θ	Number	of eve	nts	C05	θ		Number	of	events
+1.000 800 400 400 200 .000 .400 .400 .800		7.000 9.000 8.000 18.000 15.000 14.000 14.000 19.000 19.000 19.000	*2. 6 3. Ju 2. 828 4. 243 4. 000 3. 742 4. 359 4. 359	•	min -1.000 600 403 200 .000 .200 .660 .600	100 400 400 200 200 200 200 400 - - - - - - - - - - - - - - - - -		10.000 3.000 7.000 10.000 11.000 13.000 26.000 33.000 23.000	* 3. 147 1. 752 2. 234 2. 544 3. 147 3. 400 5.009 5.009 5.009 5.009	
DATA R	EAD FROM GRAPH				· DATE S	EAD FROM GR	8 9 H			

KADYK 66.....PRL 17 499 MBC KADYK 66.....PRL 17 599

P_{beam}= .275

Pbeam= .34

HBC

C03	θ	Number	of events	C03	8	Number	of events
-1.000 800 600 600 205 .000 .203 .600 .600 .800		2.000 2.000 5.000 4.000 2.000 19.000 19.000 12.000 17.000 13.000	,1.414 0 2.336 2 2.004 2 2.666 4 2.666 4 3.666 4 4.123 2 3.696 4	min 400 400 400 200 200 - 200 - 200 - 200 - 200		3.000 5.000 4.000 9.000 2.000 11.000 10.000 25.000	1.732 * 2.449 * 2.000 * 3.900 * 1.414 * 3.317 * 3.107 *
				- 800	14000	17.000	

. DATA READ FROM GRAPH

KADYK 65....PRL 17 599 HBC

Pbeam= .46

P_{beam}= .59 ± .05

cos	θ	Nu	mber	ve lo	vents	C05	θ	Number	of ev	ents
min -1.000 890 400 200 .000 .200 .400 .400	max -,800 -,400 -,200 -,200 ,200 ,400 ,200 ,400 ,500		7.300 1.300 0. 3.000 6.000 5.000 5.000	1.732 2.449 2.236 3.464	•	71.300 -1.300 900 800 500 500 500 300 300	900 800 700 500 500 500 300 300 200	L.000 0. 1.000 2.000 2.000 2.000 1.000	*1.960 1.000 1.414 1.414 1.000	•
.800 • OATA R	1.000 EAD FR:)H (RADH	20.000	6.672	•	- 203 - 100 - 100 - 200 - 303 - 400 - 500 - 500 - 700 - 600		2.000 2.000 5.000 4.000 1.000 4.000 1.000 4.000 5.000 5.000 5.000	2.000 2.000 2.000 2.000 2.000 2.000	
	RADAK	46PRL 17			HEPL	- 900	1-000	ő.		

. DATA READ FROM GRAPH

. DATA READ FROM GRAPH

RADYK

Fig. 4. Angular distribution for $K_{L}^{0}p \rightarrow \pi^{\dagger}\Lambda$. The scattering angle θ is defined in the overall c.m. system as $\cos \theta = \hat{K} \cdot \hat{\pi}$.

Angular distribution for $K_{L}^{0} p \rightarrow \pi^{+} \Sigma^{0}$

$P_{beam} = .59 \pm .05$

cos 🔊

Number of events

min	max			
-1.000	800	2.000	±1.414	*
800	600	3.000	1.732	*
600	400	0.		٠
400	200	0.		*
- 200	0.	1,000	1.000	
0.	.200	0.		٠
.200	.400	2.000	1.414	\$
. 400	.600	0.		*
.600	.800	2.000	1.414	*
.800	1.000	2.000	1.414	*

* DATA READ FROM GRAPH

HAWKINS 67....PR 156 1444 HBC

Fig. 5. Angular distributions for $K_{L}^{0} \mathfrak{p} • \pi^{\mathsf{T}} \Sigma^{0}$. The scattering angle θ is defined in the overall c.m. system as $\cos \theta = \vec{K} \cdot \hat{\pi}$.

B. Part 2

Regeneration, $K_L p \rightarrow K_S^0 p$

- a) Cross section
- b) Differential cross section
- Forward differential cross section; magnitude of modified regeneration amplitude

51-

5

d) Phase of forward amplitude.

Cross section for $K_L^0 p \rightarrow K_S^0 p$

Pbeam	(GeV/c)	S (GeV ²)	σ	(mb)	rel	erences
.225	+.075	2.143	7.500	#2.400 ***	LUERS	-41 AIX CONF 235
• 360	++080	2.271	3.400	.700 - **×	LUERS	61 ATX CONF 235
•285 ÷	+-215	2,299	5-040	1.300	MEISNER	71 PR D 3 2553
	+-150	2.443	2.800	•500 ***	LUERS	61 ATX CONF 235
•590	+.050	2.568	1.083	•260 . •≠	HANKINS	67 PR 156 1444
1.450	•150	3.999	2.700	-400 +X	LEIPUNER	63 PR 132 2285 71 PRL 26 1050
1.900	•100 •100	4.446	•722	•085 + •060 +	BRODY	71 PRL 26 1050
2.100	•100 •100	5.172	•420 •277	.055 t	BRODY	71 PRL 26 1050
2.500	•100 C=	5.906 6,275	•287	•045 + •040 +	BRODY	71 PRL 26 1050
2.900	•100 •200	6.644 7.200	•171	•035 4	BRODY	71 PRL 24 1050
3.600	•200 •200	7.943 8.687	•086 •115	.018 +	BROUY	71 PRL 24 1050
4.600 5.000	+400 +2.000	9.806 10.552	•077	.014 +	BRODY	71 PRL 26 1050
5.500	-3.000	[#] 115487	-054	A12 4	FIRESIUNE	00 FRL 10 300
7.000	±1.000	14-292	.028	.008 1	BRODY	71 PRL 26 1050 71 PRL 26 1050

* DATA READ FROM GRAPH • SEE DATA LISTING FOR ADDITIONAL COMMENTS • GROSS SECTIONS ARE REMORMALIZED USING UP-DATED KOL LIFE TIME (5-17×10**-B) × DATA ARE GERIVED BY THE READER FROM GRAPH

LUERS	- 1 P 6	1	AIX CO	NF 235	
LEIPU	NER 6	3	PR 132	2285	
FIRES	TONE 6	6	PRL 16	654	
HANKI	NS 6	7	PR 156	1444	1. Inc. 1
BRODY	고망하는	1.1.1	PRL 24	1050	
MEISN	ER 7	1	PR n 3	2564	<u></u>
CITEL OIL	EU		PK U 3	222.4	(1997) 1997 - Maria Maria

HBC HBC HBC HBC

HBC HBC

Fig. 6. Cross section for $K_L^0 p \rightarrow K_S^0 p$ over full energy range of measurement.

Differential cross section for $K_{L}^{0} \rightarrow K_{S}^{0}$

do/dt $[mb/(GeV/c)^2]$

2.44

#1-63 ** 1+41 ** 1-03 ** 1-15 ** 1-15 ** 1-15 **

 $P_{beam} = .59 \pm .05$

|t| (GeV/c)²

max

.048 .095 .143 .190 .238 . 284

.333

* DATA READ FROM GRAPH * SEE DATA LISTING FOR ADDITIONAL CONMENTS

min

.024 .048 .095 .143 .190 .238

.286

 $P_{beam} = 1. \pm .3$

t (G	eV/c) ^z	do/dt				
min max		$[mb/(GeV/c)^2]$				
.027 .175 .366 .547 .727	• 175 • 365 • 547 • 727 • 918	5.746 2.073 2.073 1.494 2.069	±1.494 .919 .919 .690 .504			

. DATA READ FROM GRAPH

LEIPUNER 63..... PR 132 2285

нас

HAWKENS PTANANPR 156 1444 HBC

 $P_{beem} = 1.65 \pm .35$

t (G	eV/c) ^z	dơ∕dt				
min	max	[mb/(mb/(GeV/c) ^z]			
.050	.100	. 660	±.210 +			
. 100	.200	. 443	.110 +			
. 200	.300	.241	.085 1			
. 300	.400	. 296	.096 +			
. 400	. 500	.258	.082 +			
.500	.500	.517	.125 1			
. 600	.700	. 273	.083 1			
. 700	.800	.376	. 395 1			
. 800	1.000	-172	.045 1			
1.000	1.200	.215	.055 1			
1.200	1.400	147	.044			
1.400	1.600	. 332	- 276			
1.400	1,800	. 188	.054 +			

 $P_{\text{beam}} = 3. \pm 1.$

t (GeV/c) ^z		dø/dt			
mi	n max	[mb/(GeV/c)²]		
.050	.100	368	075 1		
. 100	-200	. 195	.035 +		
+ 200	.300	- 107	.025 +		
- 300	.400	-112	.026 .		
,400	.500	- 107	.024 +		
- 50K	.500	. 273	.021 .		
. 600	.700	. 123	028		
.700	.800	.089	.024 +		
. 800	1.000	- 071	-015 +		
L.000	1.200	.047	.012 +		
1.200	1.400	.033	.010 +		
1.400	1.800	.016	.004 +		

* SEE DATA LISTING FOR ADDITIONAL COMMENTS

8900Y

HEC

 $P_{beam} = 5. + 2. - 3.$

71....PRL 26 1050

1 SEE DATA LISTING FOR ADDITIONAL COMMENTS

680DV

t (G	eV/c) ^z	dơ/đt			
min max		[mb/(GeV/c)			
٥.	,200	. 091	+-021	••	
. 200	.400	. 946	.016	••	
.400	.500	. 023	.011	**	
+ 60D	. 800	.017	.010	• •	
- 900	1 100	.011	.035	••	
1.0.0	1.200	- 106	- 206		
1.200	1.400	.005	+006	44	

• DATA READ FROM GRAPH • SEE DATA LISTING FOR ADDITIONAL COMMENTS

 $P_{\rm beam} = 6. \pm 2.$

t (G	eV/c)²	dơ/dt				
min max		[mb/(GeV/c) ²				
.050	.100	. 177	+-0+3 4			
.100	.200	-073	-018 +			
- 200	.300	- 035	.012 +			
- 300	.400	.032	.012 +			
.400	.600	.016	. 307 •			
. 600	-800	.019	-005 +			
.800	1.200	.011	-103 +			
1.200	1.000	. 001	.001			

71.....PRL 26 1050

4 SEE DATA LISTING FOR ADDITIONAL COMMENTS

HBC

BRIDY 71....PRL 26 1050

|t| (GeV/c)²

P _{beam} (GeV/c)		$\frac{d\sigma/dt}{t=0}$ {mb/(GeV/c) ² }		 j: (1	F ^a mb)	References
Min	Max					
1.0	2.0	1.40 ±	0.50	0.84 ±	0.15 ^b	Brody 71
2.0	3.0	0.88	0.24	0.66	0.09 ^b	
3.0	4.0	0.62	0.16	0.55	0.07 ^b	
4.0	5.0	0.47	0.13	0.49	0.07 ^b	
5.0	6.0	0.37	0.11	0.43	0.07 ^b	
6.0	8.0	0.28	0.10	0.37	0.07 ^b	
3.0	10.0	0.38	0.19	0.43	0.11	Buchanan 71
2.0	3.0	1.42	0.54 [°]	0.B4	0.16	Darriulat 70
3.0	4.0	0.63	0.25 [°]	0.56	0.11	
4.0	5.0	0.63	0.32 [°]	0.56	0.14	
5.0	7 .0	1.23	0.82 [°]	0.78	0.26	
2.0	7.0	0.12	0.044	0.25	0.045 ^b	Firestone 66
0.7	1.3	7. 6	1.9	2.0	0.3 ^b	Leipuner 63
14.0	18.0	0.081	0.024 [°]	0, 2	0. 030 ^d	V. K. Birulev 72
18.0	22.0	0.058	0,023 ^c	0. 170	0, 035 ^d	
22.0	25.0	0.070	û. 927 [°]	0. 185	0, 035 ^d	
26.0	30.0	0,040	0.017 ^C	0, 140	0.030 ^d	
30, 0	34.0	0, 027	0.014 ^C	0. 115	0. 030 ^d	
34.0	42,0	0.029	0.015 [°]	0. 120	0. 030 ^d	

Forward	Differen	atial Cro	ss Sectio	۳ for	K ⁰ ₁ p +	K°sp;
Magnit	ude of M	lodified	Regenera	tion A	Amplitu	de

^a See the discussion in Section II-A for definition of F, the modified regeneration amplitude.

^b Data converted from forward differential cross section by readers.

^c Data converted from modified regeneration amplitude by readers.

^d Data read from graph.

Brody	71	PRL26	1050	нвс
Buchanan	71	PL 37B	213	SPRK
Darriulat	70	PL 33B	433	SPRK
Firestone	66 · · · · · · · · · · · · · · ·	PRL16	556	PBC
Leipuner	63	PR132	2285	HUC
Birulev	72	PL 38B	452	SPRK

Pbeam	(GeV/c)	S (GeV ²)	Phas	e (de	eg)	refe	ren	ces	
1.65	±.35	4.356	-132	± 14	•	BRODY	71	PRL 26	1050
2.65	.65	6+183	-129	13	•	BRIDY	71	PRL 26	1050
6.00	1.00	12.421	-123	18	•	BRODY	71	PRL 26	1050
8.00	1.00	16.165	-152	19	•	BRIDY	71	PRL 26	1050
6.50	3.50	13.357	-101	42		BUCHANAN	71	PL 378	213
4.50	2.50	9.619	-132	17	•	DARRIULAT	70	PL 33B	433
28.0	14.0	53, 668	-118	13		BIRULEV	72	PL 38B	452

* SEE DATA LISTING FOR ADDITIONAL COMMENTS

DARRIULAT	70PL 338 433	SPRK
BRIDY	71PRL 26 1050	HRC
BUCHANAN	71PL 378 213	SPRK
BIRULEV	72 PL 38B 452	SPRK

Phase of Forward Amplitude for $K_L^0 p \rightarrow K_S^0 p$

Fig. 9. Phase of forward amplitude for $K_{L}^{0}p \rightarrow K_{S}^{0}p$. The data of Brody <u>et al.</u> have been determined by comparing the forward differential cross section to the total cross sections for $K^{\dagger}n$ and $K^{-}n$. The data of Darriulat <u>et al.</u> and Buchanan <u>et al.</u> have been determined by observing the interference between the decay of the K_{L}^{0} beam and the K_{S}^{0} mesons regenerated in hydrogen in the forward direction.

Section III.

Ģ

DATA TAPE LISTINGS

 \mathcal{O}

In this section we present a listing of all the K^{0}_{L} p articles on our DATA TAPE. These are the actual data used in forming the graphs and tables in Section II. The information is presented article-by-article, just as we store it.

We debated for some time whether or not we should give these listings because they are somewhat repetitious of Section II. We decided to include them, however, because they do contain a certain amount of information not included in the previous section.

In particular there are a few articles for which we have punched no data but have punched the bibliographic information, keywords, and some comments. The following papers are in this category: the phase shift analysis paper of Kim (Ref. 9), the resonance formation paper of Blumenfeld <u>et al.</u> (Ref. 1), and the regeneration paper of Christenson <u>et</u> <u>al.</u> (Ref. 4). A person interested in K_L^0 interactions may find them useful. (These papers are not referred to in any way in Section II.)

• In addition we have also punched the <u>title and abstract</u> for every article, to assist you in your selection of articles for further reading.

 Also in this section you will find comments on many pieces of data — it is in general not practical to present these comments in Section II.

• Many articles give data that we feel we cannot meaningfully compile at present (only partially corrected, integrated only over a certain interval, etc). These data have in many cases been punched and will he found in this section.

• You will also find in this section, data reported as upper and lower limits, approximate values, etc.

 Occasionally we do not use the data as originally given in the article. This section tells exactly where our data came from (private communications, unpublished companion report, etc.).

 The size of an experiment is frequently indicated by the total number of pictures taken, or by the number of events in various distributions.

• To give you an idea of the scope of a particular article, KEYWORDS are included for each article. These words can also be used to form classified indices (see Section IV).

Tc repeat, the above items are some of the things you will find in this section that are not presented in Section II.

We have also found that theses are frequently hard to come by. Thus we feel that our listing of theses may help give their data greater distribution than they might otherwise have. We would like to make the general appeal that a copy of all experimental particle physics theses be sent to us.

Finally, this section may serve the useful function of permitting the reader to easily check on the accuracy of our input data. The data is arranged article-by-article, and in most cases we have indicated [in square brackets] the exact location of the data in the article (i.e., the figure, table, or page number). If you find any errors or misinterpretations, <u>please let us know</u> as soon as possible.

As for the organization of the information in this section, we should mention that the order of the articles is alphabetical by first author.

<u>Above the double dotted line</u> in each article you will find the title, authors and institutions, abstract (if the article had one), related citations, beam information, comments, KEYWORDS, etc.

Below the double line in each article appear the data. We generally enter the data in exactly the same units as given by the authors. (This is done primarily to facilitate the verification of the data.) If we do alter the data in any way, we indicate this fact by an appropriate comment.

Occasionally authors give the same data in two different forms. We punch both, if we feel that both forms are useful, and display them side-by-side in the listings that follow.

We have tried to be particularly careful about including systematic errors, whosever given by the authors. In some cases it is quite unclear from the original article and we have had to contact the authors directly.

Another reason for contacting authors has been to get tables of data that correspond to the unpublished graphs. If we are unable to get tables from an author, or if the article is more than a couple of years old, we read the dataoff the published graph, and then include the warning that "these data were read from a graph." (In some cases the tables we received have been more up to date than the published graphs.)

FORMATION OF THE TELLELES AND TELLETONS IN KOL P INTERACTIONS. E7: VS. LETTERS 298. 58 (LS69)13 1 BLUNENFELD, G.R.KALBFLUISCH (BRODKHAVEN HAT. LAB., UPTON, L.I., N. 7., USA) 8 STRACT THE RECENTLY DISCOVERED V#1(1616) AND Y#1(1700) RESYMANCES NAVE BEEN DASERVED IN THE FO#MATION FEACTIONS KOL P + Landda PT+ and Kol P + Lameda P1+ PTO. The mass values daserved art in arriverent atth previous fivefilmits but the ABSTRACT WIDTHS ARE MAPROMER. RATICLE READ BY FUMIND UCHIVAMA IN 9/TI, AND VERIFIED BY JAMES S. LOOS. FRA IS KOL MW PAJTY FROM .3 TO 7.5 GEVIC. THIS EXPERIMENT USES THE OWL AD IN. MYROACCH BUBBLE CHAMBER. A TOTAL OF LT0000 PICTUFES ARE GEPOPTED CM. GEVE THUS THE FLUX SPECTRUM IS KNOWN YO BE LIMEAR. TT IS NOT KNOWN, NO CRDSS SECTION IS SITEM. A MAXIMUM LIKELIHOOD FIT IMUS THE FLUX SPECTRUM IS KNOWN YO BE LIMEAR. TT IS NOT KNOWN, NO CRDSS SECTION IS SITEM. A MAXIMUM LIKELIHOOD FIT IMUS THE FLUX SPECTRUM IS KNOWN YO BE LIMEAR. TT IS NOT KNOWN, NO CRDSS SECTION THE STATUS AND A MAXIMUM LIKELIHOOD FIT IMUS THE FLUX SPECTRUM IS KNOWN YO BE LIMEAR. TT IS NOT KNOWN, NO CRDSS SECTION THE STATUS AND A MAXIMUM LIKELIHOOD FIT IMUS THE FLUX SPECTRUM IS TATHING FROM ZERO AT E VALUE CHIFTE OF MASS E FMAND IS .1.51 GEV MULTIPLIED THE TWO S-MANE CREIT WIGHER CLUX SET. THE RAME OF THE SPECTRUM INCLUDED WAS FROM E = 1.53 TO 1.72 GEV. AFY MODOS - MYREAN. THE TAME TO THE SPECTRUM INCLUDED WAS FROM E = 1.53 TO 1.72 GEV. KEY WORDS + HYPERON PRODUCTION Y* COMPOUND KEY WORDS + HYPERON PRODUCTION YO DATA PUNCHED FOR THIS ARTICLS ------***** REACTION KOL P + KOS P FROM 1.3 TO 8.0 GEV/C. EPHVS. REV. LETTERS 26. 1050 (197.) 2 A.D.BRODY, W.B. JOHNSON, B.REHDE, D.W.G.S.LEETH, J.S.LODS, G.J.LUSTE, R.MORIYASU, B.S.SMEH, W.W.SMA*T F.C.WIMKELMANN, R.J. YAMAPTIND ISTANFORD LIMEAR ACCEL, CMTR., STAMFROLCALIF., USA) STACE IDTAL MOD DIFFERENTIAL CROSS SECTIONS ARE PRESENTED FOR THE REFETION FOL - NGO P RAD', L.J. TO R.D. GSW/G AS Machine In Mac Rodored for the Stateshood Livera Accelerative Cetter Ago in Mordoch Nubble Camaret to a Neural Bear, the "Damage doing of the Effective Regier Tradectory. Alemand of the Acole. Mordoch in Ubble Camaret to a Neural Bear The Intercept of the Effective Regier Tradectory. Alemand of the Acole. Mordoch in Bear March Denks Philes - So as A ABSTRACY DEGREES CLOSELY RELATED REFERENCES THIS ARTICLE SUPERSEDES PART OF STANF-LIN.ACCEL.CNTR., REPOPT NO.SLAC- PU9-823 (1970). Analysis of These Data 14 PMMS, REV. LETTERS 26, 1083 (1871). ARTICLE READ BY JAMES S. LOJS IN 0/TI, ANJ VERTFIED BY FUMIYD UCHYYMMA. REAN IS KOL TW PADTW FRME I.S TO 3.0 CEVYC. Greater Content visit me state of a methodole bubble chamber. A tital if 200000 dictures pre reported om. Greater Content visit methodole bubble chamber. A tital if 200000 dictures pre reported om. Greater Content visit formatic and the tradole bubble chamber. A tital if 200000 dictures pre reported om. « Signation of the formatic and the tradole bubble of comparing to the divisit for methodole bubble. « Signatifier visit formatic and trademetho for comparing to the divisit for methodole bubble. « Signatifier visit formatic and trademetho for comparing to the divisit of and the subsection of the second bubble of the subsection of the second bubble of the subsection of the second bubble of the second bub CROSS SECTION FOR KOL PROTON . PROTON KOS. [FIGURE 1] THESE NUMBERS ARE FROM SLAC-PUB-888, MARCH 1971: THE NUMBERS DUDTED ARE IDENTICAL TO THOSE GIVEN IN THE ABOVE PUBL ICATION. L'BORATORY BEA- HOHENTCH GEV/C MILLIBARNS [1] NO. EVENTS *** MAX .621 + .080 1.3 1.8 .722 .411 .420 .277 1.6 .085 75 49 57 2.0 2.2 -055 2.4 2.6 2.8 3.0 3.4 2.2 .045 38 44 40 27 45 .287 2.6 .250 .171 .146 .040 .035 .022 3.4 3.8 4.2 3.8 .086 -018 23 5.0 .014 34 6.0 5.0 012 źì .008 6.0 6.0 .028 [1] ERRORS ARE STATISTICAL ONLY. DIFFERENTIAL CROSS SECTION FOR KOL PROTON + KOS PROTON. IFIGURE 21 DATA ARE AVERAGED DYER LABORATORY BEAN MOMENTUM FROM 1.3 TO 2.0 GEV/C. THESE NUMBERS ARE FROM SLAC-PUB-888, MARCH 1971; THE MUMBERS QUDIED ARE IDENTICAL TO THOSE GIVEN IN THE ABOVE Publication. D-SICHA/D-T (GEV/CI**2 MIN MAX UB/(GEV/C)**2 [1] ND. EVENTS -05 - 10 ó60. ← 210. 10 660. 443. 296. 258. 517. 273. 373. 172. 215. .20 .30 .40 .10 110. 16 8 85. 96. .20 .30 1ī á2. .40 10 .50 :10 125 17 83. . 80 16 15 15 .80 1.00 1.00 1.40 1.20 147. 44. 11 1.40 1.60 76. E4. 12 1.60 1.80 188. T IS THE SQUARE OF THE INVARIANT MOMENTUM TRANSFER METWEEN THE IT NOMING KOLT AND THE IKOST.

[1] ERRORS ARE STATISTICAL ONLY.

DIFFERENTIAL CROSS SECTION FOR KOL PROTON . KOS PROTON. CELGURE 21 DATA ARE AVERAGED OVER LABORATORY BEAM MOMENTUM FROM 2. TO 4. GEV/C. THESE NUMBERS ARE FROM SLAC-PUB-888, MARCH 1971; THE NUMBERS QUOTED ARE IDENTICAL TO THOSE GIVEN IN THE ABOVE PUBLICATION. D-SIGHA/D-T UB/(GEV/C1++2 [1] NO. EVENTS -T (GEV/C)*#2 MIN .05 .10 HAX 368. +- 75. 32 .20 196. 35. .20 .30 .40 .50 .60 .70 .20 107. 25. 2t 18 107. 26 18 T3. .50 21. - 50 .80 1.00 1.20 1.40 1.80 89. 7L. 47. 24. . 70 14 25 . 80 1.00 1.20 ñ 10. 1.40 14. 4. T IS THE SQUARE OF THE INVARIANT MOMENTUM TRANSFER BETWEEN THE LINCOMING KOLI AND THE LKOSI. [1] ERRORS ARE STATISTICAL UNLY. DIFFERENTIAL CROSS SECTION FOR KOL PROTON . KOS PROTON. IFIGURE 21 DATA ARE AVERAGED OVER LABORATORY BEAM MOMENTUM FROM 4. TH 8. GEV/C. THESE NUMBERS ARE FROM SLAC-PUB-888, MARCH 1971; THE NUMBERS QUOTED ARE IDENTICAL TO THOSE GIVEN IN THE AROVE PUBLICATION. (GEV/C)++2 D-SIG44/D-T UB/(GEV/C)++2 (1) NO. EVENTS MEN .05 177.0 ← 43.0 73.0 18.0 35.0 12.0 - 10 - 20 - 30 17 .ĭá ii .20 0 .30 .40 .60 .80 1.20 32.0 12.0 .60 19.0 6.0 3.2 1.0 10 10.1 1.80 1-0 T IS THE SQUARE OF THE INVARIANT MOMENTUM TRANSFER BETWEEN THE LINCOMING KOLI AND THE EKOSI. (1) ERROPS ARE STATISTICAL ONLY. DIFFERENTIAL CROSS SECTION AT FIXED ANGLE FOR KOL PROTON + KOS PROTON. [FIGURE 31 T = 0. +-+- 0. IGEV/C3442. T IS THE SQUARE OF THE INVARIANT NOMENTUM TRANSFER RETWEEN THE [INCOMING KOL] AND THE LABORATORY BEAM MOMENTUM GEV/C D-51644/0-1 NB/IGEV/C}++2 []) 1.40 - .90 .88 .24 1.5 +-5.5 .62 .16 4.5 5.5 • • • 2.0 1.0 . 78 [1] ERRORS ARE STATISTICAL ONLY. THE PHASE OF THE FORWARD ANPLITUDE FOR KOL PROTON . KOS PPOTON. [TABLE 1] TOUPIN INVARIANCE AND THE OPTICAL THEOREM ARE USED TO GET THE INAGINARY PART OF THE AMPLITUDE TO CALCULATE THE PHASE. LABORATORY PHASE BEAN HONENTUN GEV/C 0EGREES -132. ← 14. -129. 13. -123. 18. -152. 19. £.00 8.00 1.00 COMERENT REGENERATION IN HYDROGEN FROM 3 TO LO GEV/C. (PNYS. LETTERS 378, 213 (1971)) C.J.AUGHAMINA, D.J.DRICACY, F.D.RUDNICK, P.F.SHEPARD, D.H.SIMRK, H.K.TICHDIUNIW, DF CALIF., LMS ANGFLES, CALIF., USA C-WICHIEN, B.CDX, LICITLINGER, LAESVANIS, RAAZDANIS IJONK, HOPKINS UNIV., BALTINNE, MO., USA} E.DALIF, E.SPPI, P.INYANGENTI ISTANFORD LINEAR ACCEL CNTR, STANFOD/CALIF., USA] ABSTRACT WE HAVE STUDIED THE FROPER TIME DISTRIBUTION OF COMERENT PI+ PI- DECAYS FROM A 3 - 10 GEV/C KOL REAN INCIDENT "In A "NE METER ITAUIO MYOROREV TARGET USING A WIRE SPAR CHAMPER SPECTATMETER IV THE 30 GEGREE NEUTRAL BEAM 37 SLAC. WF FIND (FIDIF-DERGI)/XI = 0,43 ++ 0.11 MB, PIT(FIDIF-GRAFICI) = -100 GEGREES +42 DEGREES. ARTICLE READ BY CUMIYI UCHIYIMA IN 10771, AND YERIFITD BY JAMES S. LUDS. BEAN IS KOLIM, PROTOR FRIM 3 TO 10 GEWC. Ini Erperangen USES Samak Chambers. Erf Andrs - Nydangen Regeneration Cumplinge Phase Comerent (Ambund Key Andrs - Nydagen Regeneration Ambuituse - Ydaugen Regeneration Phase

THE MAGHITUDE OF THE MODIFIED REGINERATION AMPLITUDE, ABS(F), FOR KOL PROTON + PROTON KOS. IPAGE 51 DATA ARE AVERAGED OVER THETA FROM .0000 TO .0028 RADIANS. THETA IS THE ANGLE THAT THE KOS MAKES WITH THE BEAM IN THE 1 4 3 LABORATORY BEAN MOMENTUM ABS(F) GEV/C чв HT Ň MAX 10. .43 +- .11 ۹. THE PHASE OF THE FORWARD AMPLITUDE FOR KOL PROTON + PROTON KOS. EPAGE 51 DATA ARE AVERAGED OVER THETA FROM .DOOD TO .OD20 RADJANS. THETA IS THE ANGLE THAT THE KOS MAKES WITH THE BEAM IN THE LABORATORY BEAM MONENTUN PHASE GEV/C DEGREES HIN NAX -101. +- 42. 3. 10. REGENERATION OF KOI MESONS AND THE KOL-KO2 MASS DIFFERENCE. [PHYS. REV. 140, 8 74 (1965)] 4 1.H.CHRISTENSON, J.W.CRONIN, V.L.FITCH, R.TURLAY [PRINCETON UNIY.. PRINCETON, N. J., USA] STRUCT. 42 HAVE STUDIED THE RECNURATION OF KOL MECING USING A BEAN OF MO2 MESTME PRODUCED AT THE GNOOMAVEN ASS. THE KOL MESSAW SHEE SETECTOR WITH A PAIR OF MADET-STARK-CHANNES PROTENTAMENT MOTENTUM-THATZED THE YOU DECAY DIONS. A TEST OF THE COMERSACE OF THE TRANSMISSION RECREGATION IS MADE BY COMPARING THE YTELDS FROM MALF- AND FULL-DESITY CIPPER RECVERATORS, THE KOL-MO2 MESS DIFFERENCE AND REGREGATION IS MADE BY COMPARING THE YTELDS FROM MALF- AND FULL-DESITY SEPRETED FY A VALATE AIR GAR. THIS METHOD IS INDERENGENT OF ALL WOLLAR SCATTERING PARATIES AND YTELDS A DASS RECONSTRUCTOR OF VALONG THICKNESSE YTELD MASS DIFFERENCE AND THE STRUKTUR AND ALL STRUKTES LADOR SCA RECONSTRUCTOR OF VALONG THICKNESSE YTELD MASS DIFFERENCES CONSISTENT WITH THIS RESUBREMENT MASS DIFFERENCES LAPORE THAN I.O ARE STRUKT RELECTED BY OUR DATE. THE FORMARD RECENT TION CASS SECTIONS FROM CONTRACT LARSS DIFFERENCES LAPORE THAN I.O ARE STRUKT RELECTED BY OUR DATE. THE FORMARD RECENT IN IL LIDUD FUNDAGEN WAS ALSO INVESTIGATED AND THE ABSTRACT RESULTS COMPARED WITH THEORETICAL PREDICTIO ATTICLE GRAD BY JANES S. LOOS IN 8/71, AND VERIFIED BY FURIYO UCHIYANA. Beam is kol on proton from .7 to 1.4 Gev/C. Tits eapriment uses spark charbers. A total of 140000 pictures are reported on. CENERAL COMMENTS ON THIS ARTICLE GENERAL COMMENTS ON THIS ARTICLE In the second of the seco NO DATA PUNCHED FOR THIS ARTICLE DESERVATION OF K(L)-K(S) REGENERATION FROM LIQUID HYDROGEN. [PHYS. LETTERS 338, 433 (1970]] 5 P.DARRIULAT, C.GROSSO, M.HOLDER, J.PILCHER, E.XADERNACHER, ...RUBBIA, M.SCIRE, A.STAUDE, K.TITTEL IPHYS.INST.DER TECH-HUCHSCHULE, AACHEN, N.GERMANY, AND EUROPERN ORG. M.R. MUC. RES., GENEVA, SWITZERLAND, AND UNIV. DI TORIND, TORIND, ITALY1 ABSTRACT TRACT THE KILD-KISD TRANSMISSION REGENERATION OF A KILD BEAN TRAVERSING A LIQUID HYDROGEN TARGET HAS REEN TRISERVED TVER THE MOMENTUM INTERVAL J.O-6.0 TODIC, RESULTS ARE IN GODD AGREEMENT WITH PREDICTIONS BASED ON DISPERSION RELATIONS. ARTICLE READ BY FUMITI UCHIYAMA IN B//I, AND VERIFIED BY JAMES S. LOOS. BEAN IS KOL ON PADION FROM 3 TO 6 GEVIC. THIS ERFEMENT USES STAAK CHAMBERS. GENERAL COMENTS IN THIS ARTICLE I ANGLIEGUERRATICA DI FEOR I ANGLIEGUERRATICA DI FEOR KEY WORDS - WIDDECH REGENERATION ANDLITUDE PHASE CONCERNE CANDONG MER WORDS. KEY WORDS + HYDROGEN REGENERATION AMPLITUDE PHASE COMPOUND KEY WORDS + HYDROGEN REGENERATIOM AMPLITUDE HYDROGEN REGENERATION PHASE THE MAGNITUDE OF THE WODIFIED REGENERATION AMPLITUDE, ABS(F), FOR - HOL PROTON - PROTON KOS. (TABLE 1) DAYA ARE AVERAGED DVER THETA FROM .00000 TD .70316 PADIANS. THETA IS THE ANGLE THAT THE KOS MAKES WITH THE BEAM IN LABORATORY ABS(F) BEAN NOVENTUR GEV/C 45 H1 N **MAX** 3. 2: .84 -- .18 .56 .11 4. - 72 ٩., . 76 . że THE PHASE OF THE FOR JARD AND ITUDE FOR KOL PROTON + PROTON KOS. [TABLE 1] DATA ARE AVERAGED OVER THETA FROM .00000 TO .00316 RADIAVS. THETA IS THE ANGLE THAT THE KOS MAKES WITH THE BEAM IN THE GRAND C.M. A COMMON REGEMERATION PHASE OF -42 DEGREES WAS USED BY EXPERIMENTERS TO FIT ALL MOMENTUM INTERVALS. THE PHASE OF ""F Forward Amplitude is equal to the regeneration phase minus to degrees. LABORATORY PHASE BEAN HOMENTINA GEV/C DEGREES -2 -132. +- 17.

6 K(S) REGENERATION AND K(LI - PI+ + PI- DECAY IN THE GO-INCH HYDROGEN JUBBLE CHAMBER. CPHYS. REV. LETTERS 16. 556 (1966)1 .FIRESTUNE, J.K.AIH, J.LACH, J.SANDMEISS, H.D.TAFT [YALE UNIV., NEW HAVEN, CONN., USA] -Barnes, H.W.J.Fdelsche, T.Horris, Y.Oren, M.Werster (Brodkhaven Mat. Lab., Uptun, L.I., N. Y., Usaj ARTICLE READ BY FUHTO UCHTFANA IN BYTL. AND VERIFIED BY JAMES 5. LODS. Sean 15 agl. on Prutos front 2 to 7 Gev. This Erperiment uses the Bal og in. Hydrocen Bubble Chamber. A total of 127000 pictures are reported on. Genral Comments on http: Article I SEE ALSO HYDROEN BUBBLECE CHAMBER STUDY OF KILT DECAYS AND KIST REGENERATION BY A. FIRESTONE, PH.D. THESIS, YALE UNIVERSITY. 2 BEAN SPECTRUM PEAKS MEAR 5 GEVYC. Y WORDS + CROSS SECTION DIFFERENTIAL CROSS SECTION REGENERATION AMPLITUDE WEAK INTERACTION MEASURFMENT HYDROGEN COMPOUND KEY NORDS . NYDROGEN REGENERATION AMPLITUDE OIFFERENTIAL CROSS SECTION FOR KOL PROTON + PROTON KOS. [FIGURE 21 LAGORATORY BEAN MOMENTUM . 5. (+) 2. (-) 3. GEV/C. ---- THESE DATA HERE READ FROM A GRAPH D-S1G4A/D-T UB/(GEV/C)++2 (GEV/C)**2 •L +-60.50 ← 14.00 31.00 11.00 15.50 7.00 :: .5 .1 11-50 6.50 +1 ., 1.1 · 1 3.90 3.90 1.3 -1 3.75 3.75 T IS THE SQUARE OF THE INVARIANT HOMENTUM TRANSFER BETWEEN THE (INCOMING KOLT AND THE (KOS). (1) SELECTED IN THE BASIS OF KINEMATIC FITTING. DIFFERENTIAL CROSS SECTION FOR KOL PROTON + PROTON KOS. Kos - PI+ PI- [1] [PAGE 21 LABORATORY BEAN MOMENTUM = 5. (+) Z. (-) 3. GEV/C. 0-516*A/D-T UB/16EV/C >++2 (GEV/C) +#2 71. + 29. 0.[2] T IS THE SQUARE "F THE INVARIANT "OMENTU" TRANSFER BETWEEN THE [INCOMING KQL] AND THE [KOS]. 11) SELECTED ON THE BASIS OF KINEMATIC FITTING. (2) EXTRAPOLATED POINT. CROSS SECTION FOR KOL PROTON + PROTON KOS. [PAG KOS + P[+ P]- [1] [PAGE 557] LABURATORY BEAM MOMENTUM NTEROBARNS CEV/C 5. 4 44.0 +- 10.4 (1) SELECTED ON THE BASIS OF KINEMATIC FITTING. KOZ INTERACTIONS, DECAYS AND REGENERATIVE PROPERTIES AT 590 MEV/C IN LIQUID HYDROGEN. LPHYS. REV. 1444 (1967) 7 C.J.B. MANKINS (YALE JNIV., NEW HAVEN, CONN., USA) START AN EARLIER EXPERIMENT MAS REPORTED AN "ANDMALOUS" COMERENT REGEMENTATIVE PRODUCTION OF KOI MESONS IN LIQUID "MUDDOCH. THE SEFECT IS REINTERPARTED IN TERMS OF A CONSTAUCTIVE INTERFERENCE DETARSE (COMPATITAL REGENERATIVE AMPLITUDES AND THE CAPICILITING DELTA MOL 20: 20: ELEBENENTAL SUPPORT IS GUTANE FROM THE MOLTAN. THE KOZ PARAFUMIAN FATIO (KOZ - P) MU MU/KKOZ - PI E NUI MAS BEEN MERSUMED TO BE O." \leftarrow O.2. RESULTS AR PRESENTE OM THE OFCAM KOZ - PI-PIO AND UT THE STANGCIMERACTION RELITIONS GETAERN KOZ " \leftarrow O.2. RESULTS AR PRESENTE OM THE OFCAM KOZ - PI-PIO AND UT THE STANGCIMERACTION RELITIONS GETAERN KOZ " \leftarrow O.2. RESULTS AR PRESENTE OM THE OFCAM KOZ - PI-PIO AND UT THE STANGCIMERACTION RELITIONS GETAERN KOZ " \leftarrow O.2. RESULTS AR PRESENTE OM THE OFCAM KOZ " PI-PIO AND UT THE STANGCIMERACTION RELITIONS GETAERN KOZ " \leftarrow O.2. RESULTS AR PRESENTE OM THE OFCAM KOZ " PI-PIO AND UT AND STANGCIMENTENCITONS GETAERN KOZ " \leftarrow O.2. RESULTS AR PRESENTE OM THE OFCAM KOZ " PI-PIO AND UT AND STANGCIMERACTION RELITIONS GETAERN KOZ " \leftarrow O.2. RESULTS AR PRESENTE OM THE OFCAM KOZ " PI-RESULTIONS RESULTIONS FOR THE NO." \leftarrow O.2. RESULTS AR PRESENTE OM THE OFCAM KOZ " PI-PIO AND UT AND STANGCIMENTENCITONS GETAERN KOZ " STANG AND PATITINS AT I "ON EVIC." ASSTRACT ETABLE LI REACTION **MILLIBARNS** ND. EVENTS KOL PROTON PROTON KOS LAMBOA PI+ Sighad PI+ Lambda PI+ PI+ PI+ PI+ PI+ PI+ PI+ 1.08 +- .26 [1] 1.02 .23 [1] .33 .13 [1] 22 3603 111 . 93 .02 (2) 2 (1) THE CROSS SECTIONS ARE PECALCULATED BY PEADER USING UP-DATED KTL LIFE TIME ".ITZIO**(-BISEC. (2) THE CROSS SECTIONS ARE PECALCULATED BY READER USING UP-DATED KOL LIFE TIME 5.17X10**(-BISEC. THE STATISTICAL ERROR IS CALCULATED BY READER.

DIFFERENTIAL CROSS SECTION FOR KOL PROTON + LAMBOA PI+. LEICIDE 51 LABORATORY BEAM MOMENTUM = .59 +- .05 GEV/C. NUMBER CF EVENTS = 36. ***THESE DATA WERE READ FROM & GRAPH*** COS(THETA) D-SIGMA/D-COSITHETA) NO. EVENTS **MB [2]** MIN NAX • 3 •- • 3 • 3 • 3 • 0 • 3 • 3 • 3 -1.0 1 1 0 - 5 12021225410 *6 •0 •6 •6 •6 •6 1•4 1•1 43210123456789 :4 -.2 • • • • • • • • . 1 .5 1.1 - 6 41 .6.7.8.9 1.1 45 õ . 0 1.0 . ŏ THETA IS THE ANGLE THAT THE PI+ MAKES WITH THE BEAM IN THE GRAND C.4. (1) COUNTS WERE BUILTIPLIED BY . 283 TO GET THESE. DIFFERENTIAL CRUSS SECTION FOR KOL PROTON . SIGNAD PI+. TETOUEZ 51 LABORATORY BEAN NOMENTUR = .59 +~ .05 GEV/C. NUMBER OF EVENTS = 12. ***THESE DATA WERE READ FROM & GRAPH*** D-SIGP V/D-COS(THETA) COS(THETA) NO. EVENTS He [1] MIN -1.0 -.6 -.4 -.0 -.4 HAR -.8 • • +- .2 23001010202 - 2 .0 .i • 1 •0 -1 • 6 1 :6 1.0 ž • 2 THETA IS THE ANGLE THAT THE PI+ MAKES WITH THE BEAM IN THE GRAND C.M. 111 COUNTS WERE MULTIPLIED BY .137 TO GET THESE. DIFFERENTIAL CROSS SECTION FOR KOL PROTON + PROTON KOS. LEIGURE 381 LABORATORY BEAF HUNENTUN = .59 +- .05 GEV/C. THE ANGULAR DISTRIBUTION HAS BEEN EXTRAPOLATED AS & CONSTANT FOR THE FORMARD AND BACKMARD AFGIONS IN ONDER TO DATAIN The Murmalization. The total mumber of events 13 28. COSCTHETAL D-51GHA/D-C351THETA1 MB [1] NO. EVENTS -MAX •4 •• •3 •1· •3 -... - :2 2323 - 2 1 - 3 ź . 32 - 5 THETA IS THE ANGLE THAT THE KOS MAKES WITH THE BEAM IN THE GRAND C.... [1] COUNTS WERE MULTIPLIED BY .190 TO GET PHESE.

KOZ P INTERACTIONS AT LOW MOMENTUM. (PHYS. KEV. LETTERS 17. 599 (1966)) 8 J.A.KADYK, Y.GREN, G.GOLDHABER, S.GOLDHABER, G.H.TRILLING (".C. LAWRENCE PAD. LAB., "ERKEIFY, CALIF., USA) STRACT AN ANALYSIS IS GIVEN DF ABOUT 1200 KO2 P INTEPACTIONS OF THE TYDOG LAMADAO PID, SIGNAD PID, AND YOL P AT Nean Koz Nomentum of 300 Nevyc. The Relation Betafen 3558 reactions and 145 (laterade langths from K- and P-Experiments is discussed, and a substantia, P mare is Reprinted in the Landboar of Peraction. ABSTRACT DIFFERENTIAL CROSS SECTION FOR NOL PROTON . LANGDA PI+. (FIGURE 33 LABORATORY GEAN NOMENTUM = .16 GEV/C (REAN VALUE). NUMBER OF EVENTS = 128. ***THESE DATA JERE READ FROM & GRAPHING COS(THETA) NO. EVENTS 41N -1-0 ---8 ---8 NAX 19 -... ----19 - . 5 14 8 -.2 . 0 .0 8 . . . 1.0 ó THEFE IS THE ANGLE THAT THE LARADA MARES WITH THE BEAM IN THE CRAMO C.M. DIFFERENTIAL CROST SECTION FOR ADL PRUTINE + LAMBDA PI+. 1510085-31 NONTHESE DATA WERE REA. FROM & GRAPHON COSITNETAL ND. EVENTS -1.0 -11 24 13 14 10 7 -.2 - 2 , i Là 10 THETA IS THE ANGLE THAT THE CANADA MAKES WITH THE BEAM IN THE GAAND C.P. (FIGURE 3) NANTHESE DATE WERE READ FROM & GRAPHONE -----NO. FRENTS *** #24 -1.0 ÷ 19 -.. - . 1 -.2 :; ż ٠à ., ... 1 . * .. 2 1.5 PHERA 25 PHE AUGLE PHEL THE LARGON WARES MITH FOR BIAN IN THE GRAND C.W. 111610E 33 AUSTICE CATA MERE AFAD FADA & CRAPHONE COSCIPETAL 10. FVENTS -1.0 18 1.8 - . . 33 16 - , 8 ù -.. 1 • 2 1 1.8

46

THETA IS THE AUSLE THAT THE LAMADE MARES WITH THE REAM IN THE GRAND C.M.

	DIFFERENT				الحد م	NA #1+-	FEIGURE 31			
	LABOR	ATORY BEAM	HOMENTUM .	-46 GEV/C	CHEAN VALU	(E).				
	NUMBER OF EVENTS = 53.									
	THESE DATA WERE REAU FROM A GRAPH									
	COSITHE	TA)	ND. EN	ENT 5						
	-1.9	~.0	-	20						
	6	4		2						
		2		5						
	.0	.2		3						
	.4		-	-0						
		1.0		ļ						
	THETA	15 THE ANG	E THAT THE L	AMBDA HAKE	S WETH THE	BEAM IN TH	E GRAND C.M.			
	************* ***********	*********	***********	*********	*********	**********	••************************************	*************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
9	MULTICHANNE (1967) 1	EL PHASE-SHI	FT ANALYSIS	OF KBAR N	INTERACTIO	N IN THE RE	G10N 0 TO 530 MEV/C	. CPHYS. RE	V. LETTERS 19, 1074	
	<u> Jakakin</u> (YA	LE UNIV., N	IEN HAVEN, CO	NN., USAJ						
	THIS IS AN	AMALYSIS OF	PREVIOUSLY	PUBL1 SHED	DATA.					
	ARTICLE REA BEAM NO. 1 NO. 2 This Expert	ND BY FUMING IS KOL ON F IS K- ON PP (MENT USES B	UCHIYAMA IN ROTON PROM . OTON FROM .0 UBBLE CHAMBE	9/71, AND 0 TO .5 GE TO .5 GEY RS.	VERLFIED V/C. /C.	BY JAMES S,	LOOS+			
	GENERAL COM L A PHAS AL. (KEY WORDS	HENTS GN TH Se shift and Phys. Rev. Partial Wa	IS ARTICLE LYSIS IS PER LETTERS 17,5 VE ANALYSIS	FORMED FOR 99 (66)),	THE DATA USING THE	DBTAINED BY	WATSON, ET AL., (PH L EFFECTIVE RAMGE P	WS. REV. 131, 22 PARAMETRIZATION (*	48 (63)) ANG ADVR, ET F R'ISS AND SHAW.	
		•••••	••••••	•••••	•••••					
			NO DATA PU	NGHED FOR	THIS ARTIC	LE				
	**********	*********	**********	*********	*********	0400+4+0+440 48004800010	••••••••••••••••••••••••••••••••••••••			
1101	ANDMALOUS R	EGENERATION	OF KOL MESO	NS FROM KO.	2 MESONS.	CPHYS.	REV. 132. 2285 (19	<u>163)</u> 1		
Ľ	L <u>.B.LEIPUNE</u> R.ADAIR, B.	A, N.CHINON Rusgrave, F	SKY, R.CPITT .T.SHIVELY (ENDEN (BRO VALE UNIV.	OKHAVEN NA , New Have	T. LAB UPI N. CONN., US	TON, L.I., N. Y., U 54]	1541		
	ABSTRACT MESONS W ANTECIPA REGENERA	A BEAM OF 11TH THE MOM TEO FROM CO TION RESULT	1.0-BEV/C K Entum and Di Nventional M Ing From A N	02 MESONS A RECTION OF ECHANISMS, EN WEAK LO	PASSING TH THE ORIGI AND THE S NG-RANGE I	ROUGH LIQUIG NAL BEAN, TH UGGESTION IS NTERACTION B	D HYDROGEN IN A BUB He intensity of Koi 5 Made that the Koi Between protons and	BLE CHAMBER WAS : PRODUCTION WAS (NESONS ARE PROD N MESONS.	SEEN TO GENERATE KOL Far greatfd than that JCED by comerent	
	ARTICLE REA BEAM IS KOL THIS EXPERI KEY ADRDS .	D BY JAMES ON PROTON MENT USES A CROSS SECT	S. LODS IN 9 FROM .7 TO 1 Hydrogen bu 10m Diff	/71, AND VI .3 GEV/C. BBLE CHAND ERENTIAL CI	ERIFCED BY ER. A T ROSS SECTION	FURITO UCHI DTAL OF 9000 DN HYDRO	IYAMA. DO PICTURES ARE REP DGEN REGEMERATI	ORTED ON. ON AMPLITUDE	COHERENT	
	C		NTD=00000 NE	SENEKATION	AMPL 1 1000					
	DIFECTENTI						terciste at			
	LABORA	TORY BEAM H	OMENTUM .	L-0 +3 (EV/C.		(1100NE 21			
	NUHBER	OF EVENTS	• 47.							
	***THE	SE DATA NEP	E READ FROM	A GRAPH®®®						
	COSCINET	A)	D-SIGNA/D	OMEGA						
	MAR	MIN	#8/S	4	40. 646.	115				
	.95	.33	.50 ↔ .25	.13	1	15				
	.33	.00	.25	.08 .06	1	5				
	33	68	.18	.07		Ť				
	THETA	15 THE ANGL	E THAT THE K	DS NAKES WI	TH THE BEA	M IN THE LT	440 C.M.			
	CROSS SECT	ION FOR	KOL PROTON	PROTON P	05. (1)					
	THIS I	S DERIVED 8	THE READER	FROM FIG.	2. THE STA	TISTICAL ER	ROR 15 BASED ON 47	ORSERVED EVENTS.		
	LABORATO BEAM MONEN GEV/C	RY TUN	4(11)	IRNS	NO. EVEN	r:\$				
	+ 0+. [1] C	3 ALCULATED B	2.7 +-	.4 FA IN THIS	ARTICLE.	·7				
	(TEFERENT T	AL CROSS SE	T 10H FOR	KOL PROTIN	. pantr	IN KOS.	[PAGE 22581			
	LABORA	TORY BEAM M	DHENTUM = 1		E4/C.					
	THETA		D-SIGHA/D- 48/SI	-OMEGA						
			.01 +-	•11	TH THE AF.		4ND C N.			
	(1) 6	XTRAPDLATED	PUINT.	,, nakes 85	THE PER					

NO INTERACTIONS. IINTIL. CONF. ON ELEM. PARTICLES, ALX-EN-PROVENCE, 235 (1961) 11 D.1.11275, I.S.MITTRA, W.J.WILLIS, S.S.YARAMOTO EBRODHAVEN NAT. LAB., UPTON, L.I., N. Y., USAS ANTICLE READ BY FUNITO UCHIYAMA IN 9/71, AND VERIFIE' BY JAMES S. LODS. BEAN IS KOL (M. PADION FROM -20 TO .05 GEV/C. THIS EMPERIENT USES THE BUL 20 IN. MURANGEN BUBLE CHAMBER. KEY MORDS - CROSS SECTION HYPERON PROLUTION BISMAS RATIO CAMPOUND SET WORDS - MUPERON PROLUTION HYPERON PAIL BAT 10 CRISS SECTION FOR KOL PRITON + SIGMAD PI+. Number of events = 36. (FIGURE 1) THE CROSS SECTIONS ARE RECALCULATED BY READER USING UP-DATED KOL LIFE TIME 4.17X10++(-BISEC. SERTHERE DATA WERE READ FROM & GRAPHERE LABORATORY BEAM HOMENTUM MILLIBARNS 3.6 + 1.5 GEV/C .225 * .075 - .025 .360 * .080 - .960 .*00 * .150 - .060 3.0 .8 . * CRISS SECTION FOR KOL P NUMBER OF EVENTS # 27. KOL PROTON - LAMBDA PI+. 1616086 11 THE CAOSS SECTIONS ARE RECALCULATED BY READER USING UP-DATED KOL LIFF TIME 5.17X10**(-BISEC. ***THESE DATA WERE READ FROM & GRAPHINA LABORATORY BEAM HOMENTUM EAM NOMENTUM GEV/C -225 + .075 - .025 .360 + .080 - .060 MILLIBARNS 3.8 + 1.6 1.5 .5 . 5 .500 + 1.50 2.1 .060 CROSS SECTION FOR KOL PROTON + PROTON KOS. NUMBER OF EVENTS = 40. LECOURS 11 THE CROSS SECTIONS ARE RECALCULATED BY READER USING UP-DATED KOL LIFE TIME 5-17X10+++-BISEC. ***THESE DATA WERE & AD FROM & GRAPHONS LABORATORY BEAN HOMENTUM GEV/C MILL 184945 GEV/C .225 • .07* - .025 .350 • .080 - .050 3.4 .7 .500 + .150 . 5 2.8 INTERACTIONS OF NEUTRAL & MESONS IN HYDROGEN. (PHYS. REV. 0 3, 3553 (1971)) 12 G.W.W<u>EISMER (</u>U.C. LAWPENCE RAD. LAB., BERKELEY, CALIF., USA, AND UMIV. OF NUMTH CAROLING, GREENSBORD, W.C.,USAI F.S.CRAWFORD (U.C. LAWRENCE RAD. LAB., BERKELEY, CALIF., USA] ABSTRACT CLOSELY RELATED REFERENCES THIS ARTICLE SUPERSEDES UCRL 20112. APTICLE READ BY JUNITO UNITING AND JUNES 5. LODS IN 7/71, AND VERIFIED BY JAMES 5. LODS. BFAN NG, 2 15 400 H POITON FROM 0 TO 20 65477. NG, 2 15 400 H POITON FROM 0 TO 20 65477. NG, 3 15 40 OK POITON FROM 0 TO 20 65476. THIS ERBERINGY USES THE LR. T2 IN. HYDRIGE BUBBLE CHAMBER. A 171AL OF SOGDOD PICTURE: KEY ARDS - COSS SECTION HYDRIGM. PRODUCTION BISHAS RATIO FROMT BACK ASYM EN BUBBLE CHANBER. A TOTAL OF SODODD PICTURES ARE REPORTED TH. PRODUCTION BISHAS RATIO FRONT BACK ASSAMETRY COMPOUND KEY WORDS . HYPERON PRODUCTION (fABLE 2) LABORATORT BEAM MONENTUM + .385 (+) .215 (+) .284 GEV/C. **ALLIBARNS** ND. EVENTS REACTION KOL PROTON + LAMBOA PI+ SIGNAG P1+ 3.40 2.21 .94 18 1.94 12.10 1.07 55 PRCTON KOS

CROSS SECTION FOR KOL PROTON . NEUTRON K+. (PAGE 259)

CPT INVARIANCE IS ASSUMED TO OBTAIN THIS CROSS SECTION

LABORATORY BEAM MONENTUR		
GEV/C	MILLIBARNS	NC. EVENTS
+527 + .373	1.61 +72	11
527		

MEASUREHENTS OF TOTAL CROSS SECTIONS FOR KO2 MESONS ON PROTONS AND SELECTED NUCLEI FROM 168 TO 343 MEW/C AND MEASUREMENT Of The Ko2 Mean Life. (Phys. Rev. 169, 1045 <u>(1968</u>))

3<u>.3.54YER,</u> E.F.B3ALL (UNIV. OF MARYLAND, COLLEGE PARK, MD., USA) T.J.DEVETY, P.SHEPARD, J.SJLJMON (PRINCETJN-PENN, PRJTON ACCEL., PRINCETJN, V.J.,USA)

ARTICLE PEDD CY JANES S. LODS IN MYTL AND VERIFIED BY FUNIYO UCHIYANA. Bean is ali ny Protei fari leb to .363 Gev/c. This Errealwent Juss Counters. Key Hords - Total C Rods Section Wuclear Scattering Length Neak Interaction Measurement Compound Key Hords - Total Cross Section Wuclear Coss Section

KOL PROTON TOTAL CROSS SECTION. [TABLE 9]

LABORATORY BEAM MONENTU

13

GEV/	c	MILLIB	ARNS [L+2]	1	
-158 4-	.004	70.1 +-	15,0		
.177	.005	50.1	9.7		
.187	.005	50.2	9.2		
-197	.005	51.5	7.8		
.209	.007	41.9	6.1		
.223	.007	38.6	6.2		
.239	.002	46.4	5.5		
.258	.010	33.7	4.6		
.291	.013	31.0	3.9		
. 306	.014	30.4	3.5		
. 34 3	, 021	24.0	2.9		
(11	ERKORS ARE SI	ATTSILCAL O	NLY.		
iżi	PLUS POSSIBLE	SYSTEMATIC	ERROR JF	+- 4 PE	R CENT.

Section IV.

INDICES AND

MISCELLANEOUS

INFORMATION

K⁰₁ -nucleon experiments in progress

We list for the convenience of the reader the following experiments, which are either being run or are being analyzed and for which publication may be forthcoming in the near future.

Institution	Spokesman' s name	P beam (GEV/c)	Target	Technique	Interactions studied
SLAC ^a	D.W.G.S Leith	1-10	р	НВС	Two-body, quasi-two- body, and multiparticle production
DESY, Heidelberg, Tel-Aviv	E. Burkhardt	0.7-2.5	₽	LIBC	Two-body and quasi two- body emphasis on S=-1
Serpukhov, Dubna ^C	I.A. Savin	10-40	P	WEPK	Magnitude and phase of coherent regeneration, $K_{L}^{0}p + K_{S}^{0}p$
Yale	H.D. Taft	1-10	đ	DBC	Coherent regeneration of K ⁰ , coherent production of K [*] and Q mesons
Carnegie-Mellon, ANL, Iowa State	R.M. Edelstein	0.5-1.5	Р	WSPK	$K_{L}^{0} \mathbf{p} \neq K^{\dagger} \mathbf{n}, \mathbf{t} \leq 0.25 \; (\text{GeV}/\text{c})^{\dagger}$
LRL ^b	J.A. Kadyk	0.1-0.5	Р	НВС	I=1, S=-1 final state
Pittsburgh, Massa- chusetts, Northwester: McGill	G. Engels n,	4-10	P	OSPK	Magnitude and phase of coherent regeneration, $K_{\underline{L}}^{0} p \rightarrow K_{\underline{S}}^{0} p$

^a SLAC-PUB-823, November 1970.

^CPhys. Letters <u>38B</u>, 452 (1972).

^b See reference 8 in this book for a partial report.

HBC: Hydrogen bubble chamber WSPK: Wire spark chamber DBC: Deuterium bubble chamber

OSPK: Optical spark chamber

Momentum Index

BEAN NOMENTUM	1ST AUTHOR	JOURNAL	VOLUME, PAGE	INSTITUTIONS	DETECTOR	YEAR PUBLISHED	REF.NR
			17 600	1.01			
. 160	KADYK	PRL	17 599	LKL	HHC	06	
. 108	SATER	PR	169 1045		CNIR	68	13
• 1 ? ?	SAYER	PR	169 1045	UND PPPA	CNTR	68	13
-187	SAYER	PR	169 1045	UMD PPPA	CNTR	68	13
• 197	SAYER	PR	169 1045	UMD PPPA	CNTR	68	13
+209	SATER	PR	169 1045		CAIK	68	13
• 223	SATER	PR CONT	109 1045	UND PPPA	UNIX	68	13
• 225	LUERS	AIX CUNF	17 500	BNL	Hac	01	
.223	CAUTA .	PKL	11 399		CNTO	66	
.237	SATER	20	149 1045		CHTR	68	13
• 270	SATER	001	107 1045		000	56	15
.275	CAUTK CO	P NL	1/ 577		CNTO	60	
.201	SATER	PK	209 1045	SHU PPPA		68	15
. 500	CAVEL	7°L	140 1045		CNTP	69	, 1
340	KANYK	201	17 500	IDI FFFA		66	13
343	LAVED	00	140 1045		CNTD	40	
340	LIERS	ATX CONE	236	BNI	HAL	61	13
. 385	METSNER	DD COM	0 3 2553		нас	71	12
. 440	KADYK	PRI	17 599	LRI DIO LILI	HBC	66	12
500	I LIERS	ATT CONE	235	ANI	HAC	41	11
- 500	KTN .	001	19 1076	YALE	HBCS	67	
. 5 27	METSNER	DB D	0 3 2553		HBC	71	12
590	HAWKINS	PR	156 1444	YALF	HBC		12
.700	CHRESTENSO	PR	140 B 74	PRIN	SPRK	65	
1 200	LEIPUNER	PR	132 2245	BNI YALE	HBC	Ă3	10
1,400	CHRISTENSO	PR	140 B 74	PRIN	SPRK	65	14
1.450	BRODY	PRL	26 1050	SLAC	HBC	71	,
1.500	BRODY	PBL	26 1050	SLAC	HBC	71	2
1.650	BRODY	PRE	26 1050	SLAC	HBC	71	2
1.700	BRODY	PRI	26 1050	SLAC	HBC	71	2
1.900	BRODY	PRI	26 1050	SLAC	HBC	71	2
2.100	BRODY	PRL	26 1050	SLAC	HBC	71	2
2.300	BRODY	PRL	26 1050	SLAC	HBC	71	2
2.500	DARRIULAT	PL	338 433	AACH CERN TOR!	SPRK	70	Ē
2.500	BRODY	PRL	26 1050	SLAC	H8C	71	2
2.550	BRODY	PRL	25 1050	SLAC	HBC	71	z
2.700	BRODY	PRL	26 1050	SLAC	HBC	71	2
2.900	BROOY	PRL	26 1050	SLAC	HBC	71	2
3.000	BRODY	PRL	26 1050	SLAC	HBC	71	2
3.200	BRODY	PRL	26 1050	SLAC	HBC	71	2
3.500	DARRIULAT	PL	337 433	AACH CEPN TORI	SPRK	70	F
3.500	BRODY	PRL	26 1050	SLAC	HBĆ	71	2
3.600	BRODY	PRL	26 1050	SLAC	HAC	71	2
4.000	BRODY	PRL	25 1050	SLAC	HBC	71	2
4.500	DARRIULAT	PL	338 433	AACH CERN TORI	SPRK	70	÷
4.500	8ROJY	PRL	26 1050	SLAC	HBC	71	2
4.600	BRODY	PRL	26 1050	SLAC	HBC	71	2
F + 0 0C	FIRESTONE	PRL	16 556	FALE BNL	HBC	66	6
5.500	BR 10Y	PRL	26 1050	SLAC	HBC	71	2
6.000	UARRIULAT	PL	338 433	AACH CERN TORI	SPRK	20	-
6.000	BRODY	PRL	26 1050	SLAC	HBC	71	2
a00	BUCHANAN	PL	378 213	UCLA JHOP SLAC	SPRK	71	3
7.000	BRODY	PRL	26 1050	SLAC	HBC	1	2
7.500	BLUMENFELD	PL	248 58	8 ML	HPC	64	1
a. 000	UKUJY	PAL	20 1050	al a:,	HDL.	11	2

Key Word Classification

```
ANGULAR DISTRIBUTION
              HAWKINS, PHYS. REV. 156, 1444 (1967)
       171
              KADYK ET AL., PHYS. REV. LETTERS 17, 599 (1966)
       181
BISWAS RATIO
       [8]
              KADYK ET AL., PHYS. REV. LETTERS 17, 599 (1966)
              LUERS ET AL., INT L. CONF. ON ELEM. PARTICLES, AIX-EN-PROVENCE, 235 (1961)
      [11]
      [12]
              MEISNER ET AL., PHYS. REV. D 3, 2553 (1971)
COHERENT REGENERATION
       [3]
              BUCHANAN ET AL., PHYS. LETTERS 37B, 213 (1971)
       [4]
              CHRISTENSON ET AL., PHYS. REV. 140, B 74 (1965)
              DARRIULAT ET AL., PHYS. LETTERS 338, 433 (1970)
       151
      (10)
              LEIPUNER ET AL., PHYS. REV. 132, 2285 (1963)
CPOSS SECTION
       [2]
              BRDDY ET AL., PHYS. REV. LETTERS 26, 1050 (1971)
             FIRESTONE ET AL., PHYS. REV. LETTERS 16, 556 (1966)
       161
       [7]
             HAWKINS, PHYS. REV. 156, 1444 (1967)
      [10]
              LEIPUNER ET AL., PHYS. REV. 132, 2285 (1963)
              LUERS ET AL., INT'L. CONF. ON ELEM. PARTICLES, AIX-EN-PROVENCE, 235 (1961)
      (111
             MEISNER ET AL., PHYS. REV. D 3, 2553 (1971)
      [12]
              SAYER ET AL., PHYS. REV. 169, 1045 (1968)
      [13]
DIFFERENTIAL CROSS SECTION
       [2]
              BRODY ET AL., PHYS. REV. LETTERS 26, 1050 (1971)
       [6]
              FIRESTONE ET AL., PHYS. REV. LETTERS 16, 556 (1966)
      [10]
              LEIPUNER FT AL., PHYS. REV. 132, 2285 (1953)
FRONT BACK ASYMMETRY
      [12]
             MEISNER ET AL., PHYS. REV. D 3, 2553 (1971)
HYPERON PRODUCTION
             BLUMENFELD ET AL., PHYS. LETTERS 298, 58 (1969)
       [1]
              HAWKINS, PHYS. REV. 156, 1444 (1967)
       671
             KADYK ET AL., PHYS. REV. LETTERS 17, 599 (1966)
       [8]
             LUERS ET AL., INT'L. CONF. ON ELEM. PARTICLES, AIX-EN-PROVENCE, 235 (1961)
      [11]
              MEISNER ET AL., PHYS. REV. D 3, 2553 (1971)
      [12]
PARTIAL WAVE ANALYSIS
       [8]
             KADYK ET AL., PHYS. REV. LETTERS 17, 599 (1966)
       [9]
             KIM, PHYS. REV. LETTERS 19, 1074 (1967)
REGENERATION PHASE
             BRODY ET AL., PHYS. REV. LETTERS 26, 1050 (1971)
       [2]
       [3]
             BUCHANAN ET AL., PHYS. LETTERS 378, 213 (1971)
             DARRIULAT ET AL., PHYS. LETTERS 338, 433 (1970)
       [5]
WEAK INTERACTION MEASUREMENT
       [6]
             FIRESTONE ET AL., PHVS. REV. LETTERS 16, 556 (1966)
       [7]
             HAWKINS, PHYS. REV. 156, 1444 (1967)
SAYER ET AL., PHYS. REV. 169, 1045 (1968)
      [13]
Y#1(1616)
       [1]
             BLUMENFELD ET AL., PHYS. LETTERS 298, 58 (1959)
Y#1(1700)
       [1]
             BLUMENFELD ET AL., PHYS. LETTERS 298, 58 (1969)
```

Reference List

[All the references before January 1, 1972]

(1)	BLUMENFELD, ET AL., PHYS. LETTERS 298, 58 (1969)
[2]	BRODY, ET AL., PHYS. REV. LETTERS 26, 1050 (1971)
[3]	BUCHANAN, ET AL., PHYS. LETTERS 37B, 213 (1971)
[4]	CHRISTENSON, ET AL., PHYS. REV. 140, 8 74 (1965)
(5)	DARRIULAT, ET AL., PHYS. LETTERS 33B, 433 (1970)
[6]	FIRESTONE, ET AL., PHYS. REV. LETTERS 16, 556 (1966)
[7]	HAWKINS, PHYS. REV. 156, 1444 (1967)
[8]	KADYK, ET AL., PHYS. REV. LETTERS 17, 599 (1966)
[9]	KIM, PHYS. REV. LETTERS 19, 1074 (1967)
[10]	LEIPUNER, ET AL., PHYS. REV. 132, 2285 (1963)
{ 1 1]	LUERS, ET AL., INT'L. CONF. ON ELEM. PARTICLES, AIX-EN-PROVENCE, 235 (1961)
[12]	MEISNER, ET AL., PHYS. REV. D 3, 2553 (1971)
[13]	SAYER, ET AL., PHYS. REV. 169, 1045 (1968)