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ABSTRACT

"nis paper describe the physics and mathemati s of determining the
radias current density of an electron beam from its experimental X-rey
intensify data. It is necessary to invert an Abel's integral equation
in the appropriate variables. This method will also allow us to deduce

the plasma electron density from interferometer phase shift data.
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INTRODUCTION

One of the very useful pieces of information to determine in the
Beam Research Program is the radial profile of the experimental heam.
This profile determines the ampunt of spread in the betatron frequency
which in turn plays a dominant role in beam stability considerations.
A technique has been developed in which the x-ray intensity from a wire
target is measured. 1 In this paper it will be shown how this data in
fact gives the required radial shape (assuming axial symmetry). The
method involves inverting an Abel's integral equation in the appropriate
variables. In the future this method will be used to deduce the plasma
electron density from interferometer phase shift data. A computer code
has been written which finds J(r), the radial current density, mmerically
from the given laboratory data. This code has been tested successfully
on two special cases where we know the answers analytically. These cases
are the uniform and the quadratic [J(r) ~1 - r2] profiles. It is found
that the experimental beam is peaked on axis with a corresponding large
spread in betatron frequency. The computer code described here was used
in the reports on the experimental results of the Beam Research Group.

T. FORMULATICN OF THE PROBLEM

The way the experimental x-ray data are obtained is shown in Fig. 1.
The x-ray data give the integrated effect of J(r) along the wire. Call
this integrated value 1. Consider the diagram in Fig. 2 where we look
at the upper right hand quarter of ine beam. First note that as

the wire is meved completely across the beam, I goes from zero to a
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maximum and then back to zero again. Hence we are able to determine

where the center of the beam is and where its outer edge is. In actual

practice, these two quantities may be known samewhat imprecisely, but
theoretically they are well defined. In the diagram (Fig. 2) x is the

distance of the wire W from the center of the beam and a is the beam

radius. y, y, and r are as indicated:

eyl s 2,
oy
? -
x5+ y2 = &”.
I is now a function of x only and is given by
v v
I(x) = [ J(r) dy = [ Jlr(x,y}] dy, (2)
y=0 y=0
or
a% -
I(x) = jy=0 J("xi . y2) . (3)

In order to get J(r) from I(x) it is convenient to make a

change of variables in Eq. (3). The appropriate one is

u = x2
’ )

2
vEr.

We will use v as the new variable of integration in Eq. (3)}. We see
from Eq. (4) and Eq. (1) that fory = 0, v=uand fory =y, v = a.
We also define J(r) = J.(rz) = J,(v). TFrom Eq. (1) we have u + y2 = v

and hence, at const. u, 2y dy = dv. Thus

d:él’..: _..-d—v__—_
Y ey 2\/v-u.
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Now Eq. (3) may be written as

a av
Too=] g —N 5)
Jv=u 2vv - u
If we now define I(x) = I,(xz) = I,(u), we get finally
N a d .
Iy = H T () ————. (6
v=u vV - u

Equation (6) is now in the form for which we were locking. This is an

Abel integral equation.
II. THE SOLUTION OF THE PROBLEM AND SOME SAMPLE CASES

The solution of Eq. (6) is well know«ml2 to be
Z

a 1
I = - ZJ L (vdv. N
VU YV -~ U

In terms of I and J we easily find that

1
gy = - 2@ LDdr 8)
t= 2 2
=r t© -

Hence we see that if I(x) is known experimentally, we are able to compute
J(r),

In the appendix the integrals in Egs. (3) and (7) are worked
out for a uniform beam and for a quadratic shaped beam profile. These
two cases are not only instructive but they are also valuable as tests for
the computer code which numerically does the integrals. Figures 3-6
show I(v) and J(r) for the uniform beam and the quadratic beam respec-
tively. The code is working accurately. This vode is of some interest
nurerically since there is a weak singularity in the integrand at the
lower limit, v = u. This however causes no major difficulties and is

handled in an obvious manner.
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III. COMPUTATION OF THE BETATRON SPREAD AND THE DISTRIBUTION FUNCTION
From the computed value of J(r) we can calulate two other quanti-
ties of theoretical importance: the -pmfile of betatron frequency and
the distribution function f(mB). There are two limiting cases for which
we will consider the betatron frequency. One is associated with circular
orbits and the other with straight line orbits. The BB field consistent
with J(r) is given by

r

_bml f
Be(r‘) === Js:G sds) ds. 9

The betatron frequency for circular orbit of radius r associated with

this field is well known to be

2 _ eB B(r)
mS(I‘) = ﬁ—*—r . 10

The calculation of the betatron frequency for a straight line
orbit through the center of the beam is not as easy for general Be(r).
We must numerically integrate the equation of motion of a particle which

at t = 0 has x = r and dx/dt = 0. This equation is

%= - % B(x). (11)

The soluticn of Eq. (11), x=(t), is always periodic with period called T.

The required frequency is g = 2n/T.

Since mB = ug (r) is a monotone function for a nonhollow beam, the

inversion r = r‘(wﬁ) can always be performed. Hence f(wﬁ) can be calcu-

lated from the relation
) dr(mB) ‘
f(wB) ~ JLr(wB)] r(ws) —Ew; . 12
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as a function of r for a quadratic beam (J ~ 1 - r2).

Figure 7 shows wg

Figure 8 shows the distribution function f(wB).
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APPENDIX
THE SOLUTION OF ABEL'S EQUATION FOR THE UNIFORM BEAM AND THE QUADF .
SHAPEN BLAH FRUFILE.

let us consider a uniform beam of radius 1. Hence

1)
[

J(r) r<i,

J(r) r>1.

]
(=]

From Eq. (3) we see this corresponds to

Vl—xz l—x2
I = [ Jdy = J dy = ‘/l 2 (A-1)
y=0 y=0 .

From the definition of I,(v) we get

I,(v) = T =v . (a-2)
Hence,
T = = e,
2T = v

We will now show that through Eg. (7) this I,(v) leads to the correct

Jy(u) or J(r). By Eq. (7)
1

Jyw = - %J v ) (a-3)
v=Uu 2T =v W~N=u

We will change variables to do this integral. lettingt=v -u

1-u
S =3 [ dt , (A-3)
=0 T = (vt
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Let x = t/(1 - u). Hence

1

J:(u):%J (1 - w) dx
x=0 V(I - u) - x(1 - u) vx(1l - u)
1 ‘
=1 [ —E
x=0 /T =% R

Herice we see that J,(u) is constant as required., By using the trigono=
metric substitution x = sin2 b, Ve find J,(u) = 1, Alternatively, we could
look up the integral in Eq. (4) in a tables.

We next consider a beam of radius 1 with a quadratic profile

Al

J®) =1 - 2. Again from Eq. (3) we get

I(x) = JV 1% I/ %+ yo) dy = jo [1- (% + y2)] dy
0 A—xz—
=ty - x%y - y¥3) ’y:c =2 a A
160 = £ - M2 (4-5)
Hence
L =2 a-wn
and
L = - A= (a-6)

We will now do the integral in Eg. (7) to recover J(r) from the given

I,(v):
1 _ Yl -vdv

J: (u)=-;2T-J
v=u v - u

let t = v - Uu. Hence

s



=ro

1-u
3,0 = f T-(t v dt
t

=0 e

let x = t/(1 - u)s Hence
2 [1 IS T W R () - W dx
)

Jy(u) = T
x=0 1 - VX
1 -
Jiw = a-wi f A-X dx (A=)
x=0 vx

Using the substitution x = sin2 8 we get
Jw=1-u ord =1-r? (A-8)

as required.
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Jyu) = % f
=0 T
let x = ©/(1 - u)? Hence

g = 2 {1 T OO E A - w) de
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x-ray detection

Figure 1

Figure 2?2
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