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ABSTRACT 

Z'nLs paper describe the physics and mathemati s of determining the 

radial current density of an electron beam from its experimental X-vry 

intensify data. It is necessary to invert an Abel's integral equation 

in the appropriate variables. This method will also allow us to deduce 

the plasma electron density from interferometer phase shift data. 
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INTRODUCTION 

One of the very useful pieces of information to determine in the 

Beam Research Program is the radial profile of the experimental beam. 

This profile determines the amount of spread in the betatron frequency 

which in turn plays a dominant role in beam stability considerations. 

A technique has been developed in which the x-ray intensity from a wire 

target is measured. In this paper it will be shown how this data in 

fact gives the required radial shape (assuming axial symmetry). The 

method involves inverting an Abel's integral equation in the appropriate 

variables. In the future this method will be used to deduce the plasraa 

electron density from interferometer phase shift data. A computer code 

has been written which finds J(r), the radial current density, numerically 

from the given laboratory data. This code has been tested successfully 

on two special cases where we know the answers analytically. These cases 
2 are the uniform and the quadratic [J(r) ~ 1 - r ] profiles. It is found 

that the experimental beam is peaked or. axis with a corresponding large 

spread in betatron frequency. The computer code described here was used 

in the reports on the experimental results of the Beam Research Group. 

I. FORMULATION OF THE PROBLEM 

The way the experimental x-ray data are obtained is shewn in Fig. 1. 

The x-ray data give the integrated effecc of JCr) along the wire. Call 

this integrated value 1. Consider the diagram in Fig. 2 where we look 

at the upper right hand quarter of m e beam. First note that as 

the wire is moved completely across the beam, I goes from zero to a 



maximum and then back to zero again. Hence we are able to determine 

where the center of the beam is and where its outer edge is. In actual 

practice, these two quantities may be known somewhat imprecisely, but 

theoretically they are well defined. In the diagram (Fig. 2) x is the 

distance of the wire W from the center of the beam and a is the beam 

radius, y, y, and r are as indicated: 

2 . 2 2 x + y = r , 

2,-2 2 x + y - a . 
(1) 

I is now a function of x only and is given by 

ry a 
I(x) = J(r) dy = J[r(x,y)] dy, 

Jy=0 Jy=0 
(2) 

ly=0 
Ux)-\Z~*~ * t f ~ 7 5 * . (3) 
In order to get J(r) from ICx) it is convenient to make a 

change of variables in Eq. (3). The appropriate one is 
2 u = x , 

00 

We will use v as the new variable of integration in Eq. (3). We see 
2 from Eq. (4) and Eq* (1) that for y = 0, v = u and for y = y, v = a . 

2 2 
We also define J(r) = J,(r ) = J,(v). From Eq. CI) we have u + y = v 

and hence, at const, u, 2y dy = dv. Thus 

. dv dv 
d y = 5y- 17S=? 
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Now Eq, (3) mav be written as 
2 

I <x) = f J,(v) d v . (5) 
Jv=u 2/v - u 2 If we now define I(x) = I,(x ) = I,(u), we get finally 

2 I (a dv I,Cu)=j J,(v) . (6; 
Jv=u /v - u 

Equati.on (6) is now in the form for which we were looking. This is an 
Abel integral equation. 

II. THE SOLUTION OF THE PROBLEM AND SOME SAMPLE CASES 
The solution of Eq. (6) is well known to be 

ra2 ' 
J , ( u ) = - M *' C v ) d v . (7) 1 f It Cv)d 

'v^u /v - u 
In terms of I and J we easily find that 

J ( r ) = _ 1 r* IJt)_dt , ( 8 ) 

L /^—2 
Jt=r t - r 

ifence we see that if I(x) is known experimentally, we are able to compute 
JCr). 

In the appendix the integrals in Eqs. (3) and (7) are worked 
out for a uniform beam and for a quadratic shaped beam profile. These 
two cases are not only instructive but they are also valuable as tests for 
the computer code which numerically does the integrals. Figures 3-6 
show I(v) and JCr) for the uniform beam and the quadratic beam respec
tively. The code is working accurately. This code is of some interest 
numerically since there is a weak singularity in the integrand at the 
lower limit, v = u. This however causes no major difficulties and is 
handled in an obvious manner. 



-5-

III. COMPUTATION OF THE BETATRON SPREAD AND THE DISTRIBUTION FUNCTION 

From the computed value of JCr) we can calulate two other' quanti

ties of theoretical importance: the profile of betatron frequency and 

the distribution function f(u0). There are two limiting cases for which 
p 

we will consider the betatron frequency. One is associated with circular 

orbits and the other with straight line orbits. The B. field consistent 

with J(r) is given by 

Be(r) = ̂ i | sJXs) ds. (9) 

The betatron frequency for circular orbit of radius r associated with 

this field is well known to be 

$ irm r 

The calculation of the betatron frequency for a straight line 

orbit through the center of the beam is not as easy for general B„(r). 

Vfe must numerically integrate the equation of motion of a particle which 

at t = 0 has x = r and dx/dt = 0. This equation is 

x = - H B(x). (11) 

The solution of Bq. (11), x(t), is always periodic with period called T. 

The required frequency i s w. = 2TI/T. 

Since u . = w0 (r) i s a monotone function for a iionhollow beam, the 
p P 

inversion r = r(w.) can always be performed. Hence f(wQ) can be calculi P 

lated from the relation 
dr(u>„) 

f(wB> ~ JCrCwg)] r(a)g) — g ^ — . (12) 

i-
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2 Figure V shows tx>„ as a function of r for a quadratic beam (J ~ 1 - r ). p 
Figure 8 shows the distribution function f(u R). 
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APPENDIX 
THE SOLUTION OF ABEL'S EQUATION FOR THE UNIFORM BEAM AND THE QUAD*-
SHAPEn BEAM PkjflLE. 

Let us consider a uniform beam of radius 1. Hence 

J(r) = 1 r < 1, 
J(r) = 0 r > 1. 

From F/;. (3) we see this corresponds to 

I(x> = 1 _ x J dy = 1 _ x 

\ - x 2 . CA-1) 

From the definition of I, (v) we get 
I,Cv) = »T^~v . (A-2) 

Hence, 

i', (v) = ~± . 
2/ 1 - v 

We will now show that chrough Eq. (7) this I,(v) leads to the correct 
J,(u) or J(r). By Eq. (7) 

j,(u) = - | f 1 ' d v CA-;O 
J v=u 2/1 - v Ar - u 

We will change variables to do this integral. Letting t = v - u 
rl-u 
=0 A - (t 4~u)/t~ 

I.Cu>» ± £ d t (A-3) 



vl 

Let x = t / ( l - u ) . Hence 

(1 - u) dx J . C u ^ i j 1 

x-0 / ( l - u) - x U - u) i/xll - u) 

I f 1 dx " 
* Jx=0 /r^~x y^T 

(A-lj) 

Hence we see t h a t J , ( u ) i s cons tan t as r equ i r ed . By using the t r i g o n o -
2 me t r i c s u b s t i t u t i o n x - s i n „ we f ind J , ( u ) - 1. A l t e r n a t i v e l y , we could 

3 
look up the i n t e g r a l i n Eq. (4) i n a t a b l e • 

we next cons ide r a beam of r ad iu s 1 wi th a quad ra t i c p r o f i l e 
2 

J ( r ) = 1 - r . Again from Eq. (3) we ge t 

rfcJ 

Hence 

and 

• 5 ri'.L-X 
I ( x ) = | a " x J ( / x 2 + y 2 ) dy = J [ 1 - ( x 2 + y 2 ) ] dy 

, 2 3 . . . r 1 x 2 ,.. 2 . 3 / 2 , 
=(y - x y - y / 3 ) I _ c = j (1 - x > ' 

I ( x ) = | ( i - x 2 ) 3 / 2 ' (A-5) 

I , ( v ) = | (1 - v ) 3 / 2 ' 

I , ( v ) = - / i - v. (A-6) 

We w i l l now do the in tegra l , i n Eq. (V) t o recover JCr) from the given 

I , ( v ) : 

T i •, <• i / I - v~dv Jf (u) = - - I 
/ v - u M 1 -

TT I 
' V = U 

Let t = v - u. Hence 
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2 ( 1 - u 

w Jt=o 
/ l - ( t + u) dt 

Let x - t / ( l - u).' Hence 

J , < u ) = ± / ( I - u) - (1 - u) x CI - u) dx 
x=0 /a - u) »£" 

J , (u ) = (1 -If 
; x= 

• 1 - x dx 

x=o fir 
.2 Using the subst i tut ion x = s in 0 we get 

J , ( u ) = 1 - u or J ( r ) = 1 - r 2 

as reciuired. 

(A-7) 

(A-8) 
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2 / 1 _ u 

J,(u) = f 
7 1 J+-=n 

/ l - ( t + uj d t 
t=0 / T 

Let x = t / ( l - u)j Hence 

J , (u) = - f 1 A 1 - "> - <i- - u> * (1 - u) dx 
11 'x-0 / I T - U i vS" 

-If J,Cu)= ( l - u ) i - | £ Z E j * ( A . 
x=0 /x"~ 

. 2 

Using the substi tution x = sin 6 we get 

J , (u) = 1 - u or J ( r ) - 1 - r 2 (A-

as reauired. 
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