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ABSTRACT 

The liquid drop model of the nucleus has been explored in the last 
forty years in the study of nuclear fission and, more generally, nuclear 
deformation energy surfaces. This model assumes the nucleus to be an 
incompressible drop with charges uniformly distribute' throughout the 
volume. We have made a parallel study of a chared conducting drop with 
charges residing on the surface of the drop, inis is the case of rain 
drops in an electrified cloud. Stable and unstable shapes of equilibrium 
has been calculated and their properties examined. Fundamental differences 
in the stability properties of the two types of drops are brought out and 
show up most significantly in their staoility against reflection asymmetry. 
Certain similarities are also found, particularly in the ellipsoidal 
deformation of the drops, as well as their division into equal droplets. 
Both these similarities and differences are described and discussed. 

- N O T I C E -
This rep o n was prepared a* an account of work 
sponsored by the Uruled States Government. Neither 
the United States nor the Uniitfd Stales Alomic Energy 
Commission, nor any of their employees, nor any of 
Iheii contractors, subcontractors, or their employees, 
makes any warranty, endless «w implied, or assumes any 
legal liability or rcipunsibilily for the accuracy, com­
pleteness or usefulness of any information, apparatus, 
product or process disclosed, or represents that if* use 
would not infringe privately owned rights. 

MASTE 
J 



-1- LBL-2970 

SIMILARITIES AND DIFFERENCES BETWEEN VOLUME-CHARGED (NUCLEAR) DROPS 

AMD CHARGED CONDUCTING (RAIN) DROPS 

C. F. Tsang 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 
August 1974 

INTRODUCTION . 

The' liquid drop model of nuclear fission was suggested (1) thirty five 
years ago. The model has been very useful for the understanding of nuclesr 
fission data and has recently been found to be an important element in what 
has come to be known in nuclear physics as the Strutinsky method by which the 
predictions on the masses and stability of the yet-undiscovered superheavy 
nuclei are made (2). 

There are two aspects of the model. The more difficult and less certain 
is the dynamical study of the liquid drop model. This involves assumptions 
regarding the fluid flow patterns, the viscosity and other properties to be 
assumed for the nucleus. Furthermore, the liquid drop may undertake a great 
variety of shapes, making the calculation very involved. In the last ten 
years, various attempts (3) have been made to tackle this problem and I 
believe that these have only been partially successful and there is still the 
basic question whether a nucleus is (dynamically) like a liquid drop at all. 
On the other hand, the other aspect of the model, the statics, has been fairly 
well established (4) and has demonstrated its value in nuclear fission in 
many ways. One studies the balancing of only two forces present in the 
deformable liquid drop, the Coulomb and surface tension forces. A recent 
work (5) includes also the centrifugal "force." No other properties of the 
liquid drop such as short range correlations and flow patterns need to be 
assumed in such a study. Indeed, it can be demonstrated (6) that the theory 
represents a more general system in which a liquid drop is a special example. 
This is what we call the leptodormous system, that is, a system with a thin 
surface region and a volume region of uniform density. In all these studies, 
the objective is to find the shapes of equilibrium of the system and their 
energies. These can bo either a stable equilibrium point (a minimum) or an 
unstable equilibrium point (a saddle or a mountain top) in a multi-dimensional 
space with co-ordinates representing various deformation parameters. By look­
ing at these equilibrium points a lot can be said about the system: whether 
the system tends to remain a sphere or undergo fission, whether the system 
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prefers to divide into two, three, or four droplets, and, with some 
generalization of the model, whether two droplets can coalesce into one. 

With all that has been developed in the nuclear fission problem, it 
would be interesting to apply it to actual macroscopic rain drops which are 
electrically conducting and consider their shapes of equilibrium. This has 
the great advantage over the nuclear case that direct measurements in 
the laboratory on a drop can be made. Besides studying the rain drops on 
its own merit, a parallel theoretical and experimental study of the conducting 
drop may also throw light on the nuclear drop. Of course properties of the 
charged conducting drop is not a new area 'of study. In 1882, Lord Rayleigh (7) 
published a paper on the stability of a charged conducting drop under small 
oscillations. Other studies are made more recently (8). However, in the 
present work''' we shall make a close comparative study of the nuclear drop and 
the rain d-op using methods developed in the liquid drop theory of nuclear 
fission. 

In the next section, some basic concepts of nuclear fission theory (9) 
will be described, before discussing, in the following section, simple 
similarities and differences between volume-charged and charged conducting 
drops. After that a method will be described to calculate the symmetric 
equilibrium shapes of the conducting drop and the results will be compared 
to those of a volume charged drop. 

SOME BASIC CONCEPTS IN FISSION THEORY 

For an incompressible volume charged drop, two forces are acting: a 
Coulomb force which tends to break up the drop and a surface tension which 
tends to keep it together. A quantity of importance is then the ratio of the 
Coulomb energy and the surface energy. One may define what is called the 
fissility parameter, x, as 

E ( o ) 2 2 
x = !s « &* « fi! . 

2E ( o ) R 2 

s 
where E c and E s are Coulomb and surface energies of a sphere with charge 
Q, radius R, and volume V. For x < 1, the spherical drop is stable with 
respect to deformations and for x > 1, it turns out that the forces are such 
that the drop is in unstable equilibrium. The energy excess; of a deformed 
drop over the original spherical drop may be written as 

This work was done in collaboration with W. J. Swiatecki. 
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E ( 0 ) + E - E < 0 ) = E ( 0 ) (B - 1) + E ( 0 ) (B - 1) 

. ( 0 ,{(B_ - 1) + 2x (B - 1)} 

where E s and E c are the surface and Coulomb energies of the drop and the super­
script (o) implies that the quantity is evaluated for a spheres also B s = 
E s/E s'°' and B c = Ec/Ec • I* C is the energy excess in units of E s'°', then 

C = B - 1 + 2x(B - 1). (1) 
s c 

In Pig. 1, we sketch the behavior of f, as a function of deformation 
for a particular value of x < 1. The configuration at zero deformation, i.e., 
a sphere, is a potential energy minimum. The energy is increased as one 
deforms the drop until a point is reached where the disruptive Coulomb force 
is just balanced by the stabilizing surface tension. This point it called a 
saddle point. It is unstable with respect to the deformation leading to 
fission (but is stable with respect to other deformations). Obviously the 
curve will be different for different values of charge on the drop, i.e., 
different values of x {see Fig. 2). Thus for x > 1, the sphere is at a 
potential maximum. 

Let E denote the difference in energy between the initial sphere and 
the final fragments at infinity in units of E * 0 , . For division into two 
equal spheres which is illustrated in Figure 3, l R = 0 at x = 0.351. For 
x > 0.351, CR < 0, and for x < 0.351, £R > 0. In the general case of division 
into n equal spheres, a general formula (4) msy be written for £R. The charge 
on each sphere is Q/n and its radius is (S?/n) *•/3 = R n ' , so that the 
Coulomb energy of the n spheres is n multiplied by the Coulomb energy of each sphere: 

E = n i (P»2 

5 R n " 1 / 3 

_ i a 2

n - 2 / 3 

5 R 

thus 
B = n c 

•2/3 
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Total surface energy of the n sphere is 

thus 

E = y n. 4rr(R n " 1 / 3 ) 2 = 4TrR 2Yn 1 / 3 

1/3 
B s " " 

Hence the energy excess over the sphere in units of E is 

• 5 R - ( n 1 / 3 - 1) + 2x(n" 2 / 3 - 1) . (2) 

For each value of n, this equation gives a straight line relation between £ 
and x. By studying the system of straight lines for various values of n, 
the following can be deduced. For x < 0.35, the sphere has the lowest energy. 
For 0.35 < x < 0.61, the division into two spheres gives the lowest energy. For 
0.61 < x < 0.87, the division into three equal spheres gives the lowest energy. 
Finally, for C.87 < x < 1.12, the division into four equal spheres gives the 
lowest energy. 

In Fig. 3, we present the shapes of equilibrium of a volume charged 
drop as a function of the x values (10), so that we can compare them with the 
results we are going to obtain for a surface charged drop. The abscissa gives 
the fissility parameter x from 0 to 1. The ordinate gives R^IN/ R a n <^ RMAX/ R a s 

a measure of the shape, where for an asymmetric shape radius R M T N * S t n e 

minimum radius of the neck of the drop and the two maximum radii R^M are the 
distances from the center of the neck (at its minimum radius) to the two 
ends of the drop. For a symmetric shape the two maxium radii are equal. 

Along P-M^JJ/R = 1 is the sphere which is at a potential energy minimum 
for all x < 1. The rest of the curves represent a family of reflection 
symmetric equilibrium shapes and a family of reflection asymmetric equili­
brium shapes. The two families cross each other at x = 0 396. Their shapes 
are schematically indicated in the figure. A point to notice is that along 
the symmetric family there is a fairly rapid change -n the trend of Rjjftx/'Ro 
at x values around 0.7. It is found below that for a conducting drop a 
similar change occurs at a larger value of x. The notation (1) and (2) in 
the figure indicates whether the equilibrium shape is at (respectively) « 
saddle (unstable in only one direction) or a mountain top (unstable in two 
different directions). 

COMPARISON OF A VOLUME CHARGED DROP AND A CHARGED CONDUCTING DROP 

It is straightforward to apply the methods described in the last section 
to a charged conducting drop. Thus the fissility parameter x can be defined 
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similarly as the ratio of the Coulomb energy to twice the surface energy. 
The equation (1) for the energy excess £ over a spherical drop 
will be the same as for the volume charged drop case. Of course, the Coulomb 
energies will now be evaluated on the assumption that the drop is conducting. 

Three simple similarities may be pointed out. 

(a) For x = 0, there is no charge on the drop so that the equilibrium 
shapes are the same whether the drop is conducting or not. Also, it 
turns out nontrivially that as in the case of a volume charged drop (11), x = 1 
represents the transition point where the spherical drop is stable for x < 1 
'and is unstable for x > 1. 

(b) A second similarity is apparent if we look at the energy difference 
£ from the initial to the final state when the drop is divided into equal 
spheres. We have described this in detail for a volume charged drop in 
reference to Eq. (2). When we make a similar study for a conducting drop, we 
get a completely identical equation and the corresponding discussions are 
applicable. The reason is that only spherical shapes are involved in both the 
initial and final states, and the Coulomb energy of a volume charged sphere 
(which is r Q 2/R) and that of a conducting sphere (which is -j Q 2/R) differ by 
only a numerical factor, 6/5, that is the same for both states. -- - -
B c are the same for both cases and the same energy Eq. (2) holds good. 

(c) It also turns out that the Coulomb energy of a volume charged 
ellipsoid and that of a conducting ellipsoid differ also by the same 
numerical, factor. Thus, the Coulomb energy of a conducting ellipsoid is 
given by (12) , 

/ I (a2 + A) (b2 + A) (c2 + A) 

so that _1 

Bc = 1 R ' |(a2 + A) (b2 + A) (c2 + A)l dA J j(a2 + A) (b2 + A) (c2 + A)j 

where a, b, and c are the lengths of the axes of an ellipsoid. This integral 
may be carried out analytically in the case of a spheriod where two of the 
axes are equal. B for a volume charged case is given (13) by exactly the 
same formula. Hence, if we make the drop to take on only ellipsoidal shapes, 
then any conclusions about the statics of the volume charged drop will be 
true for the conducting drop. 
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The first difference between the volume charged drop and a conducting 
drop can be found if we consider the division of the drop into two unequal 
spheres at an infinite distance apart, one with-volume 6v and the other with 
volume (1 - S)v. In Fig. 4 is plotted the energy change £ R between the initial 
and final states (14) as a function of 3 for various values of the fissility 
parameter x. For S = 0 and 0 = 1 we get a sphere with volume V which is just 
the initial state. For 3 = 0.5, we get two equal spheres. The energy change 
is zero at x = 0.35 for 3 = 0.5, as was pointed out above in connection with 
Fig. 2. For a conducting drop Fig. 5 is found (14). We note that here again 
the energy is zero at x - 0.35 for 3 = 0.5. However, except for the points 
at 3 = 0, 0.5, and 1.0 the curves in the two figures are very different. A 
potential minimum for a volume charged drop occurs at 3 = 0.5 for x > 0.2, 
but a potential maximum for a conducting drop occurs at 6 = 0.5 for all x 
values less than one. In the latter case minima occur at points where the 
fragments are unequal. 

The major reason for the above difrorences is that the charge to mass 
ratio for a volume charged drop is a constant, but for a conducting drop it 
is not required to be a constant. This is also the underlying cause for the 
second difference that appears, when we try to find the configuration with the 
absolute lowest energy for a drop with a given fissility parameter x. For a volume 
charged drop, this configuration is n equal droplets at infinity (4) and the 
number n depends on the x values of the drop [Eq. (2) ]. One would at first 
expect that the same conclusion might hold for a conducting drop. But, as 
we shall show, for a conducting drop, the configuration at the lowest energy 
is one with all the charges Q on the drop taken off and distributed amonq 
many infinitesimal droplets at infinity. The total energy of the droplets 
may be made to vanish and only the surface energy of the original drop is 
left. The possibility of such a configuration is shown as follows. Let i 
of the original drop of radius R be taken off carrying all the charge Q. 
This is then divided into m equal spheres, each with a charge Q/m. Thus for 
each sphere the sum of the Coulomb and surface energy is 

Hence the total energy of the small spheres is m times this quantity: 

2 
4TO2Y m(nm)" 2 / 3 + | | (nm) 1 / 3 m" 2. m 

. „2 1/3 - 2 / 3 ^ 1 Q 2 ] ' 3 - 2 / 3 
= 4irR y m n ' + 2 R 1 m 
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Now let us choose m <* n . The energy of the droplets is now equal to 

47TR y n 
. S 2 I - 2 s 

which is zero when n goes to infinity provided 

+2 > . > + i 

and the proposed configuration is obtained. In other words., we have made 
the Coulomb energy of the given drop zero by dispersing the charge onto an 
infinite number of infinitesimal droplets without increasing the surface 
energy by a finite amount. 

PARAMETERIZATION OF A CHARGED CONDUCTING DROP 

In this part of the work we shall try to determine the equilibrium 
shapes of a charged conducting drop to be compared with those for a volume-
charged drop (Fig. 3). 

The calculation of the Coulomb energy of a conducting drop with an 
arbitrary shape is in general a difficult problem. However, it can be side­
stepped by requiring the drop to assume a prescribed family of shapes tt 
in fact, making the calculation c?f its Coulomb energy is a trivj.al matter. It 
is well-known from the theory of electrostatics that the electric potential 
due to a system of charges (total charge Q) at any point outside a given 
equipotential, is the same as that due to a charged conductor with the 
shape of this equipotential having a charge Q. Hence, if we require the 
drop to assume the shape of an equipotential of potential a, its Coulomb 
energy is just i ctQ. If R is the radius of a sphere that has the same 
volume as the drop and possesses the same amount of charge, its Coulomb 
energy is A Q V R . Hence we get 

2 

B„ = OR/Q 

The surface energy relative to that of the sphere, B s, can simply be found 
by calculating its area numerically. Hence for a given fissility x the 

tt 
This is a common practiced procedure in the liquid drop model of fission. 

The true equilibrium points can be determined by looking at the convergence as 
one enlarges the family of shapes. An independent condition on equilibrium 
may also be used as illustrated below. 
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energy of the drop is calculated [Eq. 1], and equilibrium shapes, whose 
energies are stationary, are then determined. 

For illustration, the shapes of equipotentials that enclose two 
equal points charges are shown in Fig. 6, where the volumes of the shapes 
have been normalized to the same value. We shall refer to these shapes as 
the symmetric N = 2 family, since they are generated with two point charges 
and are reflection symmetric. This figure displays a very restricted series 
of shapes. However, it is easy to increase the possible shapes by generating 
equipotentials of a larger number of point charges, which may be placed on 
a straight line so that the shapes are axially symmetric. The reflection 
symmetric N = 3 family is generated with two equal charges situated at equal 
distances on opposite sides of a third point charge. The shapes are shown 
in Fig. 7. They include the symmetric N = 2 family. Similarily, we can go 
on to N = 4, 5, family of shapes. 

In general, the N-family of axially symmetric shapes may be specified 
by giving the magnitudes of the N point charges and their positions as well 
as the value of the potential on the equipotential we are looking at. These 
are 2N + 1 numbers. However, not all these numbers are required to specify a 
shape. Three numbers may be arbitrary: (1) The center of mass of all the 
point charges may bo at any point in space; (2) The total charge may be fixed 
beforehand; (3) We can also present a scale by which the distances between 
the point charges are measured. Thus, we are left with 2N - 2 parameters. 
(For reflection symmetric shapes, the distribution of point charges and their 
magnitudes arc reflection Liyiwrtetric v:ith respect to the origin and we have 
only N - 1 parameters). 

However, the shapes generated even by a large number of point charges 
are not general enough to represent an arbitrary shape. Thus, an oblate 
shape cannot be found in our scheme. This raises the question whether the 
equilibrium shapes we have determined are indeed true equilibrium configura­
tions when the drop is free to take on any arbritrary shape. To answer this 
question a criterion can be developed to test a given shape for equilirbium. 
(A similar criterion exists for a volume charged drop (11).) 

If the surface element dS is displaced normally by a small smount, 6n, 
without affecting its local charge, C, the Coulomb energy change is (12) 

SEC = - I - a $ 6n ds 

where § is the electric field at ds. The change in surface energy is 

SB = y I K 5n as 
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where Y is the surface tension coefficient, and K is the curvature at dS. 
The total energy change is 

&E = 5E + 6E c s 
Subtracting 6ndS timet, a Lagrange multiplier k to ensure conservation of 
volume and equating the integrand to zero (for equilibrium shapes 6 E = 0 
for a'.y 6n) gives 

By Gauss' Theorem, 

k «= Y < - £ < J £ 

"i* 
<?2 

= Y K . (< g°2 e2 \ 
"° VK

0

 m^0 e 2 ) 
where K is the curvature on a sphere with the same volume as the drop and 

She electric field on the sphere. 

o E '"' i <?, 
2E < 0 > ^0 8 1 T 

Thus 

k = YK k-ti 
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Thus for an equilibrium shape, any point on its surface shou'd satisfy 
A = 0, where A is given by 

< il 
o £ 

As a measure of the deviation from equilibrium we can define a root-mean-
square value of A over the surface of the drop: 

If RMS « 1, the drop is close to equilibrium. If RMS > 1, the shape is 
far from equilibrium. This quantity can be used as a measure of how clo,?̂  
the shapes we obtain are :o the true equilibrium, 

SYMMETRIC EQUILIBRIUM SHAPES OF A CHARGED CONDUCTING DROP 

Instead of going into mathematical details (6) we shall present 
here the results based on a family of shapes generated by two, three up 
to six point charges shown in Fig. 8. Th*: figure should be compared to 
Fig. 3 for a volume charged drop. The series of curves with different N 
values are just successive orders of approximation of true equilibrium 
shapes. One hopes that for a high enough order of approximationf the results 
would £e very close to the true ones, so that an even higher order will change 
the results very little. Typically, for successive orders the RMS values 
improve by a factor of two. For N - 6 parameterization, RMS ^ 0.01 for x 
close to 1 and x < 0.8, but RMS ̂  0.1 for x ̂  0.9. This indicates that for 
x < 0.8 and x ̂  1.0, the shapes we obtain are close to true equilibrium 
shapes/ but i"or x ^ 0.9, there are more uncertainties By studying the 
change of RMS values at x ̂  0.9 for successive approximations, the RMS 
values are found to decrease very slowly, much less than factors of two. This 
indicates that our model of a conducting drop using the equipotential sur­
faces of point charges is probably not good enough in this region. A more 
general or more appropriate family of shapes appears to be in demand here. 
Hence, one chould regard tre. calculated results in this region with great 
reservations. 

Let us take the N = A curve at its face value and examine its main 
features. As the value cf x goes from 1 toward small x values, the 
equilibrium shape elongates from a sphere, i.e., ^May/1* increases with 
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decreasing x in the region near x = 1. This is in constrast to cases of 
small x values (x £ 0.7) where Rniftx/R * s s l o w l v decreasir.^ with decreasing 
values of x. The shapes in the latter case are long and look like a dumb­
bell. Similar to the volume charged drop case there exists a region where 
there is a rapid change of shape, but it c-;curs at x * 0.9 in the present 
case. Actually the curve for R M A X'' R even turns back at s = 0.887 and again 
at x = 0.906. However, it is in exactly this region that our results become 
unreliable arid the double turn might be spurious (see R°:s. 15 and 4 for a 
similar uncertainty which once existed in the volume charged case). 

The nature of these equilibrium shapes may be found by looking at 
the signs of the second derivatives of their energy with respect to all the 
parameters. The following results are found when the shapes are restricted 
to only the degrees of freedom that allow reflection symmetric shapes. For 
1 > x > 0.887 the energy of the drop is a maximum in one degree of freedom, 
but a minimum in the other symmetric degrees of freedom. Between the bends, 
for 0.887 < x < 0.906, the energy is a minimum. For values of x smaller 
than 0.906, it is again a maximum in one degree of freedom. With respect 
to the degrees of freedom that describe reflection asymmetric deformation, the 
energy of the drop is a minimum from x = 1 to x = 0.892. From X = 0.892 to 
x = 0.68, it is a maximum in one degree of freedom. Below x - 0.68 it appears 
to be a maximum in two degrees of freedom. Hence, the equilibrium point is 
a saddle from x = 1 to x = 0.892. From x = 0.892 to x = 0.887 it is a 
mountain top (unstable i'.i more than one direction). Between the bends at 
x = 0.807 and x = 0.90F it is again a saddle. For x. smaller than 0.906, it 
turns out to be a Liountain top also, As discussed before the shapes 
close to x = 1 is fairly well determined, but at the bends the results are 
not reliable. 

SUMMARY AND CONCLUSIONS 

The static properties of a charged conducting drop are compared 
with '..hose of a volume charged drop. Similarities as well as some of the 
differences are discussed. The symmetric equilibrium shapes of a conducting 
drop are determined with reasonable confidence for values of the fissility 
parameter x not in the neighborhood of 0.9. For x close to 0.9 a more 
general or more appropriate shape parameterisation than employed in this 
work has to be found so that equilibrium shapes at these values of x can be 
determined with greater reliability. This is important because it is in this 
region that we find possibilities of interesting stability features, such as 
the occurrence of a bend in the family of equilibrium shapes and of points at 
which there is a cnange in the number of degrees of freedom with respect to 
which the shape has a maximum energy. 

It is interesting to note that even some ninety years after Lord 
Bayleigh's study of a charged conducting drop, the whole problem is still a 
very open subject. The present calculations have been able to determine the 
saddle points of a charged conducting drop for values of x from 0.892 to 1 
where they are reflection symmetric. But for the region up to 0.892, one is 
still very ignorant of the saddle point shapes and energies of a charged 
conducting drop. 
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FIGURE CAPTIONS 

Fig. 1. Energy excess of a volume-charged liquid drop as a function of 
deformation. 

Fig. 2. Energy excess of a volume-charged liquid drop deformation for 
different vaJues of the fissility parameter x. 

Fig. 3. The maximum and minimum radii of saddle point shapes of a volume-
charged drop as a function of the fissility parameter x. The results 
tor the symmetrical saddle point shapes are given by the solid curves, 
and the results for the asymmetric saddle point shapes by the dashed 
curves. (Data taken from Ref. 10). 

Fig. 4. The energy change in the division of a volume-charged drop into 
two spheres as a function of the fractional volume of one of the 
spheres for various values of x. 

Fig. 5. Same as Fig. 4 for the case of a charged conducting drop. 

Fig. 6. Shapes in the symmetry N = 2 family of equipotential surfaces. 

Fig. 7. Shapes in the symmetry N = 3 family of equipotential surfaces. 

Fig. 8. The maximum and minimum radii of the symmetric saddle point shapes 
of a charged conducting drop as a function of the fissility parameter x. 
Different curves correspond to the restriction to different families 
of shapes indicated by the values of N. 
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