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EARLY TIME FIREBALL GROWTH FROM
A NUCLEAR EXPLOSION

Abstract

The early motion of an x-ray fireball
from a nuclear detonation in the atmos-
phere is studied using the equations of
radiation transport coupled to the equa-
tions of hydrodynamics, The solutions

are compared with observations of fire-

ball motion in a free homogeneous atmos-
phere and near the ground surface,
Comparison permits us to determine the
amount of energy coupled to the ground
by means of x-ray deposition from a

surface shot,

1. Introduction

One of the earliest observable effects
after the detonation of a nuclear explosive
is the rapid growth of a radiation front
through the surrounding atmosphere.
For the first 20 to 30 us this growth in-
volves negligible hydrodynamic motion,
The character of the radiation front is
that of a supercritical or isothermal
shock wave, The fireball continues tc
expand until it reaches the critical tem~
perature, which for air is about 25 eV,

During this early period one can think
of the fireball as an isothermal sphere
of x rays with a temperature at its equi-
librium value and cooling as the sphere
expands, Since the cool alr surrounding
the fireball is opague to the x rays, the
edge of the fireball advances at a speed
determined by its temperature by means
of a diffusion process,

The main perturbation on this model
for times less than 30 us from detonation
is the transfer of energy from the sphere of
radiation to the air .ngulfed by the fireball,

It is reasonable to expect that at suf-
ficlently early times the temperature of
the air is not in equillbrium with the ra-
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diation and this effect will be more no-
ticeable at the radiation front than at the
center of the firebzll. Thus we would
expect to see a gradient in the air tem-
perature increasing from the edge of
the fireball to the center,

In the case of a device detonated on
the surface, the above picture can be
modified in the first cut by giving the
fireball an energy density at a given
radius of twice that of a free air burst
at the same radius, This assumes that
the surface acts as a perfect reflector
of the radiation, This effectively doubles
the radiant yield of the device as far as
the motion of the fireball is concerned.

In the next approximation, we add to the
energy loss mechanism in the free air
burst the radiation absorbed by the ground.
Thus, by comparing the early motion of

a fireball in a uniform atmosphere ‘with
the motion of a fireball centered on the
Earth's surface, we should be able to
detect any significant absorption of x-ray
energy by the surface.

All this suggests a model of an im~
portant type of energy coupling to the



surface from a nuclear explosive,
Namely, energy is transferred through
an area defined by the intersection of the
fireball with the Earth's surface. This
ground surface area is heated by the
radiation from the fireball, which is at

a uniform but time-dependent temperature,

There are other mechanisms for
transferring energy into the Earth's
surface including neutron capture, device
debris impact and gamma-ray deposition,

Figure 1 shows the available data on
early time fireball growth. Fireball
radius as a function of time out to ahout
20 us is given for four shots. Two of the
shots, MOHAWX and HOOD, can be con-
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Fig. 1. Observations of fireball growth
for various surface shots and
free air shots.
2.

sidered free air shots for our purposes.
MOHAWK was placed on a tower and
HOOD in a balloon. ZUN! was a surface
shot over land and APACHE was placed
on a barge, The data are from streak
camera records taken by Woodward of
LLL.

The radius is scaled in such a way as
to make the energy density in each fire-
ball the same assuming the ground acts
as a perfect reflector, The air bursts
are scaled to 100 kt while the surface
bursts are scaled to 50 kt,

The important features of these data
are that for bnth air bursts the fireball

0.185

radius grows as t The surface

shots grow with a much weaker time
dependence. Qver soil t0.122

apply and if anything the shot over water

seems to

has an even weaker rate of expansion,

We would like to suggest that the dif-
ferent laws of expansion of fireballs in
a homogeneous atmosphere and along the
Earth's surface can be accounted for by
the deposition of x-ray energy into the
ground or water, It is hoped that a
simple theoretical description of early
time fireball growth will permit a quan-
titative evaluation of the rate of enevrgy
transfer to the ground.

Self-Similar Solutions of Hydrodynamic and Radiative

Transfer Equations

SIMILARITY CONDITIONS IN
REDUCED FORM

We shall proceed in a manner suggested
by Elliott in treating a spherically expand-

ing Marshak-type radiation Iront.1

1. L. A, Elliott,

Proc., Roy. Soc, London
258 A, 827 (15600,
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For spherical symmetry, the equations
we would like to solve are

(rzu) =0

st

20,8 8
+‘-‘ar“rz ET

{continuity), (1}
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(conservation of mumentum),  (2)
8E | OB ot gLy, o 81
ot "9 TPE (p) + pugy (p)
1 8 2
+—5 = (Fr }
pr
=W (energy balaace), {3)
F= -%5% (aT)
(radiative transfer), ({4)
and

E=EM+ER; P =Py *PR- (5)
Here W represents an arbitrary energy

sink and F is the radiation flux, If T is

the local equilibrium radiation tempera-
ture, then

PEy = at? = 3pR . 6}

We define a specific heat ratio for the
pystem as

p
pE =?M. (7)

M
Equations (1) through (4) can be re=

duced to four ordinary differential equa-
tions in the dimensionless independent
variable x,

_r
X=%,

by the folle ving substitutions:

ufr, t) = Rux},
plr, t) = pOB(x)
. 28—
pir, t) = poR pin) ,
{8)
Etr, t) = B2Etx)

Fir,t) = ph°Ft0,

w = B3R 'Ww) .
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Here R(t) is some characteristic length
that depends only upon time, R is
required to satisfy the following differ-
ential equation

& = A°R7C

and P refers to the ambient density. out-

9)

side the shock,

The substitution of Eqs. (8) and (9)
into Eqgs, (1) through (4) yield the follow-
ing reduced cquations:

@& +(%“ +'ﬁ-)=o. a0
Waex) - Gu - p‘, "
-aE +(u-xE +E‘. (ZE -
? X
11 d 2=
+5:2-ﬁ x“F) =W, (3"
and
g = - A 'F. (an

The primes refer to derivative wi*h re-
spect to x, Equation (4') is for constant
A provided we restrict A, the radjation

mean free path, as follows:

1-3
oA = ARR = AAR ¢

{10
In our problem this restriction means
that X is cnnstant over the whole sphere
and dependent upon the size or the tem-~
perature of the sphere,
From Eqs, (6}, (8} and (9), we find

l/a
3p
A Fo ,2- -4/
R ~( 7 A pR) T .
which together with Eq, (10) gives
\ g 5o )(I/a)(l-a/z)
ch = AR A'pg

x T/ al-af2y gy



Equations (1) through (7) give us eight
equations in the nine ilndependent varia-
-b-.lE:E % u F, E ?M’ ER' P EM‘ and
Pge We have not included in our catalogue
of equations an equation of state in terms
of temperature,

If we are to assume that the local
material iemperature TM and the radia-
tion temperature were equal, an equation
of state of the type

Py = Py o Typd Ty = T,

would give us an additionai relationship
between p,; and PRe Unfortunately, at
very early stages in the growth of the
fireball we may find that the radiation
and matter are far from being in equi-
librium,

We feel it is best, thevefore, to make
the assumption that EM and ER are con-
nected by

Ep;(r, 1) = olx) ER(I‘. t). (12)

The practical advantage to this formula-
tion of the problem is that the radiatlon
and matter need not be in equilibrium,
Equation {12) does not provide the neces-
sary additional condition since it intro-
duces the new variable é(x).

Three necessary boundary conditions
that must be satistied for the above dif~
ferentlal equations are provided by the

Hugonlot analogues at the position r = R:
o R-u,) = poft, 13)
P, = Py = pgRuy, (14)

and
E

Py . 2
1 +-p—l +1f2(R~- uy)

P
=E, +-2+1/2 R, 185
0 Po

4=

The subscripts 0 and 1 refer to ambient
and shock conditions, respectively, We
have assumed stationary ambient condi-
tions in the fluid with no radiation flux,
These equations can be expressed in
reduced form,

ENERGY BUDGET

The total amount of energy inside the
fireball at any time is the sum of the
kinetic and internai erergies including
the radiation energy.

R
Ep = 4nj (€ + 172 ud)prar (16)
0

= anp R°R%B, a7
where
fl
(18)

B =J (E + I/ZEz)szdx = const.
0

It is clear from Eqgs, (9) and (17) that if
ET is a constant, ihat is, if the total
energy is conserved inside our disturb-~
ance at radius R{t), then

a=3, (19)
Solving Eq. (8),
_2_
an at2
_ a - 2
R - [A(§+1)(t to) *+ Ry (20)
0.4 .
Thus, R behaves like t in a self-

similar disturbance in which the total
energy is conserved. Conversely, if the
energy in the disturbance is not constant,
R cannot behave iike t0‘4. An example of
a seif-similar disturbance in which the
total energy is constant is the Taylor
solution for a blast wave.



If the disturbance is associated with a
source or sink of energy, that is, if Wis
not identically egual to zero, then we can

write
R
4dE,
—L - 47vj Wprzdr 21)
dt
0
= 4ﬂp0f'{3R2‘C , 22)
where
1
C =f W;xzc}x = const, (23)

0
By dividing Ey, (22) by Eq, (17) and

integrating, we get

ﬁz - A2RC/B-:<1
with the result
a=3~-C/B, 249

Thus, we show that the motion of the
front of the disturbance is closely con-
nected with the rate at which energy is
added to or depleted from the wave,

This leads us to sume pretty definite
conclusions about what we are observing
in the streak camera records:

® The time dependence of fronts in
the interval 1 us <t< 20 us are of
the form of Eg. (20). This
asuggests that the motion is self-
similar to a good approximation.
We are not observing a disturbance
in which the energy is conserved,
The time dependences indicate that
C is negative and

-5.81; @ = 8,81 for air shots

(MOHAWK, HOOD)
C/B = 28)
~11,4; @ = 14,4 for surface

shots (ZUNI)

-5~

® Because of the very low mean free
path of the x~rays in coid air we
can assume that energy is not
escaping through the visible front,
Hence, the energy sink for the free
air shot must be caused by the ab-
sorption of radiant energy by the
engulfed air, The fact that C/B
is smaller for free air shots than
for surface shots indicates the
presence of an additional energy
sink, namely, the ground surface.
We must still examine the quastion of
whether or not the restriction of the tem-
perature dependence of A by Eqg. (il}is

a reasonable one, Substituting for @,

T'l'55 for air shots

AcC (26)

1,72

T for-surface shots .‘

Comparing this temperature depend-
ence with that of the Rosseland mean
free path in air at standard density as
shown in Fig, 2, we find acceptably
close agreement in the temperature
range 0.1 keV<T<1 keV for both the
free air and surface shots. This adds
strength to the assumption that the ob-

served wave is nearly self-similar,

MOTION OF THE RADIATION WAVE

Let us resirict our considerations to
the case where there is no hydrodynamic
motion, The state of affairs during the
first 20 to 30 us of fireball growth is
shown in machine caleulations with the
MEG code. Assumingu=0andp =1,
Eq. (3') hecomes

1 d n2= \_a= o=
X—Z-H(Ax pR,) 3xpg, SapR,

=W + '_ix(dppR' + ¢IER) + 3a¢BR 27)
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Fig. 2. Temporature dependence of
Rosseland mean free path in air
at standard density,

using Eqs. {6), (4'), and (12), All the
terms involving the internal energy of
the medium have been placed on the right
hand side of the eguation together with
the sink-source term W, Let

- 2.3\ 3¢ - _W
BRu +(; +7\x) pR\+—K Pr~x (28)

In cke absence of a specific functional
dependence of 4(x), we have simply put
all terms on the right side of Eq, (28) in
some generalized sink W, This equation
has a regular singular point at x = g, S0
that for reasonable behavior in W(x) we
can find a golution,

We must require of the solution that
the radiation flux at the origin vanish so
that

ER,(x) « A TFa) +0, asx 0. (29)

Returning to Eq, (3') and the condi~
tion p = 1, we find

x
XZF =f (_V)’V-x2 +a§x2 +E* xa) dx .
0
We can reasonably assume that W{x),
E(x) and E'{x) are regular at the origin.

Hence we can wrie

X
Tx) | 1z = 1 - 3
SR (W) + aE(0)) - 5 E'x"dx .

X x_.os xs_[

The last term vanishes and from Eqy, (29)

_ v -
P/~ ~SHed - 21 Foy (30)
x—~0
Returning to Eq, (2') we get, wit.: the
restrictions of no fluid motion,

p' =0, (31}
which hus the solution

p= [1 +3(y- 1 ¢(xﬁFR(x7 = pg = consi.
4 (32)

[n the neighborhood of the radiation
front (x=1), £q. (2") is not strictly ecor-
rect since terms involving the momentum
transfer of the radiation flux have not
been included in Eq. (2). This approxi-
ination should he extremely good near



the center of the fireball, Using Egs,
{12) and (32) in Eq. {30) we find

PR o fe -5 =

B L& 3y:4 o

X, 3A ©) + ¥-1 QPR(O)+7-IPO *
(33)

Now let us introduce an assumption
regarding the sink ferm W:

3,-1

w = R'R epgpx), (34)
where & is a coastant determining the
strength of the sink. Py is proportional to
T4. Thus we can allow the siuk to vary
as the local radiation energy density.
Physically this is reasonable.

Letting E = By in Eq. (18) and :aing

(34) in {23), we get

é
g . (35)

Thus, we determine the strength of the
absorption of radiation in the fireball from
the motion of the front.

The constant pp can be divided out of
the abovz equations by introducing the
vaiiable

Prx)
Ppix) = ;‘0 —. (26)

Equation (28} becomes
1 2. .3\- 9
P (2 +3)Fh *Rpp 0 @D

The inieresting thing about Eq. (37) is that
it is independent of o

So'ations of Eq, (37) are shown in
Fig. 3 for representative values of A. It
i5 clearly shown that for longer mean free
paths the fireball is more nearly isother-
mal. 'The values of A can be determined
from the data in Fig, 1 through the use »f
Eqgs. (19) and {20):

A=ch(%+1)-t—2. @38
R

Typical values of A range .rom 53 to 150
assuming A = 250 cm. Clearly such values
of A give a fireball that is very nearly

isothermal.
T ' T ' T i T ' T
1.0
\\ T
& 0.9 A=100 -
L A=10 Y
0.8/~ —
1 I L L 1. I;l J - -

Q 0.2 04 06 0.8 1.0

X

Reduced radiation pressure as a
function of x for different
radiation mean free paths.

Fig., 3.

3. Energy Deposit in the Ground

We can now compare the energy in a
r ‘sphericzl {ireball from a surface
shot with the energy in oo half the
spherical fireball of a free air burst aad

thereby calculate tte energy depositec in
the ground,

Modify:ng Eq. (22) for a he misphere,
the total energy in a r liation wave is



determined by the differential equation
3
2-F&, .
dEq = 2mp,C A°R™ ZTRT 4R

2 2-e

= 21rpOC A" R dR {39)

Integrating from RO where ET =Y,

/B R C/B) oy

E, = ¥+ 2np 8 %R

T
where we have used Eq. (24). The
difference batween E'l' as calculated for
the air burst and equivalent surface shot
should be the energy transferred into the
surface:

Eg - ZﬂpoB{Az(RC/B -R

a2 (RO g CEL

)

where the primes refer to quantities de-
rived from surface shots, Since ER is
independent of a, the value of B, which
depends only upon pp, should be the same
for both cases. As a result B appears as
a common factor in Eq. {41).

Using the data on ZUN1 and MOHAWK in
£gs. {41) and (20), we find that E; has the
time dependence shown in Fig, 4. The
peak value of the energy deposited in the
ground is reached at t about 1 us. Until
this time the fireball has been depositing

T—ps

Fraction of radiant yield depos~
ited in ground as a function of
time.

Fig. 4.

energy in the ground. After 1 us the
ground begins to reradiate into the fire-
ball. The ratio of the peak energy in the
ground to the energy at 10 us is 1.81.

The percentage of the radiant yield in
the ground can be calculated if we express
Y in the following way:

Y = 210, B 4% RSP @2)
We can factor out the term 21rpDB from
£q. 41 and only calculate a2 Ry C/B;

8.97 x 107 MOHAWK R in cm

0 10.6 X 107 ZUNI t in sh. (43)
Thus, at 19 us the percentage of radiant
yield deposited in the ground is between

18 and 21%.

4, Conclusion

In the preceding section we showed how
to calcilate the amount of energy deposited
in the ground caused by the surface burst
of = nuclear explosive by comparing the

~8-

motion of the fireball with the motion of a

fireball for afree air burst. The assump-~
tions behind the formulas just derived are

essentially:



e Equationsg (1) through {(4).

No hydrodynamic motion for times
less than 20 us,

o Solutions of the equations are seli-

similar,
W is proportional to the radiant

energy density.

With regard to the first assumntion,
the well-known solution to the Milne
problem shows that the radiant flux
pear a temperature discontinuity is
reasonably well described by the diffusion
approximation to {he radiant {ransfer
equation. The momentum transfer
equation has no term representing
the radiant flux but it can be shown that
theue eorrections in the order of (f’{/C)2
are at most about one percent,

The second assnrnption is valid as long
as the radiation front is advancing more
rapidly than a sound signal in the heated
air. Machine calculations confirm that
there is virtually no motion of the heated
air for up to 30 us.

Whether or net the seli-similar
sotutions are the correct ones has to be
an'swered in the same way that one answers
the question for any other solution;
namely, does the solution satisfy all of
the boundary conditions.

In addition, we nad the restriction on
the temperature dependence of A, We
found this latter restriction presented no
special problems for air,

We found that Eq. (42), along with the
condition that F = 0 at the origin,
completely determine the solution of Eq.
(37) if we also make use of the data in
Fig. 1.

The aggumption that the sink of radiant
energy, W, is proportional to Tt is

plusible but open to some question, The

-0-

problem here is that to solve Eq. (27) we
need ¢ (x). Eguation (2') provides a

sc tutson for ¢{x} valid in some region
around the origin but which breaks down
near the edge of the front for reasons dis~
cugsed aboave,

This solution, which is Eq. (32},
represents a source to the radiation field
not a sink, We may ask,” under what con-
ditions do the terms in Eq. {27), which
contain §, actually represent an energy
sink for the radiation?

That is, when does the following con-
dition obtain:

3x{dpp)' +dadpy < 0

or
d{¢ps)
A (44)
ép *
R
A possibility is to reguire that
d(¢p. )_ dx
S T YT
¢PR X
with the solution
g = Ka 17N 145)

A sink strength corresponding to Eq. (45)
is

-a(l+e) (46)

3Kaex

Thus, if we wish to improve on ocur
assumption of Eq, (34), we could repre-
sent the rate of energy absorption in Eq.
(27) by using Eq. (32) within some radius
Xgs and for x > Xy use Eq. (46}, This
could be done in a self-similar manner



but we would have to fix three new param-
eters K, € and x, in our solation for
Pgx). Two necessary conditions would
be the continuity of ¢’§R and of 'p'R.

For the purposes of this paper, such
added complication is unnecessary and Eq.
(34) is adequate, This analysis does,

however, suggest an interesting aspect
of the physics in the expanding fireball.
i1 the interior regions the heated air acts
as a source and adds to the energy being
propagated towards the front. Only in a
relatively cold region near the front does
the air absorb energy.
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