ОРДЕНА ЛЕНИНА АКАДЕМИЯ НАУК УССР ОРДЕНА ЛЕНИНА ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ХФТИ 74-22

ю.з. ЛЕВЧЕНКО, Л.И. ПИВОВАР, Г.Д. ТОЛСТОЛУЦКАЯ

изучение состава медленных ионов, образующихся при ионизации He, Ne, Ar, Kr, H_2 и N_2 ионами гелия, лития, азота, неона, аргсна и криптона с энергией 200 + 2000 кэв

ОРДЕНА ЛЕНИНА АКАДЕМИЯ НАУК УССР ОРДЕНА ЛЕНИНА ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ХФТИ 74-22

Ю.З. ЛЕВЧЕНКО, Л.И. ПИВОВАР, Г.Д. ТОЛСТОЛУЦКАЯ

ИЗУЧЕНИЕ СОСТАВА МЕДЛЕННЫХ ИОНОВ, ОБРАЗУЮЩИХСЯ ПРИ ИОНИЗАЦИИ He, Ne, Hr, Kr, H_2 и N_2 иОНАМИ ГЕЛИЯ, ЛИТИЯ, АЗОТА, НЕОНА, АРГОНА И КРИПТОНА С ОСО ЙЭНГЭНЕ С ОСО КЭВ

Р работе исследовались процесси номи: эдрим атомов и молекул газов быстрыми номами с зарядом от одного до трех. Для сбразувшихся медленных частиц получены зарядовые распределения при однократных стоижновениях в широком диапазоме энергий налетавших нонов. На основание этих данных и имеющихся в литературе данных по полным сечениям можно получить парцыольные сечения образования медленных нонов.

Проводатся сопоставление полученных данных с имеющемися теоретическими расчетами и показани различеми случам применимости первого и второго борновского приближения.

 $[{]f (C)}$ Харьковский физико-технический институт (х ϕ TM), 1974.

BBEIEHUE

Нонезадия атомов и молекул среды является одним из основинх процессов, сопровождающих прохождение быстрых атомных частец через вещество.

нанизове подробно изучена монизовия атомов и молекул газов в области скоростей относительного движения $v < v_o = \frac{e^2}{\hbar} = 2,2.10^8$ см/сек.

В области скоростей относительного движения $U>U_0$ в широстем энергетическом интервале и для больного набора сталкивающихся партнеров измерени импь полные поперечные сечения образования медленных положетельных монов (кажущиеся сечения) $G_+ = \sum_{n=1}^{\infty} \alpha \cdot G_n$ и поперечные сечения образования свободных электронов (полные сечения нонивации) G_- [1-5].

Такие данние важео дополнить исследованием зарядового распределения медленных конов. Эта дополнительная меформация весьма полезна как с точки зрения выяскачия роли многозлектронных
процессов в однократных столкновениях, формирования представленые о межанизме монизационных столкновений и дальнейшего развития теории, так и с прикладной точки эрения в связи с необходимыми расчетами лабораторных и промышленных устройств с пучками
высокознергетичных монов, получающих в настоящее время все более
вырокое использование.

Вместе с тем систематические исследования состарь медленкых конов при монизации газов тярелыми нелетающими частицами с массов $\mathcal{M} \gg 4\,\mathcal{M}_P$ (\mathcal{M}_P — масса протона) и энергием относительного движения E>180 кэв практически не проводились. В литературе, насколько нам известно, можно найти лишь данные по составу медленных ионов, образующихся при ионизации некоторых газов ℓ — частицама с фиксированной энергией 2200 кэв ℓ 6 \int и данные по составу медленных ионов, образующихся при развале сложных молекул, бомбардируемых различными тяжелыми монами (например, ℓ 7 ℓ 7).

В настоящей работе проведены систематические измерения относительного содержания различени медленных монов, образурщихся в газах He, Ne, Ae, Ke, H_2 и N_2 при монизадив высокоэнергетичными тяжелыми частицами. В качестве бомбардирующих частиц использовались моны He^+ , N^+ , Ne^+ , Ar^+ , Kr^+ (200 ф 1800 кэв); Li^+ (200 ф 2000 кэв); He^{2+} , N^{2+} (600 ф 1800кэв); Li^{2+} (600 ф 2000) и Li^{3+} (1200 ф 2000 кэв).

аппаратура и метопика измерений

Источенком високоэнергетичних однозарядных монов служил компактный электростатический ускоритель на 2 мэв [8]. Двухи трехзарядные новы получались с помощью укороченной газовой машени [9], установленной на выходе ускоретеля.

Анализ медленных монов проводился на установке, описанной в работе [10]. Здесь медленные моны вытягивались из зоны столкновений, затем ускорялись и формировались в пучок, который анализировался с помощью магентного масс-монохроматора, и отдельные его компоненти регистрировались счетчиком монов [11].

Из полученных масс-спектрограмы определялось относытельное содержание \mathcal{N} - зарядных медленных монов

$$d_{n} = \frac{N_{n}/\delta_{n}}{\sum_{n=1}^{n} N_{n}/\delta_{n}},$$

где N_n — интенсивность соответствующей линии спектра, $\sqrt[n]{n}$ — эффективность счета регистрируемых ионов.

В результате серии методических измерений определены ус-

нонов, при которых измеряемые величины $\mathcal{A}_{\mathcal{R}}$ сохраняют постоянство. При таких оптимальных условиях опытов в счетчик поступают \mathcal{R} - зарядные ионы с энергией $(4,4x\,\mathcal{R})$ кэв.

В опытах было установлено (в отличие от указаний работи [11]), что эффективность счетчика при регистрации тяжелых монов с энергией в несколько килоэлектронвольт существенно отличается от единици. Было также установлено, что основной причиной понижения эффективности счета являются просчеты из-за малости среднего коэффициента монно-электронной эмиссии при бомбардировке первого (СаВе) - динода вторично-электронного умножителя медленними нонами.

Эффективность счета определялась для всех регистрируемых ионов.

В табл. І приводятся установленные нами величины у л.
Таблица І
Эффективность счета ионов с энергией (4,4xл) кав счетчиком

Tuna [II, IO]

Ион	· 8n	Ион	8 n
Ar+	0,75	Kr +	0,6
Ar2+	0,84	Kr. 2+	0,74
Ar. 3+	0,93	Kr ³⁺	0,85
Ar 4+	0,98	Kr 4+	0,96
He ⁺	0,82	Ne +	0,78
He ^{g+}	0,91	Ne ²⁺	0,84
N2 +	0,87	Ne ³⁺	0,93
N_i^+	0,82	H ₂ ⁺	0,95
N2+	0,9	H‡	0,9

Масс-спектрограммы снимались при сравнительно низких давлениях исследуемого газа в камере столкновений (I+3. IO^{-5} мм рт.ст.), при этом концентрация газа в зоне анализа и детектирования медленных ионов была такой (I+2. IO^{-6} мм рт.ст.), что измеряемие величины A_D не искажались за счет процессов перезарядки.

Для ионов азота (n > 2), неона (n > 3), аргона и криптона (n > 4) $\chi_n \approx I$.

Случайные ошибки измерений A_n оценивались по воспроизводимости результатов и в большинстве случаев составляли для медленных ионов с кратностью заряда $n \le 3$ приблизительно ± 10 %, для ионов с $4 \le n \le 6 - \pm (15 + 20)$ %, для ионов с $n > 6 - \pm (20 + 25)$ %.

РЕЗУЛЬТАТН ИЗМЕРЕНИЙ И ИХ ОБСУЖДЕНИЕ

Для каждой исследованной пары сталкивающихся частиц с определенной энергией относительного движения мы снимали несколько спектров медленных положительных ионов. Результатом их обработ-ки явились усредненные величины относительного содержания n -за-рядных ионов \mathcal{A}_n , при этом выполнялось условие нормировки $\mathcal{A}_n = 1$.

Сводка данных по 🚓 приведена в таблицах.

В табл. 2 показани результати для случаев ионизации He, Ne, Ar, Kr, H_2 и N_2 ионами He^{\dagger} и $He^{2\dagger}$. В табл. 3 соответствующие данные для случаев ионизации ионами Li^{\dagger} , $Li^{2\dagger}$, $Li^{3\dagger}$, в табл. IY — для ионизации ионами N^{\dagger} и $N^{2\dagger}$ и в табл. Y — ионами Ne^{\dagger} , Ar^{\dagger} и Kr^{\dagger} .

Воспользовавшись приведенным по λ_n и имеющимися в литературе данным по полным сечениям образования медленных положительных ионов O_+ , можно получить парциальные сечения образования R_- зарядных медленных ионов

$$\delta_n = \frac{dn}{\frac{n max}{n = 1}} \cdot \delta_+$$

Относительное содержание медленных положительных ионов при ионизации газов ионами He^+ и He^{2+} . Величины \ll_n без скобок относятся к ионам He^+ ; \ll_n в круглых скобках — к ионам He^{2+} . а) Мишени — He и Kr^* .

				Миш	е нь				
Е, кэв	Н	e				K~			
	di	de	de	વ	a_3	d4	a_5	∞6	≪ ₇
200	9,48-I	5,2-2	6,25-I	2,6-I	9,0-2	2 ,1- 2	4,8-3	I,3-3	6,4-4
300			6,47-I	2,46-I	7,8-2	2,I - 2	5,9-3	I,6-3	
400	9,33-I	6 ,7- 2	7,0-I	2 ,0- I	7,0-2	I,8 - 2	5,9-3	2 , 8 - 3	I,2-3
600	9,36-I (9,2I-I)	6,4-2 (7,9-2)	7,2-I (7,4-I)	2,0-I (1,8-I)	5,2 - 2 (5,8-2)	1,9-2 (1,5-2)	6,8 - 3 (6,I-3)	3,9 - 3 (2,2 - 3)	I,4-3
800	9,46-I, (9,4I-I)	5,4-2 (5,9-2)	7,56-I (7,68-I	1,5-I (1,62-I)	6,I-2 (4,7-2)	I,75-2 (I,34-2)	8,8-3 (6,5-3)	5,3-3 (2,9-3)	
1000	9,52-I (9,55-I)	4,8-2 (4,5-2)	7,53-I (8,0-I)	I,65-I (I,34-I	5,2-2 (4,2-2)	1,9-2 (1,4-2)	8,8-3 (6,2-3)	3,3-3 (2,0-3)	
1200	9,66-I (9,57-I)	3,4-2 (4,3-2)	7,6-I (8,05-I	1,4-I (I,4-I)	6,I-2 (3,4-2)	(I , 25 - 2)			
I 400	9,66-I (9,63-I	3,4-2 (3,6-2)	7,8-1 (8,3-I)	1,25-I (1,18-I)	5,8-2 (3,0-2)		I,03-2 (5,6-3)		
1600	(9,63-1)	(3,6-2)							
1800	9,72-1 (9,71-I)	2,8-2 (2,9-2)	7,9-1 (8,4-1)	I,I2-I (I,05-I)	5,8 - 2 (3 ,0- 2)	2,2 - 2 (1,25 - 2)	1,4 <u>-2</u> (6,0-3)	6 , 8 - 3	

б) Мишени – /Ve и \mathcal{A} \sim

				M	THE BE				
Е, кэв		Ne	6				Ar		
	8,	de	ر م	Q4	4.	α_{s}	α_{s}	مر 4 م	α_{S}
200	7,48-I	2,I6-I	3,4-2	I,5-3	1-54.9	2,45-I	9,7-2	I,2-2	5,4-4
300	7,55-I	2,0-I	4,4-2	3,3-3	6,25-I	2,78-I	8,4-2	1,2-2	9,0-4
400	7,35-I		5,2-2	4,4-3	_	2,36-I	7,0-2	7,5-3	7,4-4
900	(7,16-1)	$(\frac{2}{2},\frac{2-1}{2})$	(6,7- 3)	4,7-3 (7,0-3)	(7,27-I)	(2,04-1)	5,4-2 (6,0-2)	$\binom{6,5-3}{(8,4-3)}$	(1,1-3)
800	(7, 4-1)	2, I-T (2,04-I)	(2-2,4)	4,I-3 (5,0-3)	(7,7-1)	(1,84-1)	_	(6, 5-3)	(1,6-3)
0001	(7,53-I)	(2,94-1)	3,8-2 (4,4-2)	$\binom{3,4-3}{4,3-3}$	8,16-1 (8,04-1)	(1,44-1)		(6,0.3)	$\binom{2,5-3}{1,6-3}$
1200	$\{1.87.\}$	I,77-I (I,67-I)	3,3-2)	(3, 1-3)	$\{1-1/0, 8 \}$	(1,36-1)	3,2-2 (2,6-2)	7,3	$\binom{2,3-3}{(1,8-3)}$
1400	8,08-1 (7,8-1)	I-63-I)	2,6-2 (3,35-2)	2,4-3 (3,5-3)	8,17 <u>-</u> 1 (8,2-1)	(1, 44-1)	(2,8-2)	8,6-3 (6,2-3)	(2,5-3) (2,1-3)
1600	1-CI'8	I-65,I		2,2-3					
1800	8,32-7 (8,I2-I)	(1,43-1)	(2,3-2)	(2,7-3)	8,3-I (8,5-I)	(1,29-1)	3,2-2 (2,75-2)(7,	9,0-3 (7,5-3)	(2,8-3)
	The state of the s								

в) мишени – H_2 и N_2

			M M II	е н ь		
Е, кэв	H	2		\mathcal{N}_{z}	2.	
	$\alpha_1(H_2^+)$	d, (Ht)	$d_1(N_2^+)$	$\alpha_1(N_1^+)$	de (N;2+)	$d_3(N_g^{3+})$
200	9,4-I	6,2-2	6,9-I	2,77-I	3,3-2	6,6-4
400	9 ,5- I	5,3-2			2,6-2	4,3-4
600	9,55-1 (9,58-I)	4,5-2 (4,2-2)		2,36-I (2,6I-I)	2,1-2 (2,8-2)	3,2-4 (6,3-4)
800	9,61-1 (9,6-1)	3,9-2 (4,0-2)	7,8-1 (7,15-1)		1,6-2 (2,5-2)	4,6-4 (4,7-4)
1000	9,64-1 (9,6I-I)	3,5-2 (3,9-2)	(7,23-1)	2,12-1 (2,57-I)	(2,0-2)	3,6-4 (3,0-4)
1200	9,68-1 (9,63-1)	(3,7-2)	7,8-I (7,46-I)	2,08-1 (2,3-I)	1,3-2 (2,2-2)	4,5-4 (5,5-4)
I400	9,68-I (9,6I-I)	3,2-2 (3,9-2)		[,86-1 (2,1-1)	I,07-2 (I,7-2)	2,5-4 (4,5-4)
1800	9,7-1 (9,63-1)	3,0-2 (3,7-2)	8,13-1 (7,8-1)		8,6-3 (I,5-2)	

Таблица 3

Ионизация ионами Li^+ , Li^{2+} и Li^{3+} .
Величины A_n без скобок для ионов Li^+ , A_n в круглых скобках – Li^{2+} , в кеадратных скобках – Li^{3+} .

а) Мишени - Не и К~

				Ми	пень				
Е,кэв	He	2			Kr.				
	di	ત્ર	a.	de	α_3	dy	α_{5}	de	27
200	8,9-I	I,I-I	6,54-I	2,24-I	8,9-2	2,2-2	7,0-3	3 , I-3	3,0-4
400	9 , 2 - I	8,0-2	6,57 - I	2,2I-I	8,4-2	2,55-2	9,8-3	- ,	1,2-3
600	9,2-I (8,92-I)	8,0-2 (I,02-I)	7,06-: (6,72-1)	1,94-I (2,06-I)	6,26-2 (7,8-2)	2,18-2 (2,5-2)	9,3-3 (1,3-2)(4,9-3 8,8-3)	1,7-3
800	9,13-1 (9,16-1)	8,7 - 2 (8,35 - 2)	7,0-I (6,67-I)	1,83-I (2,04-I)	7,0-2 (7,6-2)	2,48-2 (3,3-2)	I,25 - 2 (I,33 - 2)	(7,I-3)	
1000	9,3-1 (9,06 - I)	7,0-2 (9,34-2)	7,22-1 (6,64-I)	I,81-1 (2,1-I)	5,82-2 (7,7-2)	1,97-2 (2,4-2)	I,05-2 (I,28-2)	5,6-3 (8,8-3)	2,9-3 (6,4-3)
1500	9,3-I (9,3I-I) [8,8-I]	((6,85-2)	7,52-1 (7,01-1) [7,08-1]	(I.87-I)		(2,2-2) [2,3-2]	1	7,2-3 (8,3-3)	[]
1400	9,2-1 (9,23-1) (8,85-1)	8,0-2 (7,7-2) [1,15-1]	7,36-I (7,0-I) [7,28-I]	I,6I-I (2,07-I) [1,7-I]	(5,7-2)	2,14-2 (2,04-2) [2,4-2]	I,33-2 (I,12-2)	7,7-3 (7 , 8-3)	(5,7-3) (3,0-3)
1600	[8,95-I]	[I,05-I]							
1800	9,29-I (9,32-I) [9,0-I]	(6,8-2) [I,0-I]	7,6-I	I,55-I	4,8- 2	2,36-2	I,4-2		
2000	9,35-1 (9,4-I) [9,I-I]	6,5-2 (6,0-2) [9,0-2]	7,64-I (7,25-I) [7,38-I]	(1-8-1)	4,8-2 (5,5-2) [6,7-2]	2,4-2 (2,I-2) (2,5-2)	I,4-2 (I,I-2)	(8,0-3)	

о) Мишени - Ne и Ar

		,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ARE	ень					
Е, кэв		Λ	le 💮						St r~			
	di	de	dg	d_{4}	d 5	di	d_2	d3	1 24	0d5	d∈	dq
200	6,38-I	3,0-I	5,8-2	2,35-3	2,3-4	6,53-I	2,32-I	I,02-I	I,42-2	9,4-4		
400	6,58-I	2,49-I	8,5-2	9,I-3	3,0-4	6,2-I	2,33-1		I,89-2	I,84-3		
500	6,46-I (6,75-I)	2,46-I (2,25-I	9,35-2 (8,4-2)	I,4-2 (I,49-2)	4,9-4 (I,6-3)	6,34-I (6,9-I)	2,49 - 1 1,91 - 1	9,7 - 2 (9,1 - 2)	1,8-2 (2,56-2)	2,0-3 (4,2-3)	3,0-4	2,0-5
800	6,5-I (7,04-I)	2,43-I (2,09-I	9,0-2 (7,I-2)	I,6-2 (I,52-2)	9,5-4	6,78-1 (6,75-I)	2,19-1 (2,11-1)	8,5-2 (8,8-2)	1,53-2 (2,0-2)	3,2-3 (3,9-3)	8,4-4 (6,9-4)	1,2-4
1000	6,97-I (6,94-2)	2,12-1 (2,07-1	7,6-2 (7,92-2)				(2,18-1)	(7,5-2)	1,45-2 (1,5-2)	3,6-3 (4,1-3)	7,0-4 (9,6-4)	3,3-4
1500	6,9-1 (7,03-1) [6,92-I	(2,03-I)	7,7-2 (7,5-2) [8,7-2]	I,33-2 (I,6-2) [2,4-2]	7,3-4 (I,5-3)		2,06-1 2,14-1	(7,3-2) [9,0-2]	I,I7-2 (I,5-2) [2,7-2]	3,7-3 (4,I-3)	I ,0- 3	2,0-4
1400	(7,18-I) (7,13-I)	(T.95-T))(7.T - 2)	1,3-2 (1,47-2) [2,5-2]	[,0-3 ([,5-3)	7,22-I (7,2-I) [6,9-I]	I,97-I 2,0-I) [2,08-I]	5,9-2, (6,4±2) [8,1-2]	1,43-2 (1,3-2) (2,0-2)	5,6-3 (4,8-3)	1,6-3 (1,4-3)	
1600	(7,25-1)	(1,9-1)	(6,8-2)	(I , 45-2)	(1,5-3)							
1800	7,38-I (7,39 T) [7,13-I]	I,9I-I (I,8-I) [I,9-I]	6,03-2 (6,5-2) [7,4-2]	I,03-3 (I,45-2) [2,23-2]	I,03-3 (I,5-3)	8,03-1	1,45-1	3,7-2	1,15-2	4,3-3		
2000	7,37-I (7,4I-I) [7,28-I]	I,85-I [1,8-I] [1,8-I]	(6.4-2)1	I,2-2 (I,4-2) [2,2-2]	(1 , 15-3 (1 , 5-3)	7,94-I (7,7-I) [7,52-I]	I,4-I I,6-I) [1,68-I]	5,0-2 (5,4-2) [6,4-2]	I,2-2 (I,25-2) (I,6 -2)	5 ,7- 3 (5 , 4-3)	(2,0-3)	

в) мишени – H_2 и N_2

			Мип	ень	The state of the s	
E,kob	H	2		Λ	/2	
	$d_{i}\left(H_{e}^{\dagger}\right)$	d, (H;)	$d_1(N_2^+)$	$d_1(N_1^+)$	d2 (N,2+)	$d_3(N_r^{3+})$
200	9,47-I	5,3-2	7,43-I	2,2 7- I	2,8-2	I ₉ 2-3
400	9,59 - I	4,I-2	7,58-I	2,I3-I	2,7-2	5,0-4
600	9,6I~I (9,34 - I)	3 , 9-2 (6 , 6-2)	7,59-I (7,82-I)	2,I5-I (I,92-I)	2,5-2 (2,56-2)	7,0-4 (I,8-3)
800	9,64-I (9,5I-I)	3,6-2 (4,9-2)	7,92-I (7,57-I)	I,87~I (2,15-I)	I,89-2 (2,63-2)	4,0-4 (9,5-4)
1000	9,63-I (9,53-I)	3,7 - 2 (4,7 - 2)	7,86-I (7,34-I)	I,94-I (2,34-I)	1,9-2 (2,34-2)	(8,5-4)
1500	9,58-I (9,54-I) [9,39-I]	4,I-2 (4,6-2) [6,0-2]	7,66-I (8,12-I) [6,8-I]	2,I-I (I,8I-I) [2,84-I]	2,0-2 (I,44-2) [3,7-2]	5,0-4 (I,3-3)
1400	9,65-I (9,62-I) [9,46-I']		7,19-1 (7,3I-1) [7,03-1]	2,56-I (2,43-I) [2,62-I]	2,I-2 (2,6-2) [3,56-2]	4,0-4 (I,35-3)
1600	[9,5 - I]	[5,0-2]				
1800	(9,63-1) [9,51-1]	(3,7-2) [4,9-2]				
2000	9,66-I (9,63-I) [9,52-I]	3,4-2 (3,7-2) [4,8-2]	7,6-1 (7,25-1) [7,1-1]	2,2-I (2,4-I) [2,6-I]	1,85-2 (3,0-2) [3,0-2]	A COLUMN TO THE

Иони зация конами N^+ и N^{2+} ведичани \mathcal{A}_n des скобок для нонов N^+ , \mathcal{A}_n в круглых скобках – для N^{2+}

а) минени - Нев Кг

						инмен	НЪ				
Е, ков	Н	e					Kr				
	di	d ₂	di	az	da	24	d ₅	⊲ુ	メァ	≪. ક્ર	જ•ુ
200	9,92-I	8,2-3	5,96-I	2,74-I	9,8-2	2,44-2	5,0-3	2,2-3	I,12-3	3,2-4	
300	9,8-I	2,0-2									
400	9,69-I	3,1-2	5,5I-I	2,58 - I	I,26-I	4,I-2	I,65-2	4,6-3	2,6-3	I,2-3	
600	9,44-I (8,94-I)	5,6-2 (I,06-I)	5,2I-I (5,5I-I)	2,44-I (2,24-I)	I,35-I (I,35-I)		2,5-2 (I,8-2)	I,4-2 (I,08-2)	6,I - 3 (4,9-3)	3,2-3 (2,2-3)	I,0-3 (7,5-4)
800	9,13-1 (8,61-1)	8,7-2 (I,39-I)	5,32-I (5,48-I)	2,32-I (I,9-I)	I,28-I (I,5-I)	5,2-2 (5,7-2)	2,6-2 (2,4-2)	I,53-2 (I,82-2)		4,4-3 (6,7-3)	I,7-3 (I,25-3)
1000	8,85-I (8,5-I)	I,I5-I (I,5-I)	5,29-I (6,I2-I)	2,29-I (I,89-I)	I,35-I (I,06-I)		2,7-2 (2,I-2)	I,5-2 (I,5-2)	9 ,7-3 (7 , 2 - 3)	6,0-3 (4,7-3)	2,8-3 (2,0-3)
1200	8,63-I (8,6I-I)	I,37-I (I,39-I)	4,99-I (6,I-I)	2,45-I (I,88-I)	I,37-I (9,9-2)	5,3-2 (4,9-2)	2,5-2 (2,3-2)	I,6-2 (I,5-2)	I,I4-2 (8,7-3)	7,6-3 (5,I-3)	3,9-3 (2,3-3)
1400	8,6I-I (8,32-I)	I,39-I (I,68-I)	5,3-I (5,84-I)	2,28-I (2,07-I)	I,3-I (I,06-I)	4,6-2 (4,8-2)	2,6-2 (2,4-2)	I,65-2 (I,25-2)		7,7-3 (5,6-3)	
1800	8,4-I (8,5-I)	I,6-I (I,5-I)	5,54-I (5,96-I)	2,2-I (2,0-I)	I,25-I (I,05-I)		2,6-2 (2,6-2)	I,7-2 (I,5-2)	I,2-2 (I,0-2)	8,5-3 (6,5-3)	

							Мише	н ь					
Е, кэн	,	Λ	/e						9	Ar-			
	di	α ₂	d3	∞ 4	α_5	d,	حو	od.₃	OL4	α_{5}	≪ 6	dγ	≪ક
200	8,54-I	I,32-I	I,24-2	I,I-3		6,04-I	2,58-I	1,02-1	3 ,3- 2	2,9-3	3,0-4		
300	8,0-I	I,8-I	2,0-2	2,0-3									
400	7,53 - I	2,II-I	3,2-2	2,9-3		5,53-I	2,7-I	1,26-1	4,I-2	6,8-3	8,8-4		
600	6,9-I (6,74-I)	2,38-I (2,49-I)	5,8-2 (6,I-2)	8,8-3 (I,3-2)	-	5,33-I (5,I2-I)		I,43-I (I,37-I)	5 ,3- 2 (5 ,7- 2)	I,0-2 (I,4-2)	2,I-3 (3,2-3)		2,7-4 (2,3-4)
800	6,4-I (6,36-I)	2,62-I (2,65-I)	8,4-2 (8,0-2)			4,67-I 3)(4,9I-I		I,7-I)(I,66-I	6 ,7- 2)(7 , 2 - 2)	I,5-2 (2,0-2)	3,5-3 (3,8-3)	I,5-3 (I,0-3)	
1000	6,25-I (6,15-I)	2,52-I (2,6-I)	I,0-I (9,7-2)	2,I-2 (2,5-2)	2,4-3 (3,2-3)	5,I8-I (5,23-I)	2,58-I (2,44-I)	I,47-I (I,45-I)	5,95-2 (6,3-2)	I,4-2 (I,7-2)	4, I-3 (4,5-3)	I,6-3 (I,6-3)	4,2-4 4,9-4
1200	5,9 7- I (6,18-I)	2,65-I (2,48-I)	I,0-I (9,9-2)	3,3-2 (3,0-2)	•	1	2,54~I (2,28 - I)	I,6I-I (I,45-I)	• -	I,8-2 (I,7-2)	5,0-3 (4,2 - 3)	2,3-3 (I,9-3)	
1400	6,03-I (6,03-I)		I,06-I (I,03-I)	3,3-2 (3,5-2)				ī,6I-I (I,52-I)		I,7-2 (I,6-2)	5,0-3 (4,0-3)	2,4-3 (I,9-3)	
1600	6,I - I	2,45-J	I,05-I	3 ,4- 2	5,0-3								
1800	6,I3-I (5,95-I)		I,05-I (I,I-I)		5,5-3 (7,4-3)			I,6-I (I,59-I)	6,5-2 (6,0-2)	I,8-2 (2,0-2)	5,6-3 (4,9-3)	2,8-3 (2,4-3)	

в) мишени – H_2 и \mathcal{N}_2

			W	ишенъ			
Е, кэв	1	H3			N_2		
	d, (H2)	d, (H;)	d, (N2	d, (N,t)	d, (N,+) de (N,2+)		$\mathcal{A}_{3}\left(N_{t}^{3\prime}\right)\left(\mathcal{A}_{4}\left(N_{t}^{4\prime}\right)\right)$
200	9,28-I	7,2-2	6,04-I	3,52-I	4,15-2	2,6-3	
400	9,05-I	9,47-2	6,29-1	3,16-I	5,3-2	3,0-3	
009	9,05-I (1-I,6)	9,5-2 (9,0-2)	5,97-I (6,15-I)	3,43-I (3,I-I)	5,42-2 (6,9-2)	4,5-3 (6,6-3)	1,7-4 (2,0-4)
800	9,04-I (9,06-I)	9,6-2 (9,4-2)	5,9I-I (6,23-I)	3,34-I (3,02-I)	6,78-2 (6,7-2)	6,4-3 (7,1-3)	2,I-4 (2,0-4)
1000	9,05-1 (9,17-I)	9,5-2 (8,3-2)	6,02-I (6,17-I)	3,18-1 (3,09-1)	7,3-2 (6,7-2)	7,I-3 (7,8-3)	2,2-4 (3,6-4)
I200	9,06-I (9,12-I)	9,4-2 (8,8-2)	6,43-I (6,23-I)	2,88-I (3,03-I)	6,2-2 (6,45-2)	6,45-3 (8,4-3)	2,9-4 (3,8-4)
0041	9,13-1 (9,15-1)	8,7-2 (8,5-2)	6,3I-I (6,42-2)	2,99-I (2,88-I)	6,32-2 (6,2-2)	6,7-3 (7,6-3)	2,0-4 (4,0-4)
7,600	I-#I'6	8,6-2					
1900	1-67.6	(3,92)	6,3-I)	2,9-1	7,0-2 (6,5-2)	6,5-3	

Ионизация ионами Ne^t , Ar^t и Kr^t . Величины A_n без скобок для ионов Ne^t , A_n в круглых скобках для Ar^t , A_n в квадратных скобках — для Kr^t

91

A) Митени - Н∈ и К∽

				- -	Ми	шень					_
Е, кэв	Н	e					Kr				_
	di	d ₂	di	ત્ર	<i>J</i> 3	dy	d.₅.	α ₆	017	α_{y}	٠,٧ ٠,
200	9,83-I (9,99-I)	I,72-2 (I,I-3)		3,23-I (1,75-I) [2,98-2]		I,46-2 (I,4-3) [İ,24-3]	3,2-3				
400	9,57-I (9,98-I)	4,2-2 (2,0-3)		3,0-I (2,28-I)([9,72-2]	(4,65-2)	(5,2-3)	I,7-2 (I,5-3) [9,0-4]	4,5-3			
800	(9 , 9 - I)	(1,0-2)		2,28-I (2,5-I) [I,95-I]	(I-0-I)	(I,6-2)	2,04-2 (4,0-3) [8,3-4]	I,15-2 (3,0-3)	, '	2,2-3 (6,7-4)	8,4-4
1000	9,26-I (9,88-I)	7,4-2 (I,2-2)									
1400	8,92-I (9,82-I)	I,08-I (I,8-2)	5,53-I (5,75-I) [7,0-I]	2,16-1 (2,52-1)([2,26-1]	1,19-1)	(3,2-2)	2,82-2 (1,1-2) [2,0-3]	I,94-2 (4,8-3)	I,22 - 2 (3,4 - 3)	6,4-3 (2,3-3)	2,7-3 (9,I-4)
1800			5,53-I (5,55-I) [7,23-I]	-		(3,8-2)	2,8-2 (I,7-2)	I,9-2 (9,0-3)	8,2 - 3 (4,5 - 3)	6 , 8-3 (3 , 8-3)	(I,4-3)

d) Мишени- Ne и Ar

				M	ише	н ь				
Е, кэв			Ne					Ar		
	d_1	\prec_2	d ₃	<u>ط</u> 4	α_5	Q 1	de	a(3	×4	≪્
200	7,9I-I (9,82-I)		I,76-2 (I,I-3)	7,2-4	•	5,76-I (8,62-I)	3,24-I (I,18-I)	8,7-2 (I,72-2)	I,2-2 (I,5-3)	I,8-3 6,I-4)
400	6,79- <u>I</u> (9,53 - I)	•	4,8 7 -2 (7,2-3)	4,I-3 (5,8-4)	2,8-4	5,49-I (7,6-I)	2,86-I (I,92-I)	I,3I-I (4,I-2)	2,94-2 (5,5-3)	4,09-3 (8,4-4)
800	6,2 - I (8,92 - I)	2,7~I (8,88-2)	9,2-2 (I,67-2)	I,8-2 (2,4-3)		3 5,34-I (6,57-I)	2,6-I (2,36-I)	I,45-I (8,56-2)		1,09-2)(2,8-3)
1000	6,I-I	2,6-I	I,0-I	2 ,8- 2	3,0-3					
1400	5,87-I (8,09-I)		I,I9-I (2,46-2)	3,36-2 (4,I-3)	- 1	5,34-I (5,7I-I)	2,45-I (2,6I-I)	I,48-I (I,2I-I)	5,75-2 (3,9-2)	I,44-2 (7,6-3)
1800	5 ,7 9 - I	2,5-I	I,25-I	4,0-2	5 , 5 - 3	5,6-I (5,26-I)	2,3-I (2,65-I)	I,5-I (I,5-I)	6,0 - 2 (4,8 - 2)	2,0 - 2 (1,15 - 2)

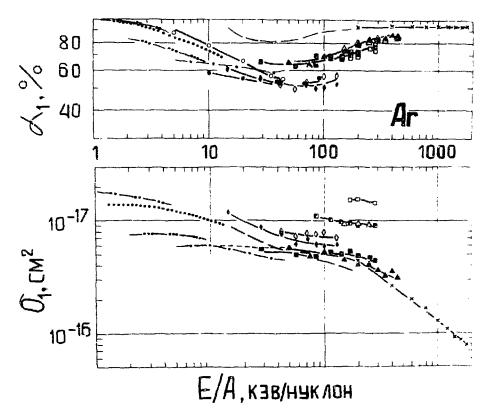
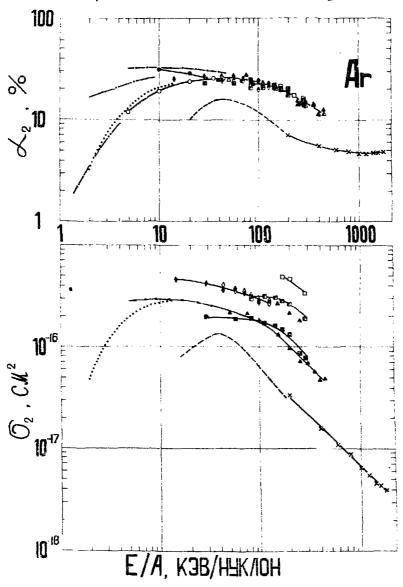
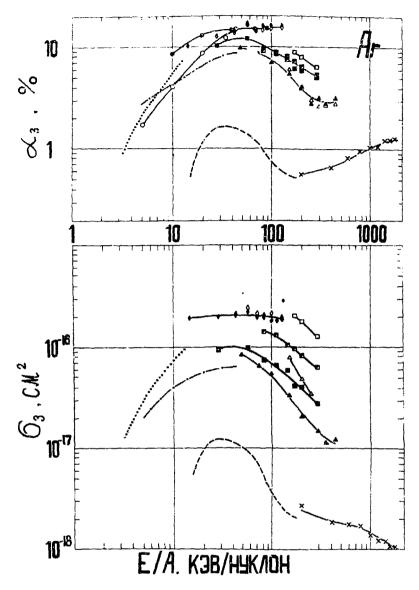
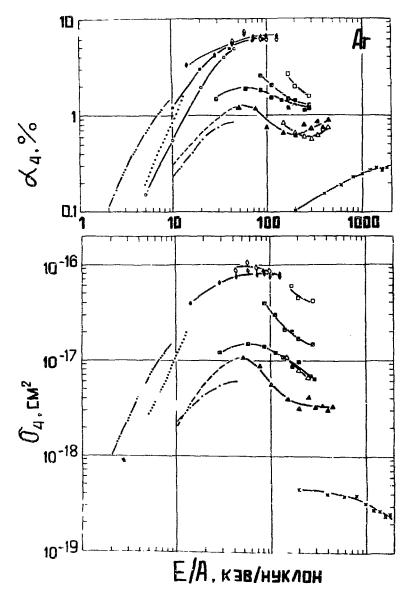



Рис. I. Зависимости относительного содержания медленных однозарядных ионов аргона d_1 и парциальных сечений δ_1 от приведенной энергии относительного движения E/A для налетающих частиц: $A - He^+$, $\Delta - He^{2+}$, $A - Li^{2+}$, $A - Li^{2+}$, $A - Li^{3+}$, $A - N^+$, $A - N^2$, $A - Ne^+$, $A - He^+$


Для вычисления парциальных сечений $\mathfrak{S}_{\mathcal{N}}$ следует использовать полученные нами ранее для тех же мищеней и в том же энергетическом интервале (что и для $\mathfrak{L}_{\mathcal{N}}$) полные сечения \mathfrak{S}_{+} . Сечения \mathfrak{S}_{+} измерены для налетающих частиц $He^{\dagger}[\mathfrak{I}_{+}]$, $Li^{\kappa\dagger}(\mathfrak{k}=1,2,3)$ [4] и $\mathcal{N}^{\kappa\dagger}$ ($\mathfrak{k}=1,2$) [5]. Сечения $\mathfrak{S}_{\mathcal{N}}$ в случае ионизации гелия, аргона, водорода и азота \mathfrak{L}_{+} частицами с энергией 600-1000 кэв можно рассчитать, воспользовавшись данными \mathfrak{S}_{+} из работы [2].

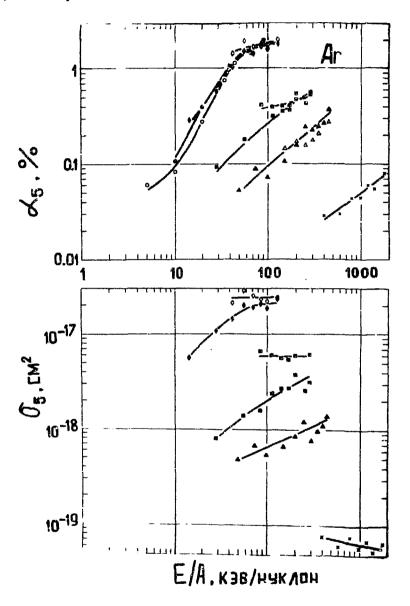
Теперь остановимся на характерных особенностях полученных результатов. В качестве примера рассмотрим случай ионизации аргона различными налетающими частицами. На рис. I-7 представлены графики зависимостей относительного содержания медленных // -за-

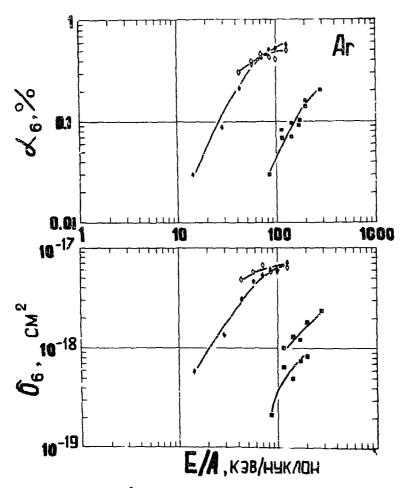
рядных ионов аргона и парциальных сечений $\mathcal{O}_{\mathcal{L}}$ от приведенной энергии \mathcal{E}/\mathcal{A} , пропорциональной квадрату скорости относительного движения – $\mathcal{U}^2(\mathcal{E}$ и \mathcal{A} – энергия и массовое число налетающего нона). На рис. I-4 приведены соответструющие данные, полученные другими авторами при энергиях относительного движения $\mathbf{E} \leqslant 180$ кэв [12+14], а на рис. I-5 приведены зависимости $\mathcal{A}_{\mathcal{L}}(\mathcal{E}/\mathcal{A})$ и $\mathcal{O}_{\mathcal{L}}(\mathcal{E}/\mathcal{A})$ для протонного удара [10, 15, 16].



PMC. 2. Зависимости \mathcal{A}_2 (E/\mathcal{A}) и \mathcal{O}_2 (E/\mathcal{A}) Обозначения такие же, как и на рис. I

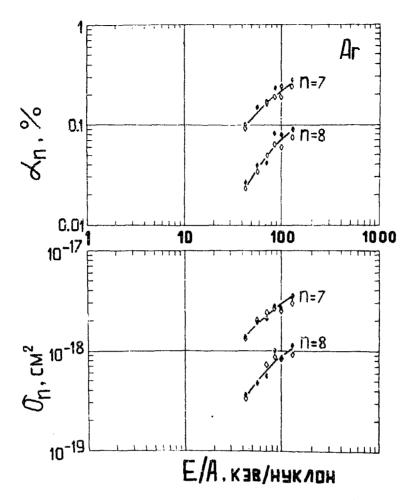
PNC. 3. Sabuchmocth $\alpha_3(E/A)$ in $\mathfrak{S}_3(E/A)$. Odoshayehns cm. ha pmc. I


Несмотря на неоднократные предостережения ряда авторов о возможных больших ошибках при сборе высокозарядных медленных монов (например, [17]), с одной стороны, и несмотря на довольно существенные различия условий сбора и анализа, с другой стороны, данные настоящей работи и данные других работ [12-14]


Puc. 4. Зависимости \mathcal{L}_{4} (E/\mathcal{A}) и \mathcal{G}_{4} (E/\mathcal{A}) Обозначения см. на рис. I

хорошо согласуются в смежной области скоростей. Следует отметить, что и для случаев монизации других мишенных газов наблюдается столь же хорошая стиковка с данными ленинградских физиков. Сравнения же «межени — Не, ме, ле и ке), полученных нами при бомбагдировке « — частицами с энергией 1800 кэв, с соответствующими « приведенными в работе [6] для « — частиц с энергией 2200 кэв, покальног очень большие расхождения.

Данные работы [6], как правило, дарт значительно более низкие величины \mathcal{A}_n для медленных ионов с $\mathbb{R} > 2$; например, \mathcal{A}_2 и \mathcal{A}_3 для \mathcal{A}_7 из нашей работы II,5 и 2,75 %, а \mathcal{A}_2 и \mathcal{A}_3 из [6]-3,36 и 0,59 % соответственно.



Phg. 5. 3abuchmocth \mathcal{A}_5 (F/\mathcal{A}) in \mathfrak{S}_5 (E/\mathcal{A}) Odoshayehus cm. ha pug. I

Puc. 6. Зависимости $\ll_{6} (E/\mathfrak{g})$ и $\mathfrak{S}_{6} (E/\mathfrak{g})$ Обозначения см. на рис. I

Образование многозарядных ионов при однократиих ионно-атомных столкновениях происходит как в результате удаления внешних электронов, так и в результате образования вакаслий во внутренных оболочках с последующими Оконереходами. Удаление внешних электронов может бить следствием де возбуждения некого автомонизационного состояния, возникающего в результате пересечения внешних электронных оболочек сталкивающихся систем (квазимолекулярный механизи) и результатом прямого кулоновского взаимодействия (ударный механизи). В рассматриваемых случаях столкновений различных ионов с атомами Аго реализуртся оба механизма взаимодействия.

Puc. 7. Зависимости α_7 (E/A), α_8 (E/A), σ_7 (E/A) и σ_8 (E/A). Обозначения см. на рис. I

Образование вакансий во внутренних оболочках также возможно в результате как одного, так и другого механизма взаимодействия.

Но как следует из анализа корреляционных диаграмм, связивающих уровни изолированных и объединенного атомов, квазимолекулярный механизм образования L — ваканский в аргоне может проявляться в столкновениях, когда налетающая частица имеет заряд ядра $\mathcal{Z}_1 \gg 6$ (углерод), для более легких налетающих частиц вакансии в L — оболочке аргона об уртся только в результате прямого кулоновского взаимодейс ия $\sqrt{18}$, $\sqrt{18}$,

Следовательно, можно ожидать некоторое различие в ходе кривых зависимостей \mathcal{L}_n и \mathcal{L}_n для налетающих частиц с $\mathcal{Z}_1 \leftarrow 6$

 $(H_1^+, He^{1,2+}, Li^{1,2,3+})$ и с $\mathcal{Z}_1 > 6$ ($N^{1,2+}, Ne^+$ и \mathcal{A}_{r}^+); в особенности при сравнительно небольших E/\mathcal{A} , где мала вероятность образования вакансий из-за прямого кулоновского воз – буждения. Такое различие хода кривых \mathcal{A}_n (E/\mathcal{A}) и \mathcal{O}_n (E/\mathcal{A}) для тяжелых и легких налетающих частиц прослеживается при рассмотрении рис. 1-7. и будет видно при дальнейшем обсуждении результатов.

В нашей работе [10] било отмечено наличие двух максимумов на некоторых кривых зависимостей $\mathcal{A}_{\mathcal{C}}(E)$ для случая ионизации $\mathcal{A}_{\mathcal{C}}$ протонным ударом. Первый максимум находится при $E/\mathcal{A}\approx 40$ -60 кэв нуклон, а второй – при $E/\mathcal{A}\approx 1300$ -1500 кэв/нуклон. Большинство данных настоящей работы получено при E/\mathcal{A} , характерных для первого максимума. Действительно, приблизительно при таких же значениях E/\mathcal{A} для всех налетающих частиц наблюдаются максимумы кривых зависимостей $\mathcal{A}_{\mathcal{C}}(E/\mathcal{A})$ и $\mathcal{O}_{\mathcal{C}}(E/\mathcal{A})$ ($\mathcal{C}=2$ -4). При наибольших изученных скоростях относительного движения (для He^+ и He^{2+} E/\mathcal{A} достигает величины 450 кэв/нуклон) довольно отчетливо проявляется переход зависимостей $\mathcal{A}_{\mathcal{A}}(E/\mathcal{A})$ и $\mathcal{A}_{\mathcal{A}}(E/\mathcal{A})$ на второй максимум.

Обращают на себя внимание также следующие факты. Относительное содержание медленных двухзарядных ионов аргона \ll_2 соверженно не зависит от рода налетающей частицы (ее массы и заряда) при E/g > (60*80) кэв/нуклон (несколько ниже лежит приводимая для сравнения кривая $\ll_2 (E/\mathcal{A})$ для случая протонного удара [10, 15, 16]).

Ионизация же легкими частицами характеризуется независимостью величин $\mathcal{A}_{\mathcal{D}}(\mathcal{D}=1+6)$ от заряда ионов гелия и лития.

ж) Лишь кривне $\mathcal{L}_{i}(E/A)$ для нонов L_{i}^{+} , L_{i}^{2+} и L_{i}^{3+} имерт довольно большое различие при малых E/A (см. рис. 4)

Кривне зависимостей $G_{\ell}(E/A)$ для легких налетающих однозарядных ионов (H^+ , He^+ , Li^+) почти совпадают, несколько выше группируются кривне $G_{\ell}(E/A)$ для двухзарядных налетающих ионов (He^{2^+} и Li^{2^+}), еще выше лежит кривая $G_{\ell}(E/A)$ для Li^{3^+} — ионов.

Из такого рода особенностей хода кривых \mathcal{O}_t (E/\mathcal{A}) можно предположить, что однократная ионизация атомов – мишеней легки- ми налетающими частицами в основном осуществляется при столь далеких соударениях, когда происходит практически полная экранировка заряда ядра снаряда имеющимися в его структуре электронами.

С увеличением $\mathcal{N}^{\varepsilon}$ различие в величинах сечений \mathcal{S}_{\sim} для различных однозарядных и двухзарядных ионов увеличивается, \mathcal{S}_{\sim} имеет большую величину для налетающих частиц с большим зарядом ядра \mathcal{Z}_{ℓ} .

Следует подчеркнуть, что с увеличением заряда медленных ионов аргона до n > 5 (то есть в случаях удаления более половины электронов внешней M = оболочки) при $E/g \approx (50+100)$ кэв/нукл. для легких налетающих частиц уже не наблюдаются максимумы на кривых зависимостей \mathcal{L}_n (E/\mathcal{A}) и \mathcal{L}_n (E/\mathcal{A}), эти зависимости показывают постоянный рост величин \mathcal{L}_n и \mathcal{L}_n в изученном интервале. E/\mathcal{A} .

Отмеченные нами характерные особенности кривых зависимостей $\mathcal{L}_{\mathcal{L}}(E/\mathcal{A})$ и $\mathcal{L}_{\mathcal{L}}(E/\mathcal{A})$ при ионизации аргона в большинстве своем можно отнести и к случаям ионизации других многоэлектронных атомных систем (Ne и Kr).

С точки эрения сравнения с теорией представляется интересным рассмотрение ионизации легких мишеней безструктурными налетарщими частицами — голыми ядрами H^+ , He^{2^+} и Li^{3^+} .

В соответствии с первым борновским приближением сечения ионизации \mathfrak{S}_{r} при одинаковых скоростях относительного движения должны быть пропорциональны квадрату заряда налетающей частищы \mathfrak{Z}_{r}^{2} .

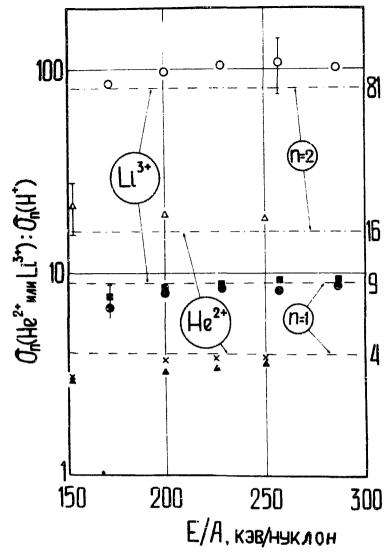


Рис. 8. Зависимости отношений $G_1(He^{2+})/G_1(H^+)$ (мищени): H_2-x , He-A), $G_1(Li^{3+})/G_1(H^+)$ (мищени: H_2-x , He-X), $G_2(He^{2+})/G_2(H^+)$ (мищень $He-\Delta$), $G_2(Li^{3+})/G_2(H^+)$ (мищень $He-\Delta$) от приведенной энергии относительного движения E/A

На рис. 8 приведены отношения сечений отрыва отдельного электрона $G = \sum_{n=1}^{R_{mox}} {}_{n} G_{n}$ при ионизации гелия и водорода ядрами

Сечение отрыва одного электрона имеет такой же смысл, как и сечение потери отдельного электрона, введенное в работе [20].

гелия и лития к подобным сечениям для протонного удара при равных E/g. Видно прекрасное совпадение таких соотношений с теоретически-предсказываемыми величиноми

ретически предсказываемыми величинами $\mathcal{Z}_{l}^{2}(He^{2+})/\mathcal{Z}_{l}^{2}(H^{+})=4$ и $\mathcal{Z}_{l}^{2}(Li^{3+})/\mathcal{Z}_{l}^{2}(H^{+})=9$ соответственно. На этом же рисунке показано, что отношение сечений образования двухзарящных ионов гелия \mathcal{G}_{2} , образующихся при ионизации снарядами He^{2+} и Li^{3+} , к сечениям \mathcal{G}_{2} при протонном ударе при равних сравнительно больших скоростях относительного движения близки к величинам I6 и 8I. Это соответствует пропорциональности сечений \mathcal{G}_{2} четвертой степеки заряда бомбардирующих частиц — \mathcal{Z}_{l}^{4} .

Такие соотношения сечений монизации гелия говорят о том, что механизм осуществления двужкратной ионизации гелия в рассматриваемом интервале скоростей соответствует предположениям второго борновского приближения. И тогда становится понятной тщетность многочисленных попыток получить удовлетворительное теоретическое описание двужкратной ионизации гелия в рамках первого борновского приближения [21].

В заключение авторы выражают искреннюю признательность В.С. Николаеву за обсуждение результатов этой работы и полезные советы.

JUTEPATYPA

- 1. Langley R.A., Martin D.W., Harmer D.S., Hooper J.W.,
 McDaniel E.W. "Cross Section for Ion and Electron production in Gases by Fast Helium Ions (0,133 1,0 Mev).I.Experimental".
 Phys.Rev.v.136,N2A, 1964, 379.
- . 2. Puckett L.J., Taylor G.O., Martin D.W.

 "Cross Sections for Ion and Electron Production in Gases by 0,15-1,00 Mev Hydrogen and Helium Ions and Atoms".

 Phys.Rev., v. 178, N1, 1969, 271.
 - 3. Пивовар Л.И., Левченко D.З., Григорьев А.Н. Ионизация газов ионами He^+c энергией 0,2 I,8 Мэв . π 374, 54, 1968, 1310.
 - 4. Пивовар Л.И., Левченко D.З., Кривоносов Г.А. Ионизационные столкновения и перезарядка ионов Li^+ , Li^{2+} и Li^{3+} в газах (0,2 2,0 Мэв) ТЭТР, 59,1970,19.
 - 5. Пивовар Л.И., Левченко D.З., Григорьев А.Н., Хазан С.М. Ионизация газов быстрыми монами N^+ и N^{2+} = "ЖЭТФ", 56. 1969, 736.
 - 6.Rudolph P.S., Charles E.Melton

 "Experimental and Teoretical Considerations
 for Ionization of Simple Hydrocarbons, H₂, D₂,

 O₂, H₂O and Rare Gases by 2, 2-Mev <-particles
 and by Electrons in a Mass Spectrometer".

J.Chem.Phys.v.45, N6, 1966, 2227.

7. Abbe J.-C., Adloff J.-P.

"Ionization de Gas Sous l'Effet d'Ions de 200A 1200keV".

Phys.Lett.v.11, 1964, 28.

8. Пивовар Л.И., Тубаев В.М. Компактный ЭСУ на 2,5 Мэв . — «КТФ; <u>32</u>, 1962, 713.

- 9. Пивовар Л.И., Левченко D.З. Укороченная перезарядная газовая мижевь.-"ПТЭ", 4, 1970, 28.
- 10. Левченко D.3., Пивовар Л.И., Толстолуцкая Г.Д. Состав медленных ионов, образующихся при ионизации газов высокознергетическими протонами. -"ЖЭТФ", 64, 1973, 1991.
 - II. Козлов В.Ф., Колот В.Я., Довоня А.Н. Счетчик медленных ионов. "ПТЭ", 6, 1965, 81.
 - 12. Соловьев Е.С., Ильин Р.Н., Опарин В.А., Федоренко Н.В. Ионизация газов быстрыми атомами и однозарядными ионами гелия. - "ЖЭТФ", 45, 1963, 496.
 - 13. Ильин Р.Н., Соловьев Е.С. Ионизация аргона иснами кислорода и азота. "ЖТФ, 31, 1961, 680.
 - 14. Афресимов В.В., Ильин Р.Н., Опарин В.А., Соловьев Е.С., федоренко Н.В. Ионизация аргона аломами, однозарядными и двухзарядными ионами жеона и аргона. "ЖЭТФ", 41, 1961, 1048.
 - 15. Соловьев Е.С., Ильин Р.Н., Опарин В.А., Федоренко Н.В. Ионизация газов онстрими атомами водорода и протонами. - "ЖЭТФ", 42,1962, 659.
 - 16. Афросимов В.В., Ильин Р.Н., федоренко Н.В. Ионизалия аргона ионами водорода. -"ЖТФ", 28, 1958, 2266.
 - 17. Puckett L.J., Martin D.W. Analysis of Recoil He⁺ and He⁺⁺

 Ions Produced by Fast Protons in Helium Gas .

 Phys.Rev. A, v.1, N5, 1970, 1432.
 - 18. Шергин А.П. Кандидатская диссертация. Потери энергии и монизация при возбуждении электронных оболочек в атомных столкновениях. ФТИ АН СССР, И., 1973.
 - 19. F.W.Saris. Cross Sections for Ar L-shell x-rays Emission in Collisions of He⁺, C⁺, N⁺, O⁺, Al⁺, Cl⁺, Ti⁺, Fe⁺, Cu⁺ on Ar .

 Physica, 52, 1971, 290.
 - 20. Динтриев И.С., Николаев В.С., фатеева Л.Н., Теплова Я.А. Исследование потери нескольких электронов быстрыми многозарядными нонами. КЭТФ , 43, 1962, 361.

21. Byron F.W., Charles J.Joachain. Multiple Ionization Process in Helium.

Phys.Rev. v.164, N1, 1967, 1.

Ответственный за выпуск Ю,В,ЛЕВЧЕНКО

Подписано к печати 18 марта 1974 г. Т-О64О1, 2 п.л., зак.226, тер.26О. Цена 20 кон. Харьков-1О8, ротаприят ФТИ АН УССР.