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Panr nybankauuht OObenHHEHHOro HHCTHTYTA EOSPHBIX

HCCaeN0BaHH
MpenpHHTsl #  cooluleHHA OOGBLEIHHEKHOrOo HHCTHTYTA AAEDHBIX
HccnegoBaHdi JOUMANW/ ABNATCA CAaMOCTOATCNbHbLIMH NyGAHKALHAMY.
OHH H31aTCA B COOTBETCTBHH co cT. 4 Yctapa OUAAH. Otnmuse
npeNpHHTOB OT COOGWEHHHA 3aKmoyaeTcs B TOM, YTO TEKCT NpPENpHHTA
GyneT BMoCneACTBHH BoCMOpoH3IAeaeH B KakoM - MHGo HAYUYHOM XKYpPHANE
HAH anepHOAHYECKOM CGOpHHKe.

Wupexcauus

MpenpuHTH ,COOGWCHHA H AeNOHHPOBAaHHKIE NYGAHKkauns OU AU umeroT
€AHHYI0 HApACTalyo NOPAAKOBRYH HYMEPAUHK,COCTABIAOMWYW Noc1ex-
nue 4 uEdpel HHAEKCA.

TlepBeili 3Hax HHOekca - OyKBeHHbIH - MOXeT ObiTh mpeiacTaBleH
a 3 papiraHTax:

“P“ - H3RaHBE HA DYCCKOM A3lbiKe;

“E* - H3JaHHe Ha aHrAHACKUM A3BIKe;

“I* - pa6oTa nyGIHKYeTCH Ha DPYCCKOM H AHIIHHCKOM A3LIKaX.

[IpenpHHTEl H CoOGMEHHA, KOTOPbiE PACCLINATCA TONLKO B CTPAHK -
yuacTHHubl OWAH, GykpeHHbIX HHIEKCOB He HMEIOT.

Undpa, cnenywwas 3a OykBenublM ofo3HaveHHeM, onpenenfeT
TEeMATHYECKYI0O KaTeropHIO RaHHOH nybauxauny. [TepeyeHs TeMaTaYECKEX
kaTercyr” a3aaHHit OMAN nepHoaHueCkH pacchilaeTCA HX NOAYYATENAM.

Hugekcot, onHCaHHbIE Bbllle, NPOCTABAAKTCA B NpaBOM BepPXHEM
yriay Ha obNioXKKe H THTYJIBHOM JHCTE KaXIJ0ro H3iNaHHA.

Cchaku

B GH6nHOrpadHYeCKHX CCHUIKAX HA NPENpHHTH H coobweuras OUSAH
Mbl PEKOMEHAYeM YKalblBATh: HHHUBANG! H JaMHIHIO aBTOPA, RAnREE -
COKpAlleHHOE HAHMEeHOBaHKe HHCTHTYTa-H3JaTend, HHAEKC, MECTO H I'od
H3A&HHA.

Ilpumep 6uGnHOrpaduueckoil CCHIUIKH:

H.H.Heanoe. OHAH, P2-4985, Oy6na, 1971.
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Uhlmann A. E2 - 8149
Properties of the Algebras £79 )

We consider properties of the algebra of all operatocs
which together with its abjoints transform a given dense
linear manifold of an Hilbert space into itself. This
algebra admits inner *-antomorphisms and derivations only
and there is an algebraic characterisation of this algebra.

Communicatione of the Joint lustitute for Nuclear Research.
Dubna, 1974




1. Definitions, results.

Let J be a dense linear submanifold of the Hilbert s, ace
*
X . Yith f (J) we denote the set of all such linear
operators @ from o dnto JJ , af s JJ , for wuich )]
-
1s in the domain of definition of &  anad Cl'.gD S‘J- f‘(l)
is ap algebra with respect of the ordinary addition and
+
multiplicetion of operators.f (cﬂ) beccmes & -*-algebra by
+
the involution & &, vhere a’ is defined to be the
; * p/
restriction of &  onto .
We shall prove the following theorems:
4 .+
Theorem 1: Let 7 be a ¥-isomorphisn from £ (4] entod (a1}
Then there exists a unitary map & from aD:, onto .D,.
(@) wd, = [,
with
-1 +
¢} ) = waw for a1l a ¢ £ (D).
L . I"JJ . .
Theorem 2: Every automorpnism ¥ of { is an inner
+
one, t.e., there 1s a unitary element W ¢ £ (—U) with
- +
Ty swaw' forall acf(J) .

=3

Treorer 2 is am obvious cc.reguence of theoren 1, Hote that
thaese theorems auggest the existence of a Ysiace-free' derinition
+
of I (.U) (theorems 4 = 6).
-
Let us now remind that a derivation of I (»OJ is a linear
+
map of gf (ﬂj) in'c itself satisfying
(&) plab) = Pa)b + a pb) .
<
Theorem 3 (P.Kréger): Is ? a derivation of f (,D') , then
4,

there exists an element X € f@) with

)] Pla) = xa-ax.

Hehce cvery derivation is an inner one. {41
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2ne knows [a] that ﬁ‘(X) ,whare 98 ic a Hilbert space,
is tne vou leunann algebra of all bounded operators. Von
Heuman: hac proved that every left ideal ol this algebra
i: generated by a projection, i.e., an operator P with
p 'P“ P‘- { see for inatanoce [3) ). The technique of this
proof also works in the more general case of the f,'(-b-)
algeiras, We now explain shortly, bow one can use these
tochpigues to chiracterise the algebras .t-‘(-b) ebgtractly.
Definition 1: Let -4 be a *-algebra. J is called an
alpg:bra with "property I" if and only if

(1) every proper left ideal conteins a minimal left ideal,

(41) every mininal left ideal is generated by a minimel

projection, and

(iii) every element of every subalgebra J, » which contains

an ideatity €, , hes a non-empty spectrum,
Let us ‘irct add socme remarks., A projector P is minimal
in v4 iff p#° and PY* 3P inplies pg * P for
every , rojector 9 of _,A . If s« 18 an algebra with
identity e, , tihen the spectrum of one of its elements Q.
is the set of all complex numbers ) suoh, that (a.-lt‘.)-1
does uot axist in u4. .

“e uow construct an example of a *—algebra wita property I.
Let T be ap index set (an abstract set) and assume to be
asBsociated to every t € | an algebra I‘(.De) . Then the
"-algebra

(s T £%2) = L', ,tT)
teT



conaists of all functions t - »{t) defined on |  witn

x{t)¢ f (ﬂ)togetber with the compositicen lawa
(%, + r‘)m R XU RO IRTE STTIRE A3 AT

(X)) = xitd | (Am)t) -Axit)
This construction provides us with a *-algebra,
Thecrem 4¢ I’(.J;‘ teT) satlsfies property 1I.

Theorem 53 Let \,4 be a ‘-algebra with property I . Then
there exists up vo '-1somorph15ms one and only one algebra
‘f(ﬂ £T) end a *-tsomorphien = of A into .f‘(-U &€T)
which maps the set of all minimal projectors of A gnto
the aet of all minimal projectors of .f (J;,{GT) .

Definition 23 A $-algebra is called a "type Iy elgebra" if
the following two conmditions are fullfilled:
1) ua has property I
2) Let T Gte a ‘-momorphism from vd into a ‘—algebra
Ir with property I . If * maps the set of all
minimal projectora of \/4 cnto the set of all minimal
projectors of .fy y then T maps v4 anto L

Theorem 63 A *—algebra is a type Id algebra if and only if
it s #eigomorph to a certain algebra ‘f"Jt, teT),

According to theorem & the centre of a type Id. glgebre is

a discrete one, i.,e.,1it is generated by its own minimal
projectors. Especially, a type Id algebra, which is to an
algebra of bhounded operators isomorphic, is s w'-algebra with

discrete centre.



2._Algebras with property I.

To prove the theorems we need some further insight in the
considered class of algebrus.
Theorem 7: For every "-algebra with property I the following
gtatements are true:
1) If p is a minimal projector, then there exists a
pogitive linear form f with
(6) pap = fwrp for all a. e

2) £ ‘.A contains oaly one minimal projector pPs , then
[ is the ldentity element of ‘.4 and oA is

isomorphic to the algebra of complex numbers,

We beginn with the second assertion. For every non-zero
anA the left ideal .Aq contains a minimel projector p, .
The case Ja=0 can be excluded, because in this situation

a apd the zero form a left ideal, that has to contain a
minimal projector and this is impossible. Now there is an
element o' with asa’p, and thus {a-a')p, =¢ . By the
same reasoning a-a'= b po ond from B = p, it follows a=a’ .
So we see ap, =a , p, o= o for all asd and p, is the
identity of VA « For every a«d there should be a complex
number A such that o.- Ap, is not inversible. It follows
o=z Ap, because otherwlse A (x-2p) 3 P wich contradicts
the sssumption that A Dbelongs to the spectrum of @ , The
Second assertion of the theorem 1s now availmble and the fdrst
assertion becomes obvious: The subalgebra P\Al’ -A s Where
P is a minimal profector of ua » has to satisfy property I
too, In virtue of the minimality of p 4 no projector different
from p 4s in »A. « Therefore, ud. is isomorphie %o the
slgebra of complex numbera snd pap= £La)p  with some
nurber fw) . Clearly, { depends linearly on o snd

]



Pq.qpu {-p bas to be a positive element of A | Hence 'f
is a positive linear form.
The property (6) 1s an essential cheracteristicum of minimal
projectors for property I elgebras. This shows
Theorem B: Let \/4 be a ’-algcbra. Denote by n(v” the
set of all such projectors p of \)4 for wiich (6) is
fulfilled with a certain linear form f.
vd has property I if end only if
pep =0 for ell P(.m(ud)
igplies a=0 in 4
The proof proceeds ln two steps. Firstly we need
semma 1:  MM(A) consists of minimal projectors of 4 .

Fron pap-fp for all a¢.d and f(6 b)4o we have

&) g = bpb'/pe)- € MEA)
and .
bab)
(8) qaqg = f(l:'b) I

We see this in the following way: ps MM(A) end p§=§

) impiies f(§)p = P§P= §p = g for projectors § and thus
Feq . Thereiore 'B‘Il(x.d) consists of minimal projectors only.
The other part of the lemma is z straight-forward applicetion
of egu. (6).

We can now be sure that TR (4] consists of all minimal projectors
if .,4 bag property I . In thils case A 2u4f= with & certain
p(’lﬂ(.ﬂ) for a given a¥0 and we get baap . Now f(pba.) *0
impiies by positivity f(b pb)#0 ana we obtainbpbakpbxab#0.
According to lemma 1 it :qu_-).LrL M  with some A and
t;n.qio . To prove the other part of the theorem 8 we choose

an element Q¢ out of a glven left ideal } . According

to the assumption we can find P;’m with pap<o . By (6)

7



one showa fta 40 and the positivity of f  implies
X' fiadlypr, Now §° Ao’pa €30 M shows that 3 contains
the minimal subideal »45 and theorem 8 is proved.
As a copzequence of theorem 8, avery '-algebra with
property I is a reduced ome [31.
Theorem 8 implies theorem 4 in virtue of
Lemma 2: Let A= £.(Jyt'7). For every §,ed,, (L ST
the element (Fr)\t') =5, cat’

Y ) = LY LA "«t‘of

is a minimal rrojector and there are no other minimal

projectors in »4 .
Indeed, every projector q of u4 defines new projzciors by
Uy =AY, G0 =0 zor b4t L g, s smailer then 9
and if ¢ was piniral ond J¢+° then §«%; , One sees
that eh projects -IJ't onto & one-dimensiopal subspace or
-5£ provided 9§, is e minimal projector, On the other
haud, every one-dimensional subspace of ‘Ut defines its
projector and this projector 1s a minimal one.
Let us mention two further properties of .‘f'(-lft,'ésT) . For
every pair of projectors M”ﬂ we distinguish twe possibi-
lities: Either they project into the same or in different Jt .
Let us denote by T, the set of all minimel projectors that
are defined according to lemma 2 by the subspaces of 'Ut .
Then W 1 the union of the W, t¢T end Wi, ~ M
is empty for {-4-*!:' « One immediatoly seas that two projectors
belong to the same 'm‘ if and only if there is sn @



with pa C}Q-e « Of course, the later condition can be
axtended to an arbitrary property I algebra, the proof of
this fact is evident.
Lemma 3: Let »d be a
an index set | and a decouposition of ﬁ(d) in disjunct
sets 'm‘(v‘), +eT  pguch, that 9 P(-Fﬂ(u‘/ velong to
the same t 1f and only if there is an avd gith pagHe.

*—algebra with property I. There is

Now suppose | bf’ *0 for g Pe'tm (4) . The element i‘*}l"
satisties Apd*-qbpby= 1‘1 and A+ , for A is
reduced and /\1 ={gbpilx "?) .This gives
Lomma 43 Piye -t(d)i.f and only if there is a positive
linear form f and en element beod  eish, that
equ. (7) and (8) are valid.

3. Representationg,
Lot
[C)) T q —=» T(x) , &€ A

be a ¥-representatiun of the *~algebrs A with domain of
gefinition J, . If ydl(ai) end 2(g)# 0 , then the
functional ? defined by q.qq:g’u) !; is a vector state
of v . Indeed, Zor $s-l, and ’f’:t(q)ﬁ +0 we have

<, vty gt ¥y . If now (7) and (8) is valid for
the projector pe WM} , we conclude T(p)#0 and with §
as defined by (6) we have <F, vy T>= froncFiE) with o vector
'T"E’-'(P)Y’ . Now T(p) is a pruvjector and hence

- L3
[§ {3, F> « <HeipY> 2 ‘_(_.!_L‘_(__._W
3t tep FEAE



tor all Q. + Setting f." ‘I' wo get
TGIRNIE 3 2RSS 2SI )

and the egqunlity aign holds for ¥ .

Theorem 91 For any P Y€ WA) ana

(10) pap = ftdp ; Jua = gag , aed
avery ‘—reprasentatxon r of .,4 with T(p)po satisfles
IKCEE

g e

where the supremum wuns over all ¥, ¥'s<J, with the

restriction

(12) «p¥ -1 ~pt - ¥

We are now in the position to show theorem 5. Let .,4 be a
*_aigebra with property I. With | we dencte the index set
given by lemma 3. For every teT we choose Pt L3 7!&(-4)
and define 'rt by PP ﬁ(”Pt « Let us now perform the
GNS-representation T, of A dotermined by ﬂ with domain
of definition J; and cyclic vector ded, ft(u)r(f‘.‘l"(u)f{)'
It is Tt(Pt)}'_’ it . If for some QE J.e we have -c!(mé -g‘,
then T(RWIT (PO = TP E and with the help of (6) we fina
$ depending linearly on §, . This shows that TAP) is
a one~dimensional projector, The same conclusion can be drawn
for every Tt!ﬂ) with ge 'ml.fv‘) by similar arguments. Lemmata
1 end 4 now indicate a one-to-one correspondence between

'mtkuﬂ and the set of all one~dimensional subspaces of Jt .



Henco the vectors (12) form one-disenclonel spacen ond
ecau, (12) 4o valid without perforning the operation “sup” |
Ve construct the direct sum T of the reprozentations T,
t¢T, and the reoult is a “—igomorphion of « into L' t<T)
with priperties required by thcorem S.
We consller now a second '-representation < into I.(‘Ee'“T)
with the same properties. Then the one-dimensional subspaces
of 0, nnd oa( are given by T (R) A, and ’F(h)'b: and
there 15 a one~to-oie correspa@ndence
(13) T &, o ~(p) e
Aa proved above, the transition probabilities between one-
dimensional subspasces remain unchanged by the wmapping (13).
Applying a theorem of Wigner [¥] theie is & unitar_v or anti-
unitary one-to-one mappiny W, from At onto Jt ‘with
() Fpug = U T(Pe)
Considering now with the belp of {14)the validity of
'?(q){{—'za)u,—u*‘rlu)]'tq) = ] Tlgagiu, - ¥, r(qo-slﬁ =0

for every minimal projector ql. we get

(15) W Ry = Ty, wc Tu,
Applying this to ia too,one proves lineavity of « .,
By this way we bave not only proved theorem 5 but also a
genoralisation of theorem 4, Indeed, let . = f‘(,duuT) N

X the identic sutomorphism and © & %isomerphism onto
,('(.5;,{5‘7') . There is a unitary map W of the direct sum
of all o0, onto the direct sum of all 4'71 which impliments
T .
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The last part of the proof of theorem 5 coateins the followlug
statenunt:
19

Theorem 10t Lot ¥ be a A _isoporphism of z (Q, .!‘T) onta

f'(ii‘,,t’(’?’) . Then therc existe a unitary map W

froo E'ﬁt , L€ T onto 25", t'«T  and a map ? from

T onte T with

w ‘3-! = Jjat)
- 27, teT)

Ta) = usu , e (t,te .

Theorem 10 implies the theorems 1 pnd 2 and showa bow to prove
theorem 6: We have to copnsider an imbedding

A (B eeT) = B with () = W(B),
Theorem 5 tells us, that we need to consider the case

A= LB, t6eT) s LU teT)= 8, mes)e m(L)

only. Further, J and L5 nave to be '—1somorph {theorea 5)
and hence the:ic is a '-isomorphism from fr onto \44 N i.e.,
inte & that leaves stable the set of all minimal projectors
as a whole. This F-ismomorphism has therefore to be an *_auto-

morphism and it follows Lre=vd

4, Proof of theorem 3.

Let ¢ bve a derivetion of L£°(2) . Using en ides of P.Erdger
we construct the element X of eq. (4) explicitely. For any
two veetors £, of A  we define Pyy BY

(Pr) = § ,(Pm)q’=o for oll w'Lm 1

12



dow Y- P'.,' 10 v lipour wap of 2] into I’(‘al ané wn
have Q.P‘,l. &"'l for all o¢ ['(J)
How we define
o= ) €
and get a lineur pap ql-pr"z fron into 40 . How
Py = ra-ar, ae ()
13 a map of [J into [J for every ael(F) ana
Pt = §lPoy 1§ -0 PPy)E = {?("P-g.y)'af(}’m;)} §
shows that
fln = T(a)r.l"ﬁ « flaym
Hence ¢ = ¢ , Substituting a-= P"l'l we get <, @) =0
Next we consider PV = ?(Q.)‘ . “F i8 again a derivetion
and we construct as sbove Y7 = 7(&!“")'; so that
Hlay=Ly,al and
(EV-QJ‘VQ.‘."‘lz) - <'1al£"u.15h> :
Choosing #,= § , @ P“ih! we obtain with (§,0§>=<t,y, 1w
YR M) = - (R,
Now Yy maps J dinto J  and x*s- Y so that
X\ye -f'u’) and the theoren is proved.
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Ycaosus obmena

fipeapunim ¥ coodutenna OMAKM pavcwnmeTLR BednauTHO, Ha aclope
HBIGHMHOI O OOMEHA, YHHDBCPCHTCTCN, BHHCTHIMYTaM, Ja0o0paropisasg.,
GUGIHOTCKAM, HAYYHBIM TPYRMAM H OT2CAbHBIM VUCHBIN (oave SO cTpan.

Mbl oxkHIacM. uTo nonyuatean Hizauui OHAH 6yay T camu npopn-
AATL MHHRHATHBY B OCCNAA THOM nockiave nyOaunaunit b Ayouy . B nopagxe
OOMEH MPHHHMATCA HayYYHbIC KHHIH, &WYPHLbl, APCOPHHTILL H HHOr o
BH:a NYOIKKAUHH Mo TemaTuke OWSAN.

EaRHCTBeHHbIA Bi NYOIHKAUHA.KOTOPBIA HAM MPHCBLLIATL He Cieay -
©T,-2T0 PCNpPHHTIbL /OTTHCKH CcTaTel, ye ONYOMHKOBAHHBIX B HAYUHBIY
KyDRATAX/.

B psae cny4aeB Mbl CAaMi OOpalnaeMCs K NONYYaTeIAM HallHX H3aa-
HH# ¢ npuckbOH SecnraTHO MPHCAATL HaM KakKHe-HO0 KHHCH HAaR
BbLIDHCATH ANA HalleH GHONHOTEKH HAYYHbIE XKYDHAMbl, H3IJAIOWHECH B HX
cTpaHax.

OTnesbtbie 3anpOCH!

HanatenbckHit oTaen exeroaHo BuinmonxuaeT okoso 3 000 oTaenbinix
3aNpocoB Ha BLICBIIKY NpenpHHToB H coobwenud OHWAHU. B Takux sa-
npocax cleayeT o0f3aTellbHO YKaiwBaTh HKHIEKC 3anpaliHBaeMoro
H3NAHHA.

Anpeca

[IHcbMa mo BceM Bonmpocasm o0MeHa MYOJHKALHAMH, a TaAKKe 3alpo-
Cbl HA OTAeNbHble HILAHHA CNeAYeT HAMpABIATH MO alpecy:
{01000 Mockea,
Tageubnii novwnamn, n/s 79.
H3zdaneabcxui onden
O6vedunenrozo uncnunyna
AQePHBIX UCCACOOBAHUL .
Anpec ans nmocbinkH Bcex nyGnHkaluHH B mopsike ofMeHd, a Takxke
nns SecniaTHoll MOANMHCKH H& HAYYUHBIE JKYDPHANkL:
101000 Mockea,
I'aaenvid nounamn, n/a 79.
Hayuqno- mexnuvecxas bubauonexa
O6beUHRHHOZO UKCRUMYRA
Acepublx uccaedosanutl.
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