
INITIATION TO HYDRA 

R.K. Böck^ 
CERN, Geneva 

1. INTRODUCTION 

1.1. About this paper 

The HYDRA conventions and support programs, developed for use with 

analysis programs in high energy physics, have found a wide distribution. 

This note gives a short introduction to and the raisons d'être for the 

HYDRA system in a somewhat more casual style than the existing HYDRA 

system manual offers. Calling sequences of user routines and examples 

are included in the hope that this paper may also serve as a reference 

for the unsophisticated user. For any more detailed information, the 

reader is referred to the HYDRA system manual (which can be obtained from 

M r s . K. Gi e s e l m a n / T C ) . 

1.2. About the implementation of HYDRA in FORTRAN 

Programming languages at high level have made computers accessible 

to users with very little specialized training. They have also reduced 

the impact of developments in computer hardware or operating systems on 

existing user programs. 

Scientific programming is predominantly done in FORTRAN as the old­

est and most widely implemented high-level language. None of the alter­

natives, like ALGOL or PL/1, offers the same degree of portability between 

The many authors of HYDRA software and concepts are not responsible 
for this note • obviously their contributions are vital beyond the 
point of simple acknowledgement. 
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different computers for programs, or is understood by an equally high 

number of computer users. 

HYDRA conventions are therefore tailored to the common understand­

ing of FORTRAN and the corresponding support packages are "embedded" in 

FORTRAN, i.e. they are FORTRAN subroutines or functions. They are them­

selves mostly written in FORTRAN as defined by the American National 

Standards Institute or ANSI. They resort to using non-FORTRAN state­

ments only in very limited and well defined w a y s , and for three different 

reasons : 

(a) To fill in very few obvious loopholes of FORTRAN by subroutines 

(bit-byte-character handling, transfer a d d r e s s e s ) . 

(b) To make critical subroutines more efficient by hand-coding. 

(c) To achieve computer and system independence by use of switches and 

non-FORTRAN statements recognised by the précompilation editor 

PATCHY (itself a FORTRAN p r o g r a m ) . 

1.3. About the problem HYDRA attempts to solve 

FORTRAN contains all ingredients to express basic algorisms adequate­

ly. At the elementary level, variables, mnemonics, assignment statements 

with expressions and branching instructions are sufficient. Larger p r o ­

grams can be structured by introducing the FUNCTION or SUBROUTINE notion 

with formal parameters (1 calling sequence 1) constituting the interface 

between calling and called program. 

With growing program size, subroutines become numerous, and their 

logical relation may become non-trivial. The accompanying data often 

have to be grouped and stuctural relations between data groups have to 

be introduced. Also, memory efficiency dictates overlapping use of stor­

age. To attack such problems, FORTRAN makes available only the simple 

hierarchical subroutine and the COMMON storage blocks organisable in arrays. 

The burden of organising program and data structures is left entirely to 

the programmer. 
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HYDRA can not take over the structuring of program and data. It i n ­

troduces notions, though, which alleviate this burden and which allow o n e 

to express and to communicate structures more easily. Program parts c a n 

then be more readily defined in terms of the interface data and the t r a n s ­

formations applied to them between 'input' and 'output 1. Hence, p r o g r a m 

parts are more easily understood, replaced, rearranged and documented. 

These problems of communication between program parts are character­

istic of a multi-user environment in which many programmers may contribute 

to the writing of a program, and in which the program's objectives e v o l v e 

with time; in short, an environment which makes the 'black-box' approach 

for large programs near-impossible. 

In order to achieve these objectives economically, supporting H Y D R A 

'system routines' and user written programs make use of concepts such as 

data blocking and structuring, dynamic memory, program modules, and t r a p ­

ping . The corresponding terminology and rules together with the support 

package interfaces constitute a learning threshold that one has to p a s s 

to obtain access to HYDRA. 

2. HYDRA CONCEPTS 

2 . 1 . Blocking and structuring of Data 

The organisation of data is vital to the writing of a program. FORTRAN 

gives the programmer some tools, such as mnemonics, arrays and m u l t i p l e 

subscripts. Such variable assignments are static, i.e. the corresponding 

memory space is reserved at load time. Programmers use data arrays o f t e n 

in a relation defined implicitely by using them in a related way, or b y 

introducing relating variables like pointers. The normal FORTRAN tools 

are enough to solve such problems locally. 

If, however, data are communicated through many stages of a p r o g r a m , 

their structuring has to be worked out with more cáre. Also, mnemonics for 

variables become a burden rather than a help for long-range communication; 
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they cannot b e remembered any more, they clash with local variables, and 

they do not usually show the structural qualities of data. 

2.1.1. Data Banks 

HYDRA therefore makes the distinction between shortlived data, for 

which no rules other than F O R T R A N ' S are needed, and longlived data, for 

which the following terminology and rules are applied: 

(a) Data elements are single precision floating point words. 

(b) Data elements are grouped according to logical affinity (e.g. all 

data elements describing a particle track) and stored into contiguous 

storage w o r d s . This area is called the data-part of a bank. 

(c) The bank carries a one-word BCD identifier and is referred to by a 

pointer called, a link. Locally one uses the identifier as a m n e m o n i c 

for the integer variable containing that link. 

(d) Logical relations between banks, or rather between the data entities 

they represent, are expressed by links which themselves are also p a r t 

of a bank. The simplest link is the pointer allowing one to go f r o m 

a bank to 'the next bank of the same type'. 

(ej Single^bit information concerning the group of data elements and 

associated links in a bank is stored in a status word, which is a l ­

so part of the bank. We have by convention allowed 15 bits of t h i s 

word to be freely assigned a meaning by the user. 

2.1.2. Data Structures 

Links allow the construction of 'graphs' of any kind, in which the 

nodes are data banks and the (directed) edges are links. Such pictorial 

graph representation of data can be used to visualise the logical relation 

of data. Data banks interrelated in a well defined way are called a d a t a 

structure. 
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The simplest hierarchical data structure is called a tree structure. 

It is so common and useful that some HYDRA system routines support it 

specifically. In a tree structure, banks exist at distinct levels of 

hierarchy, and each bank may be one of a set of identical banks, all 

with the same identifier and all depending in the same way from the h i e r ­

archically next higher bank. Each bank may be the starting node of one 

or several tree structures at lower level. 

Example : High Energy Physics events are made up of vertices, every 

vertex has tracks associated to it. Also, to each event is associated a 

bank of information concerning electronic counter information to be used 
o 

later. Assume the event to be a two-prong with an associated V . 

The pictorial graph for this event information is then 

EVENT 

IOUNTER 
INFORMATION 

PRIMARY 
VERTEX 

V 
VERTEX 

INCIDENT 
TRACK 

OUTGOING 
TRACK 

OUTGOING 
TRACK 

POSITIVE 
TRACK 

NEGATIVE 
TRACK 

This information is structured into three levels, and vertices and 

tracks constitute sets of banks. HYDRA, for storage simplicity, replaces 

the 'fan-out' links from 'event' to the 'set of vertices' and from 'vertex' 

to the 'set of tracks' by one (hierarchically) downward link to one 

member of the set, and by one link per member joining this member to the 

next member of the set. The chain of links ends at the last member with 

a zero link. . 
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The HYDRA representation of the above information is then 

or in a frequently used shorthand allowing for several events 

EV 

CO vx > 
TR > 

Associated to each bank are bank descriptions. Highly simplified 

they might look for our example like this: 

EV: 1 data word 

3 links 

no status bits 

VX: 6 data words 

2 links 

1 status bit 

TR: 9 data words 

1 link 

3 status bits 

CO: data words only 

no links 

event number 

EV, VX, CO 

X, Y, Z and errors 

VX, TR 

primary vertex 

1/p, A, <j), and errors and correlations 

TR 

incident, +, -
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2 . 1 . 3 . Linkage_Conventions 

All links connecting data banks into a tree structure are called 

structural links in HYDRA. The example shows that they can b e divided 

into horizontal links, i.e. links from one member of a bank set to the 

next, and vertical links, i.e. links from a bank to a hierarchically 

lower level bank, which may again be a member of a set. In any given 

bank there may only be one horizontal link, but any number of vert i c a l 

links. 

Data structures are not always of a tree type, and banks in a tree 

structure may, for programming convenience, m a k e reference to banks in 

some other data structure. Such non-structural links are called reference 

links in HYDRA. Any number of reference links is permitted in a b a n k . 

The storage convention for links in banks is to store structural links 

before reference links, and to have the first structural link always r e ­

served for the horizontal link. 'First' and 'before' are defined with 

respect to the addressing inside the bank, described in 2 . 2 . 1 . below. 

2 . 2 . Dynamic Memory 

HYDRA relies for storage of all data, shortlived or longlived, on 

a dynamic store. The dynamic store is a FORTRAN array, arbitrarily called 

Q or IQ (in FORTRAN word-by-word equivalence) and usually assigned to 

blank common. 

2 . 2 . 1 . Bank_Storage 

For longlived data, bank space is obtained by calling the HYDRA 

subroutine MQLIFT, which returns an address relative to Q. A t this address 

room for data elements, links and status word has been provided. The 

address points to the status word of the bank. Data elements of the bank 

are referenced by adding a bias to this address, links in the bank are 

referenced by subtracting a bi a s . Thus, for instance, the 'first link' 

and the 'fifth data word' of the bank VX are referred to by IQ(LVX-l) 

and Q(LVX+5). MQLIFT will fill up the array Q dynamically starting at 

the high-address end. 
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2.2.2. Working_Space 

The same FORTRAN array Q is used/ in its low-address part, to c o n ­

tain shortlived data, and this part is called working space. As its 

origin is not fixed to keep flexibility for the HYDRA system, it must 

never be referred to by the name Q, but by local mnemonics. They are 

introduced by appending them to a COMMON statement invoked by a PATCHY 

m a c r o (CDE-card) which defines Q, as well as some more system-user i n t e r ­

face variables (see para. 4 ) . 

There are two conventions to be observed in organising the working 

space: 

La) links, which are relocatable integer variables, must be assigned 

space at lower addresses than other data variables. 

(b.) the extent of link and data working space must b e announced to the 

system by CALL MQWORK, whenever their limits change. 

2.2.3. Dropping_of_banks_and_Garbage_Collection 

Working space no longer needed is released by announcing new limits 

to the system. Bank space is released by dropping banks: If the i n f o r m a t i o n 

contained in a bank is no longer needed, the bank is marked as dropped b y 

setting its drop bit, reserved for this purpose in the status word of t h e 

bank. One uses CALL QDROP which can also drop entire tree structures, o r CALL 

SBIT1 (Q(L), IQDROP). Dropped banks stay in memory until bank space and 

working space clash during a new request. When this happens, the HYDRA 

system executes a garbage collection squeezing out dropped banks and 

shifting live ones. This moving of banks in store will require updating 

of links, done automatically by the garbage collector. Those links p o i n t ­

ing to live banks will be relocated, i.e. a bias is added to each link s o 

that the old address with respect to Q is converted into the new one. 

Links pointing to dead banks will be set to zero, unless the link is 

structural and the dead bank has a horizontal link connection to a live 

bank. In this case the link will be bridged, i.e. be replaced by the 
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link to that live bank. 

Example for bridging: (Bl and B 3 are dropped) 

0 => 

Garbage collection is not normally under user control! The user has 

to be concerned only with the total extent of Q so that too frequent g a r ­

bage collection and memory overflow are avoided. The obedience to storage 

rules for links in banks and working space ensures smooth functioning of 

the garbage collection mechanism. 

2.3. Program Sturcturing and Interfacing 

Program units written according to the modularity aims of HYDRA must 

be defined in such a manner that they may constitute the building blocks 

of larger programs. On the elementary programming level, FORTRAN functions 

and subroutines are defined by their calling sequence and by the operations 

they perform to transform 'input data' to 'output data'. 

HYDRA attempts to facilitate the definition of higher level program 

units called processors by prescribing an interface definition in terms 

of data structures only. The definition of 'longlived 1 for data that are 

grouped and structured in banks thereby takes a meaning: Longlived data 

serve for inter-processor communication. Conversely working space serves 

only for intra-processor use. 
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2.4. Logical communication between processors 

2.4.1. Call_Banks 

Processors will frequently be designed to operate on parts of exist­

ing structures, so that their "calling sequences' must include indicative 

information about more complete data structures in store. This p a r t of 

the processor interface is also stored in banks, and these banks are called 

call banks. Call banks are created and used in a way very similar to 

ordinary data banks. A subroutine JQBOOK is used for creating them, which 
(*) 

routine automatically links call banks into the call bank data structure 

Standard link names are used in processors to refer to call banks. There 

must be two such links: LQUP referring to the call bank generated at higher 

lever to call the current processor, and possibly LQDW which points to 

the call bank generated in the current processor for calls to lower levels. 

2.4.2. Processor Calling 

HYDRA processors are groups of ordinary FORTRAN subroutines: One 

is the primary routine which m a y invoke others, if there are more than 

one. Calling and returning conventions inside a processor are those of 

ordinary FORTRAN. For communication with the primary routine of the p r o ­

cessor, a HYDRA calling and returning procedure is used passing through 

the system routines JQJUMP and JQBACK. This is necessary for correct 

handling 1" of the call bank structure. Processors can thus easily b e in­

tercepted, for instance for overlaying. Also, the content of the call 

banks includes system status information and the return address, so that 

processors are 'reentrant', i.e. they can be interrupted whenever calling 

other processors, and during this interruption they may be called in a 

different context without destroying the information necessary for 

resumption of the original task. 

The call bank structure is a 'stack 1 i.e. a linear chain of banks. 
Its entrance link, LQUP, points to the last created call bank corres­
ponding to the lowest level in the processor calling hierarchy. From 
there links point in chronological order to previously existing call 
banks. For every processor call (return), the stack is augmented 
(reduced) by a corresponding call bank. 
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2.4.3. Abnormal Communication :_Trap_Returns 

Normal calling and returning conventions assume normal behavior of 

programs. In other words, they assume the invoked procedures can t r a n s ­

form by the programmed method the input data structure into the output 

data structure according to the interface definition. 

In many cases, programs at any level can find themselves in an a b ­

normal situation which makes continuation impossible, or changes at least 

the procedures to be adopted. 

Classically, signalling of such conditions is performed by including 

in the data interface of subroutines markers or flags which may determine 

the subsequent logic. 

HYDRA attempts to single out two problems in this area, thus sepa­

rating m o r e clearly data and logic interfacing of processors. 

(a) When an abnormal condition arises, the program flow can be directed 

back to a processor at a higher level, which has previously signalled 

its capability to resume operation after detection of the particular 

trouble. This process is called trapping. A trap is set by a c a l l 

to a HYDRA system routine RQTRAP; signalling an abnormal condition 

is a call to RQTELL. Trapping m a y be imposed by the calling sequence 

of RQTELL, if the condition detecting program , which calls RQTELL, has 

no programmed recovery. 

(b) Traps m a y also be requested for certain conditions during the i n i t i a ­

lisation phase, even though a recovery is foreseen in the program. 

To make this possible, all interesting conditions are given unique 

condition ID-numbers and signalled to the system by calling RQTELL, 

regardless whether recovery is programmed or not. All conditions 

occurring can thus be counted and summarised at characteristic p o i n t s 

in the program, usually at the end of the run. For test and p r o d u c ­

tion runs, this provides a powerful diagnostic and checking t o o l . 

Causing a certain amount of overhead, though, condition ID's should 

not be used for general accounting purposes. 
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3. LIMITATIONS OF HYDRA 

3.1. Limits of the modularity concept 

HYDRA concepts provide ways for an orderly construction of large 

data and program structures. The pool of application programs using 

HYDRA which CERN is accumulating now, is, hopefully, more easily d e s ­

cribed, reconfigured and extended than programs using many different l o ­

cal conventions. 

Processors taken out of a larger program are not, however, very g e ­

neral toy bricks that can be used in any place desired. HYDRA provides 

a means of avoiding to have pieces of a jigsaw puzzle which fit only in 

one unique place. For large analysis programs, though, standard and 

proven processor combinations are commonly used with a high-level steer­

ing program operating very much like any conventional black-box FORTRAN 

program. The HYDRA conventions allow to extract the desired parts of s u c h 

programs and rearrange them or to reuse them in a new context, after c a r e ­

ful checking or adaptation of data interfaces. 

3.2. Programming discipline 

HYDRA is an 'embedded language'; there are no compile-time checks 

for misuse of concepts nor for plain programming mistakes, as long as 

these do not contradict FORTRAN. HYDRA support routines are reasonably 

well protected against basic inconsistencies in the data they are g i v e n , 

but diagnostics occur at execution time and necessarily are not as re­

vealing as a compiler's check list. 

The common use of explicit pointers into an anonymous dynamic store 

necessitates programming discipline which, if violated, m a y lead to c l o b b ­

ering of the bank storage. A number of debugging aids exist, in p a r t i c u l a r 

the routine DQSNAP, which can, under a control of option-letters, map a n d 

dump all parts of the dynamic store. Some non-vital conventions on link 

names facilitate writing and reading of programs. Links to banks in t h e 

dynamic store are given variable names which are the identifier of the 
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bank preceded by the letter L, e.g. LVX for the link to bank VX. Links 

which point to a cell of the dynamic store which itself contains a link 

(a frequent ocurrence), are given the name of the bank which that link 

points to, preceded by the letter K; thus, LVX = IQ (KVX). Links also 

known to the HYDRA system, such as LQUP which points to a processor call 

b a n k , all carry variable names beginning by LQ or KQ. 

3.3. Some examples of common mistakes 

A bank is created with certain limits on the number of links and 

data words. The subsequent use of a bias exceeding those limits 

may destroy vital information in other parts of Q. 

- A status word is entirely replaced by the statment IQ CL) = (express­

ion) . This is illegal, because status words contain system informa­

tion. Only use CALL SBIT or CALL SBYT to enter information into 

status w o r d s . 

It is false to assume that dropping a bank by CALL SBITl (Q(L), IQDROP) 

removes it from the data structure. The removal and bridging happens 

only when garbage collection occurs. CALL QDROP, instead, does r e ­

m o v e a bank logically from the indicated structure, but again any 

number of reference links to this bank continue to appear 'live'. 

Unwanted data structures or parts thereof are often not dropped upon 

return to higher level programs? this is a particularly frequent 

error for 1 returns 1 by trapping. Trap handling therefore should be 

programmed only at high level and must take care of the data corres­

ponding to this level. 

- The effect of improper structuring of banks is frequently noticed by 

the necessity to loop in a complicated way in processors, and p a r t i ­

cularly when data are to be dropped. Banks should be part of one 

data structure only, and this structure should be of the tree type 

whenever possible. 
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Most HYDRA system packages must b e initialised at the beginning of 

the run, and in a specific order. The correct order of CALL state­

ments is that of the description (para 5} below. 

On any computer installation exist various abort possibilities which 

should b e properly trapped. Any abnormal end of program should still 

execute a CALL QFATAL producing a dump of the dynamic memory. This 

is the only way to make sure a diagnostic can be construed for an 

otherwise meaningless illegal situation. 

4. THE HYDRA SUPPORT MATERIAL 

CERN distributes HYDRA system support routines in the form of PAM-

files, i.e. card images which the precompiler program PATCHY transforms 

into compilable material. On any given installation, HYDRA-routines will 

usually be m a d e available as load libraries or modules, the details of 

which depend heavily on the computer system and the person(s) responsible 

for HYDRA. 

In addition, a set of very few COMMON-, DIMENSION- and EQUIVALENCE-

Statements are necessary, which can be inserted, where PATCHY is avail­

able, by a PATCHY statement + CDE, Z = Q. These statements give p r o ­

cessors access to several common system links and to the dynamic store 

variables Q and IQ. They must, of course, correspond to the CDE-state-

ments used in compiling the system support routines. 

For the technically interested reader, the expansion of the PATCHY 

macro + CDE, Z = Q is actually the following: 

COMMON / QBITS / IQDROP, IQMARK, IQGO, IQGONE, IQSYS, IQCRIT 

DIMENSION IQUEST(3Q) , 0.(99) , IQ(99) 

EQUIVALENCE (QUEST, IQUEST), (LQUSER, Q, IQ) 

COMMON // Q U E S T ( 3 0 ) , L Q U S E R ( 7 ) , LQMAIN, L Q S Y S ( 2 2 ) , L Q P R I V ( 7 ) , 

LQ1, L Q 2 , LQ3, LQ4, L Q 5 ? LQ6, LQ7, LOSV, LQAN, LQDW, LQUP 
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It shows how variable names for some bit positions in the status 

word (e.g. I Q D R O P ) , for system links (e.g. L Q U P ) , for user available 

links (LQUSER, LQPRIV) and for the dynamic store (array Q, IQ) are i n t r o ­

duced. 

The HYDRA support routines are largely independent of each other, 

but it is inevitable that some routines necessitate a preceding calling 

of others. Routines come in packages; only one of these packages (M, 

for memory management) is necessary, all others should be called u p o n 

only if their functions are desired. Some routines (RQTELL, QTITLE) a r e 

called both frequently and from other system routines, so that short 

(dummy) versions of these are supplied in case the corresponding p a c k a g e 

is not otherwise desired. Some of the packages (M^, T-, J-, R-package) 

m u s t be initialised at the beginning of the program by calling a r o u t i n e 

x Q I N I T (x for M, T, e t c . ) . Routines that need no initialisation and a r e 

not part of any specific package, are called HYDRA utility routines. 

5. THE MORE IMPORTANT CALLING SEQUENCES QF HYDRA 

5.1. Memory Management (M-package) 

(For details see paper B JÜQ of the HYDRA systems manual) . 

Example sequence: (using bank conventions of the example in 2 . 1 . 

a b o v e ) . 

+ CDE, Z = Q 

+, LINKS(24), LB, K ( 3 ) , LVX, LEV 

+ , FIRS TD, A(9,9), B, C(13) 

+, LASTD 

+, SPACE(4000), EOMEM 

DIMEMSION MVX(4) 

DATA MVX/2HVX, 4, 3, 6/ 
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CALL MQINIT (EOMEM) 

only once at beginning of run, to initialise the memory 

manager for entire dynamic store length; here, total 

length is 4128 words plus an unknown number of system 

links 

CALL MQWORK (FIRSTD, LASTD) 

whenever working space limits are changed. Here: 30 links 

and 97 data words are m a d e available 

CALL MQLIFT (LVX, LEV, - 2, MVX) 

a bank with the identifier VX, with 4 links, 3 of which 

are structural^ and with 6 data elements (words) is created. 

Its address (wrt Q) is returned in LVX, i.e. address limits 

are IQ(LVX - 4) to Q(LVX + 6). The meaning of LEV,-2 

is the following: if LEV ^ O, the bank will be appended 

to an already existing tree structure by the statements 

IQ(LVX - 1) = IQ(LEV - 2) 

IQ(LEV - 2) = LVX 

If LEV = O, such linking actions as necessary have to be 

performed by the calling program. 

5.2. Title reading (T-package) 

(for details and some further options see paper B TQ of the HYDRA 

systems manual) 

Titles are groups of data, usually punched on cards, which permit to 

steer certain parts of a program. These data groups are called title items 

and preceded each by a card carrying 

in column 1 an asterix 

2 6 normally blank 
II 7 10 a Hollerith identifier 

11 20 the number of data words on the following card(s) 
•i 21 80 The FORTRAN format under which the following 

card(s) are to be read (brackets included). 
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After the last title item a card with *FINISH in col. 1 - 7 w i l l sig­

nal the end of title items. 

The initialisation of titles in memory is done by 

CALL TQINIT (LUNj-

with LUN logical unit number containing title items. This has to be p r e ­

ceded by memory initialisation (CALL JVJQINIT) . 

Reference to title items can b e made by 

CALL QTITLE (LTIT, ID, IFLAG) 

which returns in LTIT a link to a bank containing as data elements the 

word-by-word information of the title item with the Hollerith identifier 

ID, i.e. Q (LTIT + 1) will be the first data word, etc. 

IFLAG controls the action of QTITLE in case the title item can not 

be located: if IFLAG = O, LTIT will be returned zero and hence the situa­

tion must be handled by the calling program. If IFLAG = 1, QTITLE w i l l 

trap-exit to the R-package (see below) with condition ID 61, and the calling 

program will not regain control. 

Example : 

Program On logical unit 1 

* BEAM 3 (3F 5.1) 

CALL MQINIT (EOMEM) 15.3 .0006 3.14 

CALL TQINIT (1) 

• • • • 

CALL QTITLE (LBEAM, 4HBEAM, O) 

IF (LBEAM.EQ.O) GOTO 50 

PB = Q(LBEAM + 1) 

ELB = Q(LBEAM + 2) 

PHIB = Q(LBEAM + 3) 

50 
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5.3. Jumping into a n d out of processors (J-package) 

(For details see paper B JQB of the HYDRA system manual) 

For calling (the primary routines of) processors, and for the c o r r e s ­

ponding return instruction, HYDRA system routines are called which assure 

the building of a call bank data structure in memory. 

Example sequence: 

+ CDE, Z = Q 

EXTERNAL PROC 

DIMENSION MPROC (40 

DATA M P R O C / 4HPROC, 2, O, 1/ 

CALL JQINIT 

once at beginning of run, preceded by CALL MQINIT (....) 

CALL JQBOOK (MPROC) 

this corresponds vaguely to a CALL MQLIFT; the created call 

bank will contain 2 reference links (the third word of array 

M P R O C is meaningless) and one data word for communication b e ­

tween calling and called processor. The link to the created 

call bank will be found in LQDW. 

IQ (LQDW - 1) = 

IQ (LQDW - 2) = 

Q (LQDW + 1) = 

fills in the call parameters for the processor 

CALL JQJUMP (PROC) 

executes the transfer of control into PROC. Note that upon 

this instruction all information to be used after return must 

be in bank storage, i.e. ordinary data structures or the call 

bank. The called processor (PROC) will normally destroy the 

content of working space. A data saving possibility for larger 

amounts of data is described in the HYDRA system manual. Our 
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example is completed by giving the usage of call parameters 

from the call bank in the (called) processor PROC, and the r e­

turn sequence: 

SUBROUTINE PROC 

+ CDE, Z = Q 

+, LNEED, . 

•J- / AJRG / • • • • 

+, LAST 

CALL MQWORK (ARG, LAST) 

readjusts work space limit 

LNEED = IQ (LQUP - 1) 

ARG = Q (LQUP + 1) 

LQUP contains now the link to the call bank, LQDW is free for 

calls further down 

CALL JQBACK 

will return, restoring work space limits and LQDW, LQUP to the 

state prior to the execution of CALL JQJUMP (....). 

5.4. Reporting and Trapping (The R-package) 

(For details and further options see paper B RQ of the HYDRA system 

m a n u a l ) . 

The concept of trapping as an abnormal termination of procedures has 

been introduced in 2.4.3. above. Let us here look at this mechanism from 

a different angle. 

(a) Assume there are situations in a program whose occurence deserves to 

be reported to a central reporting routine. We label each of these . 

situations by a unique condition ID, a 3-digit positive integer, and 

report it by calling the HYDRA system routine RQTELL. At the end of 

a processing step, or at the end of the program run, we will then be able 

to print with each condition ID the associated number of occurrences. 
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(b) Now some of these situations m a y b e too severe for the routine in 

which they occur to handle them. So we associate to the CALL R Q T E L L 

a flag with the meaning: Do not only report the fact that this c o n ­

dition has occurred, but take care to restart the program at the 

appropriate (higher level) point. In this case, RQTELL will trap, 

i.e. return not to the point of calling, but to a point previously 

indicated to it by a CALL RQTRAP. 

Cc) The setting of traps is under user control. Title items group con­

dition ID-s into trap classes and any condition ID mentioned in a 

trap class will be trapped regardless whether the RQTELL calling 

sequence requests this or not. In turn any condition ID given to 

RQTELL with a trap request will also be trapped: if it is not i n i ­

tialised by appearing as part of a trap class in a title item, and 

by calling RQTRAP for this class, RQTELL itself will generate a new 

condition (ID numbers 90, 91, 92) which are always defined by de­

fault as belonging to trap class 1, and can hence be intercepted. 

If they are not, the run will properly abort. 

Examples : I want to intercept condition IDs 612, 622 in one place 

called AA as class 3, every enforced trap by default class 1 in another 

place BB. I use the T-package to read the title item (see 5.2 a b o v e ) . 

* RQTR 5 (5 F 10.0) 

3. O. 0. 612. 622. 

Word 1 is the class number, words 2 and 3 are zero to avoid complicating 

the example. Several title items with the name RQTR can be given. During 

initialisation, one per run, I execute 

CALL RQINIT 

preceded by MQINIT, TQINIT and, if applicable, JQINIT. 
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In the routine intercepting class 3/ I execute 

%.... 

CALL RQTRAP (3) 

IF (.IQUEST (1) . NE.O) GO TO AA 

both for initialising the trap class (IQUEST (1) = O) and for intercept­

ing condition IDs 612, 622 (IQUEST (1) = 612 or 6 2 2 ) . Note this is one 

of the uses of the array IQUEST defined by the +CDE, Z = Q card (see 4, 

a b o v e ) . 

Similarly, for intercepting condition IDs requesting a trap, but 

not mentioned in a title item RQTR, I set the trap for default class 1 

by: 

CALL RQTRAP (1) 

IF (.IQUEST (1). NE.O) GO TO B B . 

After executing these instructions, the behaviour of some reporting 

statements will be as follows: 

CALL RQTELL (115, O) 

will simply b e reported for accounting; 

CALL RQTELL (612, O) and 

CALL RQTELL (622, 1) 

will both be trapped to statement AA, with IQUEST (1) = 612 or 622; 

CALL RQTELL (489, 1) 

will be trapped to statement B B , with IQUEST (1) = 90 and IQUEST (2) = 489. 

A list of condition IDs in use by the HYDRA system is given in paper 

COll of the HYDRA system manual. A list of condition IDs in application 

programs is part of the HYDRA application manual. IDs less than lOO are 

reserved for system use. 
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Finally, 

CALL RQEND 

will print a summary of the condition IDs that have occurred. 

5.5. Utilities 

Some HYDRA system routines have been specifically made available to 

allow handling of data structures, dumping, termination etc. Also some 

routines of what we call the 'General Section' are frequently used in 

HYDRA programs. The following examples are an introduction to such u t i ­

lities. More details and other utilities specifically available to H Y D R A 

programs like histogramming, two-dimensional plotting, the S-package f o r 

production accounting, must be looked up in the HYDRA system m a n u a l . 

(a) Examples of dropping, referring to the data structure in 2.1. a b o v e . 

CALL QDROP (LEV - 2, 0) 

will remove,, i.e.drop and bridge the first VX-bank with its attached 

TK-banks from the data structure; 

LVX = IQ(LEV - 2) 

CALL QDROP (LVX - 1, 1) 

will remove all VX-banks, but not the first, and the associated T K -

banks. The first call parameter is a K-address (see 3.2. a b o v e ) , the 

second is a flag to indicate whether the horizontal link should b e 

followed (= 1) or not (= 0) for dropping. 

LVX = IQ(LEV - 2) 

CALL QTOUCH (IQDROP, LVX, 1HS) 

will drop the first VX-bank and its attached TK-banks without bridg­

ing. IQ (LEV - 2) will now point to a dropped bank. The Hollerith S 

is an option to set the required bit IQDROP in the status word of the 
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S t a r t i n g b a n k , w h o s e L - a d d r e s s ( L V X ) i s g i v e n . 

L V X = I Q C L E V - 2) 

C A L L Q T O U C H ( I Q D R O P , L V X , ' S H . ' ) 

w i l l d r o p a l l V X - ^ b a n k s a n d a s s o c i a t e d T K - b a n k s . T h e H o l l e r i t h H i s 

t h e o p t i o n t o f o l l o w t h e H o r i z o n t a l l i n k . 

C A L L S B I T 1 ( Q ( L V X ) , I Q D R O P ) 

w i l l s e t t h e b i t I Q D R O P i n t h e s t a t u s w o r d o f t h e V X - b a n k . F o r a 

s i n g l e b a n k t o b e d r o p p e d , t h i s i s t h e m o s t e c o n o m i c w a y . I Q D R O P i s 

t h e p o s i t i o n o f t h e d r o p b i t i n t h e s t a t u s w o r d a n d p r e s e n t b y t h e 

c a r d : 

+ C D E , Z = Q 

( b ) E x a m p l e s f o r p r i n t i n g d y n a m i c m e m o r y c o n t e n t s f o r d e b u g g i n g p u r p o s e s . 

C A L L D Q S N A P ( ' F I R S T ' , 1 L M . 1 ) 

w i l l o u t p u t L i n k s ( s y s t e m l i n k s a n d w o r k i n g s p a c e l i n k s ) a n d a M a p e n t r y 

( a d d r e s s , I D ) o f e a c h b a n k . ' F I R S T ' i s a t e x t a s s o c i a t e d t o t h i s p r i n t . 

C A L L Q T O U C H ( I Q C R I T , L V X , ' S . ' ) 

C A L L D Q S N A P ( ' S E C O N D ' , ' W E M C V . ' ) 

w i l l d u m p t h e e n t i r e W o r k i n g s p a c e , l i n k s a n d d a t a , a n E x t e n d e d M a p 

( a d d r e s s , I D a n d l i n k s ) o f e a c h b a n k , a f u l l d u m p o f b a n k s w i t h b i t 

I Q C R I T s e t ( h e r e t h e s u b - s t r u c t u r e L V X ) , a n d i n V a r i a b l e f o r m a t . 

O t h e r o p t i o n s f o r t h e s e c o n d c a l l p a r a m e t e r : 

F : a l l l i v e b a n k s f f u l l d u m p 

O : o c t a l f o r m a t f o r d a t a 

( c ) E x a m p l e s u s i n g b i t / b y t e h a n d l i n g r o u t i n e s . 

C A L L S B I T © ( Q ( L V X ) , I Q C R I T ) 
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sets bit IQCRIT in the status word of bank VX to zero. 

CALL SBIT1 (Q (LVX), IQDROP) 

sets bit IQDROP to one. 

CALL SBIT (N, Q ( L V X ) , IQCRIT) 

sets the same bit to N (O or 1.) . Whilst IQCRIT and IQDROP are bit 

positions in the status word used for system - system and user -

system communication, the following instruction tests the user bit 3 

(bits 1 to 15 have a user assigned m e a n i n g ) : 

IF (JBIT (Q (LVX), 3).EQ.O) 

To handle a group of several bits (a byte.) , the corresponding rou­

tines exist: 

CALL SBYT (3, A, 5, 4) 

will set a 4-bit-byte starting at position 5 of word A to the value 

3; bits 1 to 4, and 9 to maximum (15 in the status word, 32 in any 

other packing context) will be unchanged. 

N = JBYT (A, 5, 4) 

extracts the same byte in an obvious way. 


