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1. In describing the interactions of nucleon with other
particles, invariant form factors are introduced into the
expression for the nucleon current. These form factors
phenomenologically allow for the nucleon spatialdistribu-
tion.However,no satisfactory description is available so
far for this structure in coordinate space.

The reason for such a situation is well known: to pass
over to the three-dimensional space requires a special
reference frame, namely the Breit system, to be used.
In this system the time component of 4-vector of mcmen-
tum transfer, q =p~k becomes zero (as p’:—k' y Po < Ky
and q= (0,28) ). This makes it possible to go over to
the coordinate space through the use of the three-dimen-
sional Fourier transform for the form factor F(-q?

f(l')=?2‘1’3:{f F(_q‘i)e‘n[l‘ dq’. (l)

The coordinate, therefore, is introduced as a quantity
conjugate to the momentum transfer in the Breit frame.
However, as for every value of 4 there is its own refe-
rence frame, the function f(r), which describes the nuc-
leon charge density, is not given in a definite physical
reference frame.

To overcome this difficulty, the way; should be found
now to express the Lorentz invariants, in particular, the
four momentum transfer squared, t=q2 , in an equiva-
lent three-dimensional form without using a specialcoor-
dinate system as that of the Breit frame type. For the
spinless case, such three-dimensional form has been ob-
tained in 12/ by making use of the Lobachevsky space.




The group of motions of the L tgachevsky space is the
Lorentz group ° - Therefore in *° for transition to the
configurational representation an expansion in unitary
representations of the Lorentz group was employed
instead of the Fourier transformation.

For the spin case, we areinterestedin, the parametri-
zation has been found- !  for the particle current matrix
elements in terms of the Lobachevsky space. The matrix
elements of a scattering amplitude, constructed by means
of these currents, have a form of the relativistic genera-
lization of quantum-mechanical! potentials obtained via
replacing the Euclidean geometry by the Lobachevsky geo-
metry. Therefore it is natural that the invariant form
factors in the expressions for currentsaretobe paramet-
rized also in terms of elements of the Lobachevsky space,
and for their space description expansions over the Lo-
rentz group representations are to be used.

Note that the Lobachevsky space was employed earlier
in "3/, for describing form factors, and in 79/ the ex-
pansions over the Lorentz group representations were
used for studying the form factors by means of the rela-
tivistic configurational representation introducedinref; *
However, in /6/ the advantage of relativistic configuratio~
nal representation was not exploited. In the present paper
we will connect such an important nucleon characteristic
as its mean-square radius with the distribution of the form
factor in a new relativistic coordinate space, and de-
monstrate that this provides the invariant space descrip-
tion of the nucleon structure.

2. The way of writting the currents in terms of ele-
ments of the Lobachevsky space is most easily demonst-
rated by the example of a nucleon interacting with a sca-
lar, or pseudoscalar, meson. This process is shown in
Fig. 1 where solid line stands for a spinor particle,
dotted line for a scalar or pseudoscalar one: )
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Fig. 1

Matrix elements of the hadron currents of the scattering
amplitude are of the form:

B it OV, = 0 ER-0P e’ ©OF @) (@)
<B Lol IO R0 >=§ gz,q?,i;;,o@ysu”'(ﬁ)l:ps @, (3)

where F.(¢®) and Fow (q® are the scalar and pseudo-
scalar form factors dependent on the squared 4-momentum
transfer, 9=p—~k , and v’ (p} - the Dirac bispinors. The
momenta p and k in (2), (3) are on the mass shell so
their components are connected in the following way:

py—p=m®. @

Equation (4) defines in the Minkowski space, the three-
dimensional surface of a hyperboloid on the upper sheet
of which just the Lobachevsky space is realized.

Now, by using the transformation S corresponding
to the pure Lorentz transformation (i.e., ’boost’”) A, ;



VW 0)= (k°, K ) m (2) and (3) we pass over to
the bispinors defined in the rest frames of particles 1

TR =osT s 0T O (g7 ),

u a

- ps s ¥ —l a’ 2
1”’”, (p.K)=1" (0)\ S 9 u (0)-F[H (7).
The explicit form of the transfprmation S, andbispinors
is given in Appendix of ref. +

The pure Lorentz transformations do not comjpose a
group. Their product is not the pure Lorentz transfolrtma-
tion but contains also the three-dimensional Wigner ruta-
tion described by the matrix V(Ap, k) 2SU(2)

[ 2 =1
DV ALk
-, (A L1 )

1
S;Sk=S
P

Let us introduce the following '\otatmn for the 4-vec-
tor \"k

k po—kp ———a
(k(=)p)° - (,\;‘k)%_—“"_r:__p“: v mZ RO (62)
N > T o k.p‘ »
k(=)p - k)=k = Lk, - 2. ) . F 6
Gp - (N k) =k Lk, b ) =7 (6b)
In spherical coordinates
Py = mch\'p ky =mchy,
=mﬁ'Psh.\'p‘ . k :mnkSth
?\i =h2-1
eq. (6a) takes the form
chy = chy chy ~fi i shy shy |, 6c
Xy X, hx =T R shx, shy (6c)

the three-dimensional vector V=k(-}p  is the diffe-
rence of the vectors in the Lobachevsky space. In the
nonrelativistic limit it converts into the usual difference
of two vectore in the Euclidean space, Z\ =+~q= K- 7



Consequently, it can be regarded as the three-vector of
momentum transfer belonging to the Lobachevsky space
The 4-momentum transfer squaredr qz . 1s expressed vig
that 3-vector in the following way

; 2 T e

f =t=tp=k) 2mlm-\ Jeimln = ym® AT (7)

Therefore the form factors in (2), (3) can also be para-
metrizec through K‘z . defined on the hyperboloid, 1.e.,
again through elements of the Lobachevsky space.

With (5) taken into account, current (2) takes the form

- P - 12 -1 o ..
TR 7S S0PV o 0t 0. F (3
aga U.*lp P -
e . . . 3 - 8
2T e Yt T avT oy ko
] ””p ~ o P
O Zem e !
B 2
where
i (k(’*)P):\ZI’T‘(mQ\’)I-
[e R A aa
P 1
Analogously, for (3) we nave
.ops + - 5 I 2 -1 . 5 e
FER O S IR (1 IS D IV (A K mF (v
ac ki~tp n e
(€))
L2 e e vy 1.2 -
= 3 0" kP -FE (8D VT A LK,
' ao ps 7 P
O = —— r »
1 2
where
PP s VAT (50 2R gt 5
00» \"i-ﬂ\ "“p Ani»m P

Thus, currents (2} and (3) can be represented as a

product of new current j, k(~)p), localin the Lobachev-
sky space, and the Wigner 'rotation.

The presence in (8) of the function D" containing the
Wigner rotation is connected with the transformation

7



law of state vectors under the Lorentz transformations:

it \‘V' »'k,n\:ll,\:_—lj‘:,“ by (o ol o

The Wigner rotation has a kinematical nature. In current
matrix element (8) it fulfils a removal of spin indices
«" from momentum p ontu K (by the terminology of the
authors of the paper ° ) Therefore Lhe indices ¢ and
7y of the current jm (I\( -'p) are '’sitting’’ on the
same momentum p .

Let us now examine which advantages for writting the
amplitude ratrix element come {rom the three-dimensio-~
nal parametrization of currents (7), (8) as compared to
four-dimensicnal ones {2), (3). As an example, let us
consider in the Born approximation the scattermg of two
nucleons in the theory Y =g3 :¥(x),3 W( 0)a(x): : (without
form factors). In the centre-of-mass system t!us process
is described by the Feynmam diagram drawn in Fig. 2

2

b6, K,C.

Fig. 2



and the amplitude can be written as
231,06 , [ P A APk -, .53 0 y
2 . 2 [u " gy e MN[0 2=p 2y k)
I (pok)= g2l _C{p)y e HRHu Hoph T T
5 w2 lp—~k)? 10

g (72

In virtue of (7), (8) it can be r2written in the form

. .. N 12 (210 o . R
,r(.’)r,rluz ([j’,k)f— N T ip 2p (k(=p -
g a 1 9%
12 a T = - =
lp 2p 2
| TS 1,2 I
<Dg a1 ¥ (A ,k)%Dq o VoA Lk
Ip'l 2p 2
where (‘\> (—»
2oy 6, 4 RY % A)
Ty o PR g2 g 2 e 2m gy
99, u2 —2m?2 4 'Zmi\ﬂ 1n+.\” /

Usually, when from quanium field theory informationis
extracted on the two-nucleon interaction one uses the po-
tential —

Ve )22 L8l )

p=FA ,
which follows from (10} in the non-relaticistic limit’fyThe
vector A, =—{=k-p is the difference of two vectors
in the Euclidean space. Ccnsequently, on separating the -

igner rotation, which has purely kincmatic nature, we
arrive at amplitude (11) which is local in the Lnbachevsky
space. The spin structure of (11) is direct geometric
relativistic generalization of that for poten*ial (12)*

(12)

* Note that usually an expansjon in spin structures is
performed over .the vectors k < 9 of the Euclidean
space anc¢ the kinematical Wigner reotation is not separated
that results in- ,illwreasing number of spin structures
fsee, e.g., ref. /%, where the. same maztrix element
10) is des. . "7 by three sgin structures).




2
What is the factor =T in (11) can be easily

ot ™
understood if in (10) and (11) one puts /12(‘;9,. i.e., the
scalar photon exchange. Then because of V- . 2. m2

both expressions (11) and {12) take the same form:
2 (a3, N)apd)
A T
and differ in the geometrical sence of quantity A\ only.
It can be said that for y -0 the separated in this way

amplitude
2o, o, o, 0.
1p7 2 L ip?2p - i
PP =T P T ke
/1102 Gl (72

T

9
has absolute ’geometrical’’ character
.

3. In order to find local expressions in the coordinate
space, analogous to those in the Lobachevsky space,
transition to the configurational representation should be
performed with the help of functions forming a complete
system with the voluine element of the Lobachevsky space,

40 = dTT‘- . Such fucntions realizing unitary irredu-
0

cible representations of the Lorentz group (mutiopl F;‘oup

in the Lobachevsky space) have been derived in- '~ and

have the form

Fld ~l— jrm
o Py —Pn

£ (D

£ (p,n=( p ) a2

[2 2

Po =Vp +m
where .
- (14)

- -
r=rn ; n2=1; 0<r<w.

The parameter r in (13) is connected with the eigenvalues
of the Casimir operator of the Lorentz group

10




(25 T

cc-}TM MP LN M (15)

Ill‘
where the components of the vectors M and N are the
generatcrs of the Lorentz group 12

M=(Myy My M, )

S R (16)

N=(M M, M

[T

via the following equation:
~ . 2 .
Cf(p,r)=(—l§+r)§(p.r'). %))
m

To the values 0<r - <~ there correspond the so-called
principal series of the irreducible unitary representations
of the Lorentz group realized by functions (13)_ In the non-
relativistic limit the functions «f(p r) reduce to the
usual plane waves -'*-

E(pf) e PT

The partial—wave expansion of (13) is as follows

+

- r
E@N-TQraDip (chx 0P (2. as
f’—o f £opr
The functions
o TF T Ttimae )y T
p, (chy.,0)=(-1) vy P fehy )=
4 2shy 1 (im+1) L
2
ipl'(—-ir m+1) r d f
_ AU r m (shy) (e pO(chx,r)
shy dy

IF'(—=irm+ ¢ +1)

with

- sin (rmy )
po( chx 1) tm sh y




obey the following conditions of completeness and orthogo-
nality

2shx-shx” 3 F 24 p%(chy ,0)p (chy 1) =8(x-x")
o Py ¢

m

2T s’ dxpd Cehx 1p (ehy 1) =0 (r=r")

m 0

and in the nonrelativistic limit they turn to the spherical
Bessel functions

. 7
p[(chxp,r)—- ig (Pr) =\/2—Pr— J“_lz_(pr).

Therefore in’ '’ it was suggested to regard the functions
£(3.7) as ’’plane waves’’ in the Lobachevsky space and
the parameter r as the relativistic generalization of the
modulus of radius-vector.

In /!/ also the operator H, has been defined which
stands for the free Hamiltonian

H £ (5,7~ B (5.7

This operator is the finite-difference operator with a step
proportional to the Compton wave length Fhé_'

A L2
i - L8y, i gn(id 6, ™I
Homelg g c e M)~ ——< -+ a9

where Ag,4 is the Laplace opex/'ator on the sphere.
Analogously the momentum operator 12/

A
>

Veat.” Ve rar’ Vy rae’ Va raid

. -an; :



was constructed

“l\“ ELP e pl (par)
i T et (20)

with components

a
el . W -~ - ;
_iv R ) cas ) _ i ( Cosfcosd &
v raip” T cos e fe Hyo-1( — e Py
. i ]
__sing 9y war (21a)
rsin 6 ddh
. ig
v - —sin0sing (™ ' —H)-i(Sos0sing I
y Ldif. r a6
i
cos ¢ .i)em dr (21b)
r. sin § aé
, Le . - id
-y -—cosgle™ %" —m e 28 9 W
z {uif. r J6
(21c)

where ¢ and ¢ are spherical coordinates of the vector
r=r1(sinf cosg, sin@sing , cosd).
Operators (21) obey the commutation relations
D ~[Vx",.vv»1]‘=i[‘V‘y' ",’V’z' T = [Vz,vx‘ ]'= 0 e (22)
In the nonrelativistic ligxit they become the usual
translation generators —i g , writtenin the spherical
corrdinate system,whick i&notable for £(p,7) ..because
of the distinct status there of the modulys of radius-vector
. i

i3



Let us now examine what corresponds, in the new rela-
tivistic coordinate space, to amplitude (11) if it is consi-

dered as some potential. Applying the Shapiro transforma-
tion /117 we get

.. (JIA*)(SZA) _2m

. 1
V() =g — 12 =
) Q )1f A 6 (a.r p2-2m? +2mA, m +A
0 0
(23)
A - -
G 3 0o ¢ )L da £(A,r) m
ot 2 il 23 T A p?-2m2i2ma, m+A
A " 4 2 i
. 2 -2 m :
-¢ (9} Vair o5 Vb Am2_p2 Vya (0 1CX)]

To the propagator
1 - 1
p? —2m2e2mA o x2-(p-W)2

in the ¢ -slpace there corresponds the relativistic Yukawa
potential /

[‘ 1 ch(rma ;) ,u2<4m2 y
4mrm  Sh(rmn) a, = arccos ( g —2m )
2m
u
Vvl =9 2 4 2 (25)
uk. ps >4m
1 . cos( rmag) .

4nrm sh{rmn#) a - Ar ch(yz—Zm )
L 2 2111E '

For ¢ < 4m? in the nonrelativistic limit it reduces to
the usual Yukawa potential
# e Hr
v - .
Ynk.(r) e -0 dorm (26)
‘12< 4m . '

14



2 . #
At 4 =0 the potental V., , (r) is the relativistic
generalization of the Coulomb potential

Coutomt! = Fro At @7

Within the nonrelativistic theory potential (12) in the
configurational representation has the forin

-

onreal . S iATF 3 A g ,’
vun (f’):gz—l—fd[\e p' (Gl/\ )(02.‘\r)
Yok, d e 2
( I +{\'_
-8 (OIV)(OZV 47rm
where ¢ =2 .
ar

Consequently, transition to the coordinate representa-
tion with the help of the expansion over the Lorentz group
representations allows one to preserve the obtained in the
moiaedtum space relativistic expressions in the form
of direct relativistic generalization of quantum-mechanical
potentials.

Next, we pass to the nucleon form factors. Let us define
the three-dimensional distribution in relativistic configu-
rational representation via the expression

1 s o 29 dA
F(r) = JE(A,DF(AHY2
@n? a

m 0
(28)
t=(k=p)® =2m(m-4 .
The transformaztion inverse to (28) is
F(A? ¢+ (R,DEn AT @9

and, due to the equality t/ A2 =0, resulting from (7),
has the property: =0



F(0)s [ F(r)dr". (30)

In the phenomenologival description their shape is often
approximated by the following expression (the Clementel-
Villi formula " )

b.
F(:):c(l—};ui+.\_‘__lt__-), 31
1 i — -
i1 F
i

where ;. are the vector-mesor masses and a,c, a, .b. -
constants defined from experiment. !
The part of form factors (31) dependent on t is re-
2
. vb.
duced to the form of relativistic propagator X —”2LL—
. iopt—t
i
In the relativistic configuration:sl representation to this
part there corresponds a set of elativistic Yukawa poten-
tials (25).

2 s u
F(y) —, bj VHL (r). (32)
It follows from (25) that the effective range of form-
factor (32) essentially depends on the mass of vector
meson which defines the nucleon structure. for u“< 4m*~,
i.e., below the threshold of nucleon-antinucleon pair pro-

ch(rma )

duction the factor diminishes the radius of

sh(r mz)

the cloud of hght partlclos with increasing their masses,
i.e., when p 24 4m?2 . The radius of the, cloud. of heavy
particles with masses above the productmn threshold
of NN-pair, i.e., #2 > 4m?, is considerably. sthaller and
it decreases e ponentially, by the e ™™7"  -law, with

*eos (emajt) 0t -
e o e e St

incrgasmg"f , due to the fa(;tor y
sh(rmz)

16
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Unlike the nonrelativistic Yukawa potential ——
the dimensions of the cloud of heavy particles are defi-
ned just by the nucleon mass  r and not by the mass

of exhanged particle.

4. The relativistic configuration representation intro-
duced above makes it possible to describe form factors
in the coordinate space. In particular, the particle inva-
riant mean-square radius <rg > defined usually by the
formula

F(0-FO) r Leeses (33)
where JF (1) '
2 dt ‘=0
<6 34

will be connected with the squared distance inrelativistic

configurational representation. Note that the quantity
<rg'> , as defined by (33) may be interpreted, with the
use of Fourier transform (1), as the nucleon mean-squared
radius only in the Breit frame, and in all other frames
of reference <ry> has no direct relation to the space
distribution (if it is defined as the form factor Fourier
transform). The determination of the spatial distribution
of the form factor through expansion over the Lorentz
group representations (28) is not connected with the Breit
frame and allows us to describe the r -space distribution
in an arbitrary frame of reference. To find the relation
between <rg> and r2 , we consider how Casimir opera-
tor (15) operates on the !orm fagtor .The Casimir operator

of the Lorentz group C =N% , where (for transfoirma-
tion (28))
NeciBod . §o-iffxd
m i m ¥

*) This fact was prompted to the author by V.G.Kady-
shevsky.
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1n the nonrelativistic limit reduces to the Casimir operator
of the mouog group of the three-dimensional Euclidean
p -space (i £=)5 (§ =p- K) . The eigenvalues of the

ODETatOI‘(i_E_ )2 are given by the squared nonrelativistic

dq
coordinates r2  which, from the group standpoint,
enumerate the unitary representations of the translation
group of the three-dimnesional Euclidean p-space realized
by the functions ¢ ‘9" .The nonrelativistic operator

2
(‘ ) is the Laplace operater in the three- dlmenslonal
Euchdean space and in the spherical coordinates ¢ =
=q(sinf cos¢p, sin0 sin¢, cosl ) has the form

. d 2 2 \0’
d 2 49 @ a35)

(Ag,y = the Laplace operator on sphere).

. Analogously, in the spherical coordinates Ag= mch x ;
A = mshy (sin@cos¢,sin@sin¢ , cosf ) (the hyperbolic
angle x is named ”rapidity” in the Lobachevsky geo-
metry) Casimir operator (15) has the form of the Laplace
operator on hyperboloid:

2
B P -5 2cthy g Ag’
C=N" -M —iz— 9 _ X, 2 ___i__ (36)
m aX m2 dx m2sh2X

Owing to the spherical symmetry F(t)<F [2m 2(1-ch x )]
and even to the dependence on the variable xy on using

(36), we get:

n . 6 JF(1)
\CFi{2m (1-Chx)]}\x=0 ——m—Z?x_Z_IXﬂ)
~F(0) F(0) (37
6(shx 3 dF(t) | 6 dF(c) |
X ot x=0 dt t=0
T FO ’



sho.

b

where we have employed the relation n—f', ——
= A N it

jollowing from t=2m2(1—chy ) =—im>sh %, 2. Expression
(37) coincides with definition of mean-square radius (34)
Thus, conventional definition of the mean-square radius
(34) may be given the group theoretical interpretation
in terms of the Casimir, operator of the Lorentz group.
The eigenvaiues of C are given by (17), Therefore.
if the spatial distribution of from factors is determined
with the help of transformation (28), the nucleon mean-
square radius is expressed, using F(r) . as follows '

2

e A Firde

, ;EFdz\z'\*z . o ¢’
“r = = =
[{] N
F O [ F(r) ds
- *’2 -/rz‘-)
wi? (38)

So, the nucleon size in terms of the relativistic configu-
rational representation is described by the

; 2
UL NP PP (39)
m? ¢ ’ -

It was pointed in A that x? and . have the same non-
relativistic limit, namely, the squared modulus of nonrela-
tivistic coordinate, so both of them can pretend to be the
relativistic generalization of coordinate. The lower value
of X? is limited from below by square of the nucleon

Compton wave length

*) Unlike (17), in (38) the constants t and ¢ are again
introduced. '

18



that is consistent with a result by Newton and Wigner Is
conserning impossible localization of a relativistic par-
ticle with an accuracy better than g Consequantly,
if one assumes that the mean-square radius is defined
by (34) then, as follows from (37), (38), the coordinate
T describes the nucleon structure at distances larger than
the nucleon Compton wave length.

2 b L
h Y +1?- is the relativistic

The quantity .‘(2 = (

mc

invariant as it is the eigenvalue of the invariant Casimir
operator of the Lorentz group. Thus, the transition to the
relativistic configurational reprgsentation allows one to
connect invariant definition of <ry>  (34) with the spatial
distribution in any reference trame

Due to the spherical symmetry of the function F()= F(\ L
with partial expansion (18) taken into account, transfor-
mations (28) and (29) can be rewritten as

F(r=-l_ Siatmy  goZyq2 g, (40)
272 rmsh y
F(3%)adrf SOIOX gy 2gc (41)
rm shx
where
A 2 —
y = Arch =L . ch ( 2m? )
X m _mz (42)

For the quantity
22
D (x) = F(X )S:—X (43)

eqs. (40), (41) take the form of usual trarasformation
with the sphericatl zero-oder Bessel function .

: y - sin _rmX
lo (rmx) T
Ef ) ..1_2._[ LmrmX ¢ (y) deX (44)
dn oy
b )=daf SEITX F(r)c2dr. (45)
rm y



However, in these transformaticas, unlike nonrelativistic
Euclidean case, the relativistic coordinate 1s conjugate not
to the modulus of vector of momentumn transfer but to the
2
., e dmT—1t
rapidity’’ | = Ar ¢h { — ) corresponding to he
m 2

momentum transfer vector \=k(— )p  of the Lobachevsky
space. To a particle localized in the relativistic r-space,

i.e. Eiry st . n(r) T i, the form factor

‘I’!

(SR

.’_m. tnf 1—%.-_;+11—.-_,\:u—-1m2) )
Flo-2 - = (46)
hy vift—=4m?)

corresponds, in accordance with (43). It decreases, for

large 't' by the law
mi
Fie, - 2m? -Z (47
[t}>> 4m2 it
5:: X in this case equals

unity, just as the constant form factor F()=1 corres-

ponds to the point-like particle in the usual nonrelativis-

tic r -space, introduced by means of the Fourier trans-

formation. Making use of (36) and (43) there is readily

derived the equality

1, & 2 9 L 2

ol - = el 0= —xuc LIFQi=co0 (48)
dx X

from which it follows that defmltxon of the mean-square

radius (34) in terms of the form factor ®(y) results in

the quantity

30 (0) | 5_M|
6 dgt t=0 m &x Xx=0 2> #2 < 2>
= <T, - =<I .
. 9O @ 0 07T @9
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Note also that if the standard form factor is normalized
as F(0) =1 the same holds for ®(x), i.e., ©(0; =1
Thus,1t can be thoughtof that just the form factor ¢(y)
describes, in ﬂll_e momentum space, the nucleon structure
beyond the Tn%‘ , and its distribution in the coordinate
space is described, in terms of the relativistic configu-
rational representation, by the function F(r) _ And, as

is seen from (44), (45) and (38), one has:

ad (1) | ) .
» 7t =0 ft "F(r)dr
(S SR = . (50)
D (0) (EC)ds”

Taking various forms of the distribution F(r) we shall
obtain different form factors F(t)  which, however, have
universal behaviour determined by the common factor
sh For instance, taking the next, after the & -type,
simple distribution, i.e., the Gaussian-type distribution,

F(r)=e "'

with the use of (44) we ge

2t
2,2
= -

q’(\ )=;‘-— \ —2— . N
that provides for F(1) the expression
XZm?
FO=T I, o ~To
a ‘2 shy ’
6
obtained earlier in analogy with the form of non-

relativistic form factor. The asymptotic form for this

form factor
£ 2, 2)t]
gy TmRLT

F(t) ~
I>>am2 {1l

6/

’
coincides with that for form factors introducedin’ !
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For studying the asymptotic behaviour it is conventent
to take the spectral representation for form factors. Let
the spectral density of the form factor ?:\) be defined
through the Laplace transformation:

rF(r)=3];70( e ta?)e T da. (1)
By using (51) and (45) we obtain
3 9
f(a”) 2
SR T Uy . e E P 3
X 70 a® ¢y “ (52)

that gives for the standard form factors the spectral
representation in ’rapidity’’ x. conjugate to t

. D G
FOF bt 2 e (53)

shy
t =~4m?shy/2.
irom (51) it is seen that the asymptotical behaviour
of spectral density f( #2) and, hence, of form factor, is
defined by the behaviour of F(r) for small r . As far as
spectral representation (52) has the same form as that in
nonrelativistic theork2 (see, e.g., ref.- 177 ), with the
only difference that 4" =(k~3)? is replaced by the "’rapi-
dity’’ squared x? we shall simply list the final results
for different cases: )
Ist case: Let F(r) ~ +—. This gives for the form fac-
tors:

const 2

PO 5 = i F(o z i .
(x IXZ""‘ v (¢ l)(wm m (54)

1l nd case: Flr)] _, =const. This corresponds to:

2
d(x) = S8, FO) -
X ‘)(2-oau X ‘x-.oo ‘1]&.'13 !EJ_ (55)
v,

Ul rd case: rF(r)| |, -+~ means:

LB F() =
X oo

P(y) =
X. lxz oo (xz)A e |Eﬂz’\--‘ {t|
Lo i m2




In all the three cases F{-=)=®(x) =0 df D) =
- const, then on subtracting this value we arrive at the
spectral representation

1 = P(uz)duz

Gy (o)== [ ———, {57)
70 a®+y
from which the equation
~ P S E
[b( ) 8(r) *%f LlaD)emd" 42

rF(r)-

4=" 0 (58)
follows. This form of the spatial distribution means that
in the nucleon center, in the region defined by the Comp-
ton wave length of the nucleon itself, there is the charge
Qy=®(=).

For the total charge (57) results in

° 2
Q-cF@-ed («)s £ Lo Mde? (59)

that allows (57) to be rewritten as

2 2 2
x° » £{(a*®)da

P(xy)-FO)=-% [ —praore—. 60
T al(alexd) (60

It is easily seen from (60) thatifin the nucleon center,

in the region with the size of Compton wave length, thlere
is a finite charge, then the spectraldensityis (e o

a” e g

where A> 0. i, there is an m{lmte charge Q¢ =, then
f (@2) - const orf{a?)~(e?): It should be emphasi-
zed that, as follows from (53), for any finite A the stan-
dard form factor F(t) remains finite, i.e., F(e)= 0

5. To complete our consideration we formeulate briefly
the results we have obtained. The expressions for cur-

rents in terms of elements of the Lobachevsky space allow
for the spin structur. of current and scattering amplitude
to be shaped into the form of the direct relativistic geomet-
rical generalization of spin structures of analogous quanti-
ties of nonrelativistic quantum mechanics.And the transiti-
on to the relativistic con(lguratlonal representation through

2
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the expansion over the Lorentz group unttary representa-
tions permits one to preserve the three-dimensional,
»'monrelativistic in form’’, expressions for relativistic
quantities in the coordinate space, as well.

Note that the three-dimensional form of the descrip-
tion both in momentum and in coordinate spaces is inva-
riant and is achieved not by the choice of some special
reference frame (of the Breit type) but just through the
use of the Lobachevsky space. The transition to the rela-
tivistic configuratiobal representation, in which the mo-
dulus of relative coordinate r is relativistic invariant
and is related to the eigenvalue of the Casimir operator
of the Lorentz group by {17), makes it possible to intro-
duce the invariant description for form factor inthe rela-
tivistic configurational representation with the help of the
distrit.ation function F(r).It is interesting to note that the
usual formal definition of the nucleon mean-square raduis
by formula (34) acquires the group theoretical meaningas
an eigenvalue of the Casimir operator for the Lorentz group
(see (37)). O1 the most interest are the electromasinetic
form factors of particles. These will be considcred in
a subsequent paper.

The author wish to sincerely thank V.G.Kadyshevsky
for fruitful discussions and also V.M.Dubovik, A.V.Efre-
mov, S.B.Gerasimov, V.A Matveev, V.A.Meshcheryakov,
R.M.Mir-Kasimov and B.N.Valuev for the interest in
the work and discussions.
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