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ABSTRACT

By optimization of channel settings and a least square fit

method it was possible to extend the detection limits to

a theoretically determinable range and to measure the activities

of H, Ca, Sr, Ru, Cs in multilabelled samples simul-

taneously with a liquid scintillation counter.



1. Introduction

The calculation of the activities of "n" components in multilabelled

ß-active samples using liquid scintillation technique has been

regarded in a previous work (1) as a problem of solving a set of

"n" simultaneous linear equations.

As "n" becomes large ( n ̂3 ) this method exhibits great sensitivity

to small errors in experimental data.

It was therefore tried to solve the problem by a curve fitting

process. The experimental P (i) values which had been defined
M

already (1) are matched by combining P (i) values of the individual

nuclides with different weighting factors. The choice of the

channel setting is not the same as usually found using liquid

scintillation technique. In common it is not possible that the

samples are measured by channel settings with optimal conditions

for the efficiencies of the nuclides present. As we have shown

in (1) the only limiting condition for the application of the

derived method consists in the independency of the P (i) values

over the considered activity range.

For the solution of the given problem it is necessary that the

P (i) values of the nuclides in the sample differ .in a certain kind

which has to be specified. Ne therefore tried to solve the problems

by taking account to some theoretical considerations based on the

system we derived in (2).

As we have shown in (1) we can write for the general case on "n"

components and "m" channels
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or in the matrix notation: Z_ = P . x_ (2).

If m - n the matrix P_ is square and has an inverse P_ (unless

its characteristic determinant is zero). So if P_ is known and non-

singular, its inverse can be found and we obtain

x = P'1 . Z (3)

which is the solution for the count rates of the components or

more general for the activities. If m \ n we obtain no solution

for the problem. In the case of m^n we have more equations than

unknowns and can get a variety of solutions for the x_ matrix.

Usually it will not be possible to satisfy equation 2 exactly.

But we can obtain matrix x which will minimize the function

m
Rar R v 9

(4)- <*r
.eli

As known we can write f = (_Z ____ -_Z __ ) (Z - Z ) (5)

. ^ /„ „ , ^ • ^ ,„ Exwith ^f____-_f__i being the transpose of ( Z _ - Z

(interchange of rows and columns).

The least squares criterion is satisfied by solving equation 2

in the following manner:

P . Z_ = P . P_ . x_ (6)

with P . P being a square matrix. (Dimension: n.n).

Equation 6 is therefore a. new set of "n" simultaneous linear

equations in the "n" unknown count rates.

Using the same way of solution as in equation 3 we obtain

(P . P_) 1 . P . Z_ = x_

As usual we will define a new matrix M_ = (P . P_) . P

which is a n.m matrix characteristic of the system.



X = M . Z

the activities or count rates given byi

Xi *- ) M . . . Z .

In (2) we introduced the "zerfallsgruppe" to set up a mathematical

scheme for the P (i) values. The "Zerfallsgruppe" we only defined

in the sense ) P.(i) = !• We made no other assumption for it,
_j -'

except that a "Zerfallsgruppe" is defined by the structure of the

probability distribution.

Now we will look for mathematical quantities d-escr-ibin'g the

properties of "Zerfallsgruppen".
I

According to "Information Theory" it seemed possible ,to define

a "Zerfallsgruppe" by its entropy H = -} P. (i) In P. (i). The
iconnection of the entropy with the measured quantities is easily

seen using equation

z i Z l Z 2
PZ (Z1> -Z-TZ- P! ' P2 ("

l j — Z H
For P = P , P Shannon (3) showed that P is also e

Z!
and for Z ! Z ! one can write (using Stirlings formula):

Z! l l Z.H 4 Z ' P(i)
e . eZ. ! (2 Z)1'* ' P(i)

For the entropy of a mixture one can derive with
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P (A),-
B P (B), H. - j P .In P.

L J J
and

H (A,B) - -P (A) In P (A)

H = P (A) H + P (B)

P (B) In P (B)

+ H (A, B)

The use of the entropy shows some advantages in plotting graphs of

the entropy vice activities (Fig.l, 2)
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Fig. 1 shows the entropy of different mixtures containing Ca, H.

The determination was done by the use of five channels:

K 1: SO - 1OOO, 2% gain

K 2: 5O - 1OOO, 5% gain

K 3: 50 - 1000, 1O% gain

K 4: 5O - 1OOO, 30% gain

K 5: SO - 1OOO, 9O% gain

-4 45
I: 10 vCi Ca

II: 1O~3 vCi 45Ca
-2 45

III: 1O uCi Ca
-1 45IV: 10 yCi Ca

V: 10° \iCi 45Ca
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Fig. 2 shows the entropies of a mixture containing

Ru, determinated by the use of four channels:

9oSr,
137

Cs,

K 1: 2OO - lOOOt 8% gain

K 2: 3OO - 1OOO, 8% gain

K 3: 5OO - 1OOO, 1O% gain

K 4: 5OO - 1OOO, 3% gain

i i

The activities of
Io6

all with lo

I: lo~4
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V:

VI :
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137 _

Cs
137

Cs
137CS
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137 CS
137 Cs

Ru as to be seen from the figure.
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But, for a description of" the "Zerfallsgruppe" the entropy is of

no great use, because it is not possible to say that for given

channel setting if H. = H, the nuclides are identical. So, if for
3 k

the nuclid I- the P (i) values are 1/2, 1/4, 1/8, 1/8 and for

K say 1/8, 1/4, 1/8, 1/2 the entropies of the two nuclides are

equal.

To describe a "Zerfallsgruppe" we therefore have to look for a mathe-

matical expression containing a more directed order. For this reason

we will use a kind of vectors.

So, for two nuclides A, B using i channels we get for the defined

"Zerfallsgruppen"

A =

B =

with p .p . = O and p .p . = l
i j i i

so A.p. = PÄ (i)

and therefore:

PAd)

= A = B

Because we can choose the channels arbitrarily and independently

these vectors are defined in a i dimensional space.

Now being c , c„ two arbitrary real numbers we can form

+ c = (c + c



With A not altered by variing the activity. By the superposition

of two different "Zerfallsgruppen" we get a new one C

c A + c B = C

Writing this in our P (i) notation we get

ZAPA (1) + VB <» = 2 PM

„
or _ 3 _ p (!) +

"' Z + Z B (1) = PM (1)
A

now let

ZA Z_B_c = . c = —
1 7 - 4 - 7 0 7 ~t- '

A B A

Than we see that C is only dependent of the ratio c /c (Pseudo-

zerfallsgruppe).

The vector model therefore seems to be able to describe the channel

setting.

3. Optimization criteria

If we consider a measurement made with two or three channels then

we get our vectors in a two or three dimensional space.

A, B beeing two nuclides with A - ( ) and B = ( ) then all P (i)
O l M

values are placed on the line connecting the endpoints of A and B.

(Diagonal of the square).
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Q5 P(2)
FIG. 3

Fig. 3: P (i) values of a Sr/ Cs mixture or different
channel settings

Fig. 3 shows mixtures of Sr and Cs laying on the lines

connecting the endpoints of the Cs and Sr vectors at three different

channel settings.

Now in the above given example (A-B) = v2 and this is the maximum

possible difference of two "Zerfallsgruppen". Comparing the

difference vector of a given channel setting with this value

one will get a picture of the goodness of the choice.
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Combining more than two vectors the model has to be expanded. So for

three vectors in a three dimensional space the resulting "Pseudo-

zerfallsgruppen" are placed on a plane.

Fig. 4; P 6i) values of a three
component mixture

(9°Sr, J<*RU, 137cs)
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Fig. 4 shows the P (i) values for different mixtures of Sr, Cs
4 f- M

and Ru determined with three channels. As it is easily to be seen

that the goodness of the channel choice is represented by the area

of this plane. In accordance to crystal theory it is of use to define

a vector being a measure for the plane.

h = A1 + B1 + C1

l A B
with A = ' etc. the dual vectors.

A o C»

So comparing the h. vectors for different channel settings it is

possible to find a optimal setting. Because of the condition }P (i) = 1

the difference of the P (i) values will become small in

practice if we choose a great number of channels, therefore a large

number of channels will not optimize the channel choice. On the

other hand one can apply a least square fit method by using a

larger number of channels than nuclides for the evaluation of the

activities of the component nuclides (4).

So we need a compromise between these facts. On a given case it

will depend on the nuclides, their activities and the apparatus if

we take more channels than it is necessary for the determination of

the nuclides.

Another point of view consists in using determinants which can be

formed by combining P (i) values of the vectors representing "Zer-

fallsgruppen". It is seen vividly by the interpretion of the deter-

minant as the plane fixed by the "Zerfallsgruppen" (or as volume of

a parallelepiped in a three dimensional space). The less this area

the worse the channel setting. But the worth of the determinant

method does not consist only in the optimization of the channel choice,

it allows also to estimate the possibilities of computation of the

activities in a multi-labelled sample.
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Now let us consider the determinant

the plane held by the

two vectors A and B.

(2)

PB (D

P (2)
as

Because no P (i) value can become negative values the determinant

with the maximum value is 1 O
o 1

= 1 corresponding with the difference

vector 2. (For three nuclides in three channels we get for the

maximum volume of the cube = 1).

The above given determinant is zero if two rows and columns are

equal. Now let a nuclid say A being present in such an excess that

the P (i) values differ by the P (i) values only in the limits

even measurable with our apparatus. In our case it is about + o,ooo2.

so: P , ( D
**

P. (2)

( l ) - 2. lo

P (2) + 2. lo
fi

-4

-4 - *•'<•-4 -X

and for

PA (1)
PA (2)

PM ( 1 )

PM ( 2 )

/A
< • "',
VW

A B
22 . Z,

VW

for the determinant of the P (i) values of the nuclides we obtain

PÄ (D

PA (2)

(D

(2)

B

B

B

B

combining these two equations

ZB
ZA + ZB

-4for optimal conditions with /\ = 2.1o and £ = 1 we obtain

-~- ?* o,5 . lo4
ZB
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4. Some applications

To compute the optimal channel setting for a given mixture we

measured the count rates of various nuclides (using mixtures of
P

lo ml aqueous phase and lo ml Instagel ) at different window

settings and gains. The so obtained spectres we used on the IBM 113o

to form determinants in the above discussed way, comparing the values

of the determinants, the bigger one stored and also the next best

channel setting.

For Ag/ Cs we found for the optimal channel setting window:

5o - looo, 4% gain and 5o - looo, 4o% gain. Using the above derived

equations we got for Ag „.,..„y * —-2- = 0,1349
ZCs

4
lo and for the next best

Z
channel setting: So - looo, 5% gain, So - looo, 4o% gain;

o, 1333 . lo4.
JCs

In the case of Ag/ Ru we found

optimal

5o - looo, 8% gain

gain2oo - 3oo, 1
Z

with ——2- = o,2536 1 o and

next one

So - looo, 9% gain

2oo - 3oo, 1% gain
Z

= 0,2529 lo
Ru

llox .9c>
Ag/ Sr

So - looo, 3% gain

So - looo, 2o% gain

5o - looo, 3% gain

So - .looo, 3o% gain

90^ .144 137^
Sr/ Ce: Cs

5o - looo, 2o% gain

5o - 5oo, 2% gain

2oo - 5oo, 2% gain

So - looo, 2o% gain

So - Soo, 2% gain

3oo - looo, 3% gain
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„ ,337,, ,Sr/ Cs/ „Ru

So - looo, 5% gain

2oo - 3oo, 1% gain

2oo - 5oo/ 1% gain

5o - looo, 4% gain

2oo - 3oo. 1% gain

2oo - 5oo, 1% gain

The next best channel setting we used in combination with the

optimal channel setting for a least square fit program.

Using the above derived equations for the least square fit diffi-

culties arise. So it is possible to obtain negative activities. This

occurs always if one nuclide is in great excess of another.

The reason for this behaviour is given in the few points obtained

from measurements with the three channel liquid scintil lator . Me there-

fore decided that no solution is written with negative values. If the

activity of a component is found to be negative, its value is set

equal zero and with this new information another run is done in the

computer.

The results of a four component mixture is shown in Table
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TABLE 1

Results of a mixture if

Channel

1

2

3

4

5

6

7

8

9

Matrix x)

26.613 30.525

1 5. 789 11 .008

137 Io6 9o 1 1 o
Cs, Ru , Sr and Ag

P„(i)
M

o , 21o6

o,o372

o,o248

o, o948

o,o279

o, 1844

o, 2659

o,o823

o,o718

XX )

40.882 35.438 13.663

13. 663 14 .459 8. 542

x) row and column cancelled at the second run

xx) row and column cancelled at the third run

Io6

Cs

Ru

Sr

computed

56,8 pCi/ml

1443,2 pCi/ml

o

Ag

real values

4o pCi/ml

15oo pCi/ml

5 pCi/ml

5 pCi/ml
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DISCUSSION

By the use of the proposed method chemical separation of com-

pounds labelled with different radionuclides can be avoided.

By the aid of the derived equations it is possible to estimate

the possible ratio of the activities of the radionuclides to

be simultaneously determined. The method of optimizing the

channel setting is a powerful tool in rising the detection

limits of one nuclide in excess of another one. In the case

of two nuclides the optimization is done in five minutes.

For three nuclides the time required is twelf hours. It is

therefore only in the case of serial analysis of practical

value to compute an optimization.
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