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UNIVERSAL CURVES FOR PREDICTING EQUILIBRIUM RADII 
OF RELAHVISTIC ELECTRON BEAMS INCLUDING THE EFFECTS OF 

ATTRACTIVE SELF FORCE, EXTERNAL B z, INITIAL BEAM 
QUALITY AND SCATTERING IN THE GAS ENTRY FOIL* 

Eugene J. Lauer 

The beam passes from vacuum into gas through a thin foil as shown in 

Fig. 1. The beam radius is independent of z in region 2 where the beam is 

space charge neutralized and at the surface of the foil in region 1 (vacuum). 

We incorporate the effect of foil scattering into a previous analysis. ' At 
2 2 the surface of thp foil in region 1 the average value of p ± /p for beam 

particles is 

where q, is the beam quality before foil scattering. The beam energies from 

the foil with 

a 
The vector addition of many individual small changes of p x in random directions 

has the net result of cumulating the squares of the magnitudes of the individual 

vectors 

<n 2 > = <0 Z,> + <0 2
s> (3) 

In region 2 the adiabatic invarient is 
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2 (4) 

(k,. is understood to have the subscript 2, but it is left off for simplicity.) 
In Appendix I the envelope equation, which gives Eq. 4 for the special 

? 2 
case of a independent of z, is derived using an idealized model, k and k „a 
are defined in Appendix I. Combining Eqs. 1. 2, 3 and 4 and defining x = a^/q2, 
results in the quadratic equation in x, 

2,2 ( ^ > ) *2 * ( ^ / - 2<aV)* - l 
(This is Eq. 50 of ref. 2) 

2 2 2 2 
For k^ a •> 0 and q ,k = 0, the solut ion is 

(5) 

(7) 

(*2/ - 2<6 Z
S>) 

2 2 2 2 For k a > 0 and q ,k > 0 the physically meaningful solution is 

-( k 2 / - 2<Q ?
S>) +.J(k 2

sa g - 2<e 2
g>) + g'.k^ m 

B is the same in regions-1 and 2. In region 2 the se l f - fo rce is directed 

rad ia l l y inward; in region 1 i t is directed rad ia l l y outward and the magnitude 

is (Sv) times smaller. Therefore, in most cases of in terest the beam is 

not in equi l ibr ium in region \, the net inward force being too weak i f 

(2~\ 
'E.P. Lee, "Envelope Equation of a Charged Particle Beam" L'CID 16490, April 15, 1974. 
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On Fig. 2, /x is plotted vs MJ •* for parameters of interest in the 

Livermore beam experiments. Note that for k = 0, (a/q) diverges as 
2 2 2 (koa - £•<©>) •"• 0. Finite k removes the divergence. 

2 In Appendix II numerical values of <u > are calculated for some com-
2 mon foils. In Appendix 111 numerical values of <9 > are given for some 

common gases and the most important formulas for increase of beam radius 

with gas scattering are stated for completeness. 
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REGION 1, VACUUM FOIL REGION 2, GAS 

FIG. 1 
Beam Passing from Vacuum into Gas Through a Thin Foil, 
the Beam has the Equilibrium Radius a. 

In Gas 
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APPENOIX I 
fl.j Derivation of the Equation of Motion for the Beam Radius 

We use cylindrical coordinates (r,9,zj. We use an idealized model in 
2 ? ? 2 

which the fields are independent of S.1, v x - v. + vg < ; v , where v is the 
particle total velocity, and there is no plasma current. The radial equa­
tion of motion of a beam electron is, 

- e { E r 4 v ^ B 0 > = ™ o < ^ (8) 

We use Gaussian units, e is the magnitude of electronic charge v = Uc, 
I = (!-•' ) and dot means time derivative . 

B[1 = . 2Q/c2r ( 9 ) u0 2 

where ( I / c ) is the magnitude of beam current in emu, and v :• 0. The 

current density is uniform inside the beam radius a, and a varies slowly 

with z. 

E r = -&1&? O-f) (10) 

where f is the fraction of electrostatic field neutralized by plasma 
spate charge. Substituting Eqs. 9 and IP, Eq. 8 can be written, 
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where, 

Kc " —,-H-v (12) 

>¥) 
(we neglest the contr ibut ion of the beam current to B ) 

and. 

.2 2 . Z t l / c ) ( f - l / Y 2 ) 
8 " , 2 v ~ 1 ( , 3 > 

• # ) 

With anial symmetry, the canonical angular momentum P is a constant. 
This gives a first integral of the a;:imuthal equation of motion. 

Pu = ^ o ^ u - c r A a = Y V c q ( 1 4 ) 

where ncq is the value of rv when rA = 0. 

Since, 

/fl«<f? = /(VxA).ds 

2nrAQ • - " r 2 B z (15) 



Combining £qs. 12, 14 and 15 gives, 

;c r 2 c ( 1 6 ) 

Substi tut ing Eq. 16 into 11 gives, 

2 

]T1 '- S ' ~ - l V > -T 3 c r 4 * a 
(17) 

I f the ve loc i ty d i s t r i bu t i on consists of par t ic les wi th r<<rf l , th^n the 

bear surface follows the motion of a pa r t i c le with r = « and, 

TTj - T - — a - (M h 7? ' a3 4 "('-" 'a (18) 
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APPENDIX II 
*-J„ Foil Scattering 

2 For electrons passing through r I atoms/cm of atomic number Z, 

the cumulated mean squared scattering angle is, 

m Y B c min 

For , = U , 

<0a> = 1.68 x 10^6Z(Z+]Jr:,L Jtn ~^ 
s Z 9min 

For the "thin target" ce.se (which is perti^artt to the current beam experi­
ment). 

J M X . _!l_ zZ/3 ( L ) V 2 ( 2 0 ) 

min /itni ca o 

For .' = IT, 

'^-- 1.38 x 10'' CZ Z / 3(n L ) ! / 2 

mill 

Table 1 gives numerical values for several common foils. 

http://ce.se
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Table I Coulomb Scattering of Electrons in Thin Fo i l s ,>= i l 

W Z{Z+1) nzL 7 2/3 „ Wnax ^ ,2 
"min J i . s 

(.00254) (gm cm3) &m) ( 1 0 2 3 c n 3 ) 
n „ 2 0 - 2 . (10 cm ) . ? T ^ 7 { lO^cm' ) (15 J 

Be 1.85 9.01 1.24 4 20 6.30 2.520 2.16 2.72 0.456 

2.2 12.01 1.10 6 42 13.97 3.302 :.33 16.6 2.78 

Al 2.712 26.98 0.6031 13 182 3.06 5.529 2.59 14.4 2.41 

Ti 4.5 47.90 0.566 22 506 1.44 7.851 2.56 18.7 3.14 

KAPT0N J _ 

42 1.045 3.302 1.535 

1.42 457. .0187 / 
0.238 1 

8 72 0.475 4 1.333T 

. 1.15 0.193 

KAPT0N 3 

l' 56 0.095 3.3659 0.438, 

3.13 2.08 

0.712 

1.425 

0.15 

1.88 
4.82 0.8^3 

0.285 0.99 



-II-

APPENDiX III 
A.) Gas S o m e n rig 

In the CuSe of slow gas scattering where the beam is always near equilih-
(21 rium, the irosl important special cases are ': 

?. 2 Case 1, k = o, k.> = constant 

2 2 Case II, k,,a - o, k = constant 

a'-a£(o) •- 4 T -4 

lii table II,numerical values are giver which are particularly per­
tinent to Case I for a beam of a few hundred amperes. 
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Table I I Coulomb Scattering 

L P n nL 
(m) ( t o r - ) (10 T 8 cm - 3 ) {10 2 0cm" 

20"C 

H2 10 600 38-88 388.8 

N2 1 200 12.96 12.96 

He 10 400 12.96 129.6 

Ne 1 200 6.48 6.48 

Ar 1 60 1.944 1.944 

Kr 1 IE 0.486 0.486 

Ke 1 7 0.2268 0.2268 

of Electrons in Gases, i-=ll 

z z(Z+i) Z 2 / 3 i w - ^ <a*> 
!s W 3 i in 
' (10"' 

1 2 1 3.30 4.31 

7 56 3.659 2.90 3.53 

2 6 1.587 3.22 4.18 

10 110 4.642 2.79 3.33 

IB 342 6.868 2.58 2.87 

36 1332 10.90 2.35 2.55 

54 2970 14.29 2.24 2.53 


