PROGRAMA BRASILEIRO DE IRRADIAÇÃO DE ALIMENTOS

PROGRAMA DE IRRADIAÇÃO DE ALIMENTOS

PROGRAMA BRASILEIRO DE IRRADIAÇÃO DE ALIMENTOS

T-01 -GB- 00-001

Trabalno apresentado pelo PROGRAMA DE IRRADIAÇÃO DE ALIMENTOS

Autor : MANCEL DIAS FILHO *

Pesquisador Responsável pelo Programa de Irradiação de Alimentos

^{*} Engenheiro Eletrônico e Nuclear

LNDICE

CAPÍTULO	ASSUNTO	
I	Situação geográfica	01
II	Produção Brasileira, Perdas e Custo	02
III	Dieta Média Brasileira	04
IV	O Programa de Irradiação de Alimentos no Brasil	10
v	Equipamentos existentes	11
VI	Combinação dos Diversos Processos	14
VII	Dosimetria	18
VIII	Testes Sensoriais	18
IX	Estudos Econômicos e Viabilidade	18
· x	Divulgação	19
ΧI	Lei	20
XII	Possibilidades de Aplicação Industrial	20
XIII	Laboratórios que trabalham em colabora ção com o Programa de Irradiação de	
	Alimentos	23
	Bibliografia	25

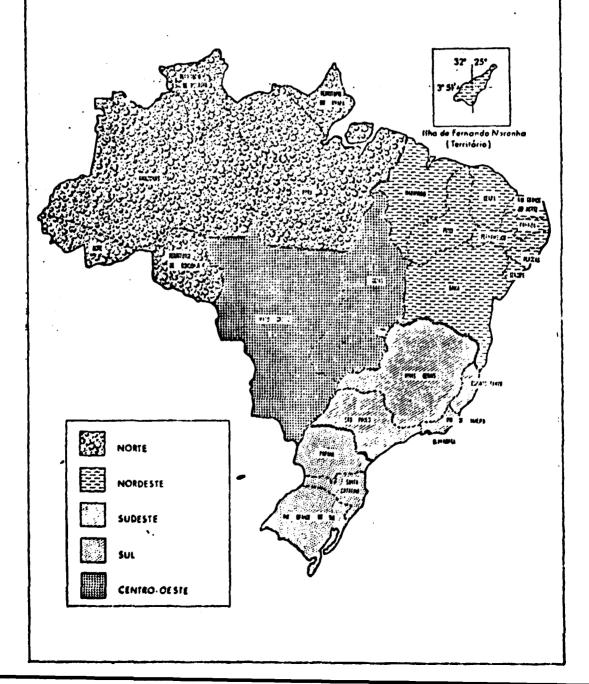
I - SITUAÇÃO GEOGRÁFICA DO BRASIL

O Brasil é atravessado no Norte pelo Equador e no Sul pelo Trópico de Capricórnio. Ele é banhado pelo Oceano - Atlântico, desde o Norte, indo ao Nordeste, Sudeste até o Sul. Ocupando uma área de 8.511.965 quilometros quadrados, situado - no Leste da América do Sul é o seu maior país. Sua área é de 47,3% da América do Sul, com um pouco menos de 1/17 de toda a terra do globo e 1,7% ou 1/60 da área total do globo. Nenhuma - parte do Brasil é exatamente igual a outra.

Dada a sua vasta extensão territorial e o fato de que por isso se entende da região equatorial à tropical, e em virtude de vários fatores históricos que determinaram uma concentração da colonização na faixa litorânea e sobretudo na parte abaixo dos trópicos, o Prasil apresenta regiões diversa - mente desenvolvidas, com economia e recursos diferentes, processos de colonização diversos, e que não permitem tratar o - pais como um todo homogêneo e portanto, fazer considerações sobre valores médios. Isso obriga a uma visão regional, em que os problemas tomam caráter mais definido e as soluções apresentammaior compatibilidade com a realidade.

De um modo geral, os estudos foram feitos levando em conta a dieta média da região Sudeste, que recebe a maioria de seus alimentos, dos estados produtores das regiões. Sul e Sudeste, vide mapa do Brasil a seguir. Nestes estudos, foi le vado em conta a divisão dos Estados em micro-regiões produtoras que estão apresentadas no capítulo IX. Nelas aparecem, como exemplo, alguns produtos tais como cebolas, batatas das águas e batatas das secas.

Outros produtos como feijão, arroz, trigo e milho foram estudados observando-se parametros idênticos aos daqueles - primeiros.


Porém o estudo sobre cebolas e principalmente bata - tas, teve prioridade sobre os demais, porque já estavam termina das as determinações das faixas de doses permissíveis, os processos a serem combinados com o de irradiação, estudo de custos, estudos de alterações físicas, químicas e sensoriais, e os de inocuidade desse alimento para o consumo humano.

II - PRODUÇÃO BRASILEIRA, PERDAS E CUSTO

A produção brasileira e respectávas perdas dos alimentos que constituiram a base inicial dos estudos realizados pelo Programa de Irradiação de Alimentos é demonstrada; segundo
dados do Instituto Brasileiro de Geografia e Estatística e Fun
dação Getúlio Vargas para 1971, no quadro a seguir:

Produto	Prod. em	Valor em Cr\$	Class	Per- das Est.%	Valor da perda Cr\$
Feijã o	2.419,68	725,833,292	19	14,5	105.254.827
Arroz	6.654,388	1.666.742.593	89	36,0	599.930.135
Batata	1.608,73	230.316.942	•	25,0	57.579.134
Cebola	272,577	83.128.442	-	-	-
Trigo	856,17	312,092,437	-	-	•
Milho	12.814,64	1.352.310.059	39	16,5	223.137.159
1	985.901.355				

GRANDES REGIÕES

Se neste quadro incluíssemos os valores das perdas de cebola e trigo, o total ultrapassaria a casa do hum bilhão de cruzeiros (Cr\$ 1.000.000.000,00) o que nos leva a extrapolar grosseiramente para mais de dois bilhões de cruzeiros - (Cr\$ 2.000.000.000,00) as perdas de todos os alimentos por - falta de preservação adequada.

Fácil está de se ver a importância econômica da preservação se for levado em conta que cada 1% desse total ge ral das perdas, extrapolado, é de Cr\$ 20.000.000,00

Ainda dentro do espírito de se entender a necessidade de obter uma preservação mais eficiente do alimento, o
quadro seguinte facilita e possibilita uma apreciação, rápida,
com os valores aproximados e reavaliados para 1972, sobre a
questão economica de preservação de alguns alimentos no Brasil,
levando em conta 1% do valor da produção dos alimentos até ago
ra estudados.

PRODUTO	1% DO VALOR DA PRODUÇÃO
Feijão	Cr\$ 3.000.000,00
Arroz	Cr\$ 18.000.000,00
Batata	Cx\$ 3.000.000,00
Cebola	Cr\$ 1.000.000,00
Trigo	Cr\$ 15.000.000,00
TOTAL	Cr\$ 45.000.000,00

Assim sendo, pode-se entender facilmente que todo investimento econômico será justificável para a preservação de tais produtos. No Brasil, atualmente, a rede de silos e frigorificos é deficitária, e além disto ressente-se a falta de um planejamento para preservação, o que vem mais uma vez tornar - recomendável o processo de irradiação como competitivo com os demais.

III - DIETA MÉDIA BRASILEIRA

Neste îtem, teremos uma visão geral da distribuição de calorias, proteinas de origem animal seguido de um estu do resumido da dieta alimentar brasileira, a fim de esclarecer o estudo inicial em preservação de apenas alguns alimentos e não de todos como poderia ser esperado.

Fazendo um estudo comparativo do consumo de calorias, proteinas e proteinas de origem animal, podemos ver que em média o Brasil não é absolutamente o país de menor consumode calorias, mas é o panúltimo na ingestão de proteinas de o rigem animal. Isto vem demonstrar duas coisas:

- o Brasil precisa urgentemente de aumentar o teor de proteinas em sua dieta, dando condições de oferecer o produto animal (carne ou pescado), por mais tempo e melhor preço ao consumidor.
- que o Brasil não tem duas regiões iguais e isto pode-se depreender pelo estudo do consumo de proteinas de origem animal, de pequenas populações costeiras e da grande poputáção da Região Sul.

CONSUMO DIÁRIO "PER CAPITA"

PAÍS	CALORIAS	Proteinas	PROTEINAS DE ORIGEM ANIMAL (g)
EUROPA			
Austria	2.920	86	48
Dinamarca	3.370	93	58
Finlândia	3,110	93 .	53
França	2.990	99	53
Alemanha Ocidental	2.950	80	49
Irlanda	3.440	91	55
Itālia	2.750	79	30
Holanda	3.020	81	46
Noruega	2.930	80	48
Suécia	2.940	83	54
Suiça	3.210	91	52
Inglaterra	3.250	89	54
OCEANIA			
Nova Zelândia	3.510	109	74
Austrália	3.150	90	59
AMÉRICA DO NORTE			
Canadá	3.100	94	63
EE.UU	3,100	92	66
AMÉRICA LATINA			
Argentina	2,930	83	50
Brasil	2.690	65	18
Chile	2.480	79	28
Colombia	2.220	48	23
Equador	2.110	53	23
México ·	2,490	68	22
Paraguai	2.500	68	26
Peru	2.040	50	12
Uruguai	2.900	93	60
Venezuela	2.170	66	24

A dieta diaria normal (média da região sudes : te) consiste de 2.548,35 calorias, conforme está demonstrado a seguir, para fins de comparação:

Hidrato de carbono	1.283,44	cal
ProteInas	465,80	cal
Gorduras	799,11	cal

Estes valores foram calculados da tabela que

se segue:

	desjejum	
Alimento	Pēso (q)	Calorias
Leite	200 cc	127,0
Café	15	-
Açucar	25	99,0
Pão	50	134,5
Manteiga	<u> 10</u>	<u>_76.6</u> _
TOTAL	300	437,1
	ALMOCO	
Salada	100	50,0
Carne	80	112,4
Batata	200	154,0
Arroz	50	177,0
Feijã o	50	161,8
Frutas "A"	150	_68.2_
TOTAL	630	723,4

•	LANCHE	
Alimento	Pêso (q)	Calorias
Leite	200	127,0
Pubå	20	68,9
Açucar	25	99,0
TOTAL	245	294,9
	<u>Jantar</u>	
Salada *	200	100,0
Carne	80	. 112,4
Arroz	50	177,0
Peijão	50	161,8
Doce	50	137,0
Queijo	50	176,4
TOTAL	480	864,6

CAL	ORIAS
Desjejum	437,1
Almoço	723,4
Jantar	864,6
Lanche	294,9
Sub-Total	2.320,0
<pre>fleo + Condimentos</pre>	230,0
TOTAL	2.550,0

^{* 100} g batata, 50 g tomate, 50 g alface

Ela é consumida em 4 vezes no dia, sendo almoço e jantar as mais importantes. Nessas refeições, feijão, arroz, batata e cebola entram com uma percentagem de 50% em massa, con forme os quadros, onde só foram levados em conta esses produtos ou seus derivados. Os valores constituintes destas refeições, diferem um pouco das tabelas anteriores por estarem mais de acordo com as regiões dos estados do Rio, Guanabara, São Paulo, Minas Gerais & Espírito Santo.

ALMOCO

ALIMENTO	PESO (g)	PERCENTAGEM EM MÁSSA	CALORIAS	PERCENTAGEM EM CALORIAS
Peijão	80	13,8	258,0	32,5
Arroz	80	13,6	283,2	36,0
Batata	100	17,0	77,0	9,7
Cebola	10	1,7	3,2	0,4
Total	270	45,9	621,4	78,6
Total Almoço	590	100,0	790,95	100,0

JANTAR

Alimento	Peso (g)	Percentagem em massa	Calorias	Percentagem em calorias
Feijão	100	17,4	322,6	31,0
Arroz	100	17,4	354,0	34,5
Batata	100	17,4	77 ,5	7,5
Cebola	10	1,4	3,2	0,3
Total	310	53,6	757,3	73,3
Total Jantar	580	100,0	1.033,23	106,6

<u>DESJEJUM</u>

Alimento	Peso	(g)	Percentagem em massa	Calorias	Percentag em m Calorias
Derivado de Trigo	50		16,7	134,30	33.6
Total do desjejum	300		100	399,27	100

LANCHE.

Alimento	Peso (g)	Percentagem em massa	Calorias	Percentagem em Calorias
Derivado de milho	20	8,0	68,92	20,8
Total do Lanche	250	100,0	333,89	100,0

Essa dieta é a média, que foi calculada para a Região Sudeste (Guanabara, São Paulo, Minas Gerais, Espírito - Santo, Rio de Janeiro) que conta com 40% da população brasileira, ou seja, 40.000.000 de habitantes.

Na Região Sul, concentra-se 30% da população e nas Regiões Norte, Nordeste e Centro-Oeste 30% e a dieta diária difere um pouco, porém ora um ora outro desses produtos au menta consideravelmente sua participação enquanto os outros di minuem, não dando grande variação no percentual. Ou as vezes, entram, na constituição da dieta, produtos que equivalem e se a ssemelham aos estudados.

IV - O PROGRAMA DE IRRADIAÇÃO DE ALIMENTOS NO BRASIL

Os vários processos de preservação que estão - sendo utilizados hoje em dia satisfazem, apenas em parte, as necessidades da vida moderna, porém as modificações de aspecto, sabor, odor e aparecimento de excesso de resíduos, casos de to xicidade de enlatados, em certos alimentos fazem com que o homem se recuse a consumi-los.

O Programa de Irradiação de Alimentos foi cria do em 24 de março de 1969 e, para trabalho inicial, foram esco lhidos: feijão, arroz, cebola, batata, trigo e sub-produtos, mi lho e seus sub-produtos, pelas seguintes razões: a) Numa dieta média diária normal eles entram com 50% da massa.

Com relação a determinação da dieta média brasilei ra sente-se grande possibilidade da aplicação de doses baixas de irradiação, pois ela compõe-se em sua maior parte de grãos secos, cereais, batatas, cebolas, frutas e derivados destes.

- b) As produções e seus valores justificam qualquer investimento para sua preservação.
- c) Dados oficiais situam as perdas destes alimen tos em 30%;
- d) Cada 1% dessa perda, que seja evitada, da de economia para os cofres brasileiros uma soma de Cr\$ 45.000.000,00, aproximadamente.
- e) Os irradiadores existentes no Brasil naquela época, só permitiam trabalhos, dignos de confiança, com doses baixas.

V - EQUIPAMENTOS EXISTENTES

Até março de 1972 o Programa de Irradiação de Alimentos contava para suas pesquisas, com os seguintes irradiado res:

	ATIVIDADE							
Ori- gem	Tipo	Fonte	Inicial	Atu- al	Taxa Dose	Vol. Util	Local	Disponib <u>i</u> lidade
USA	Câmara Gama	CO-60	1.500	700	60 Krad p/h	800 g	IEN (GB)	50%
USA	Câmara Gama Cell	Co-60	300	120	12 Krad p/h	008	EMCRJ (GB)	70%
CA- NA- DA	Campo Gama	Co-60	1.600	800	-	-	CENA (S.P)	-

Em 16 de março de 1972, foi posto em funcionamen to o Brookhaven National Portable Cesium Development Irradiator, BNPCDI.

			ATIVII	DADE				
Ori- gem	Tipo	Ponte	Inicial	Atual	Taxa Dose	Local		Disponi- bilidade
USA	BNPCDI	Cs 137	108.000	106.000	500 Krad p/h	APIA (GB)	30 kg	100%

Até o momento não possuimos instalações de frigoríficação nem refrigeração e foi exatamente isto o que nos levou a continuar o trabalho, inicialmente, apenas com inibição de brotação e de desinfestação.

Atualmente, estamos desenvolvendo os estudos ini - ciais sobre o retardamento do amadurecimento de frutas, conservação de carnes e pescado, redução de fungos.

Para dar maior idéia sobre o efeito desejado pela ação das radiações está o quadro:

		<u> </u>
alimento	EFEITO DESEJADO	ELEMENTO PREJUDICIAL
Batata	Inibição de Brotação	
Arroz	Desinfestação	Inseto Sitophilus Zeamays
Peijão	Desinfestação	Inseto Acanthocelides obtectus (Say*)
Milho	Desinfestação	Inseto Sitophilus Zeamays
Trigo	Desinfestação	Inseto Sitophilus Zeamays
Cebola	Inibição de Brotação	
Laranja	Retardar o Amadurecime <u>n</u> to	Bactérias e Pungos
Morango	Inibição de Môfo	Fungos
Banana	Retardar o Amadurecimen to	
Pão	Inibição do Môfo	
Café	Desinfestação de Insetos	
Parinha de Trigo	Desinfestação de Insetos	
Parinha de Milho	Desinfestação de Insetos	

* Zabrotes subfasciatus (clima temperado)
Callos obruchus analis (clima frio)
Callos maculatos (clima quente)

Em futuro proximo deveremos fazer estudos sobre combate a Salmonela e Clostridum Botulinum B.

VI - COMBINAÇÃO DOS DIVERSOS PROCESSOS

Tão logo começamos o trabalho com batatas, nota - mos sua desidratação; imediatamente passamos a irradiar, conser vando em frio de + 8 a + 5°C, o que possibilitou uma grande me lhoria no produto. E além disso, o teor de açücares totais na batata irradiada permaneceu o mesmo, ao passo que no controle - foi aumentado, o que nos levou a crer, na melhoria de resulta - dos usando a combinação de processos.

Com os grãos secos, sentimos também a necessidade de continuar a usar produtos químicos para desinfestação dos ar mazéns e silos, porém, nunca no alimento propriamente dito já que a irradiação tinha o objetivo de evitar o excesso de residous daqueles produtos. Desse modo, com os processos químicos, silos e embalagens de papel e plástico, foi praticamente eliminada a reinfestação.

Com as frutas, ocorreu o mesmo problema verificado com as batatas: elas desidrataram e mudaram seu aspecto, e
isto então nos levou também a processos combinados de irradia ção e frio, e em algumas foi necessário o uso de embalagens plás
ticas de polietileno.

Acreditamos que, em sua maior parte, a preserva - ção terá que ser assim, uma combinação de diversos processos já que um deverá ser complemento do outro, formando no geral a conservação mais econômica e eficiente.

Então estamos hoje em dia, usando para conserva - ção e preservação, a combinação de irradisção com outros processos, que podem ser encontrados no quadro seguinte:

CONSERVAÇÃO DE ALIMENTOS

_				<u> </u>		
	MÉTODO	emprego de	PROCESSO DE CONSERVAÇÃO	EXEMPLO		
		Açucar	Açucar + Aquecimento	Geléias, Compo tas, Frutas cristalizadas		
	ouimico	Aditivos	Conservador Antioxidante	Antibiótico, Ácido Benzói- co, BHA,BHT, etc		
	QUINICO	Pesticidas	Inseticidas	DDT ("Gesarol") ("Malation")		
		Reguladores do crescimen to de plan = tas	Inibição da Brotação	Batata, Cebola. CIPC.etc:		
	BIOQUIMICO	Permentação	Fermentação A Fermentação A Fermentação L	cética		
		Sal	Salga a Sêco ou Salmoura			
	OUTROS	Fumaça	Defumação			
		Métodos Mistos	Irradiação - Sal e Secagem Açucar e Calo esc.	,		
				r		

CONSERVAÇÃO DE ALIMENTOS

MÉTODO	EMPREGO DE	PROCESSO DE CONSERVAÇÃO		EXEMPLO	
		Pasteu	rização	Leite e Sucos de Frutas	
	1	Esteri	lização	Enlatados	
		Branqueamento "Blanching"		Frutas e Vegetais	
	Calor	Tindal	lização	Processo demorado e de alto custo	
Pisico		Seca- gem	Natural ou ao Sol	Uva, Ameixa, Pigo, Tâmara, etc.	
			Artifici- al ou De- sidratação	Liofilização Café Solúvel	
		Evaporação		Sucos concentrados de frutas, etc	
		Refrigeração (acima de 0 ⁰ C)		Frut as, Legumes, etc.	
Congelação (-10 ⁰ C & 40		•	Carnes , Peixes , etc.		
		Radio	sções Ioni	zantes	

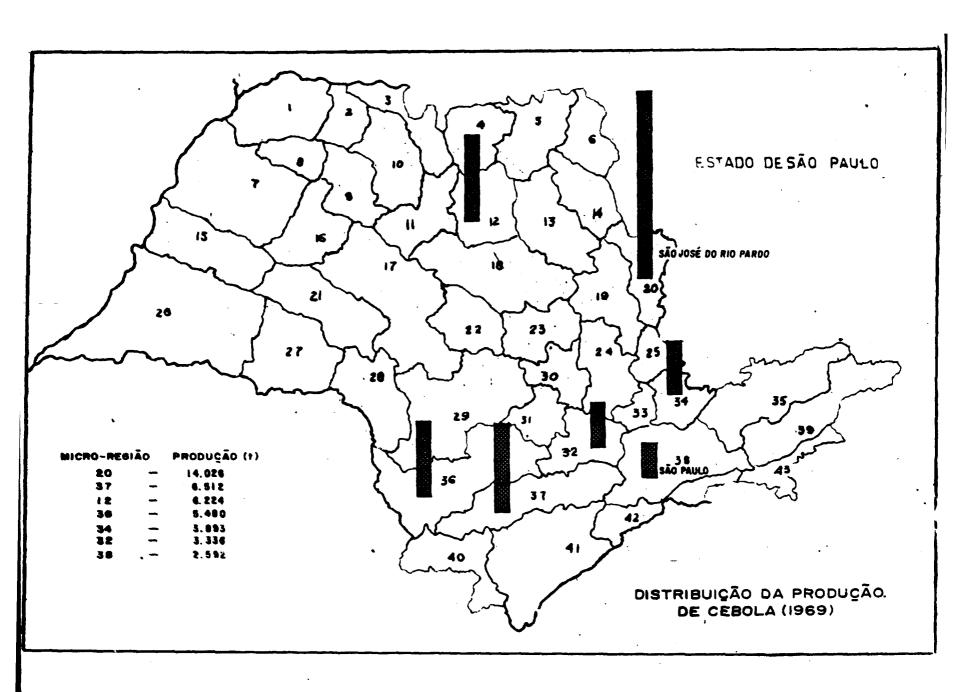
Nos produtos apresentados até hoje encontra mos melhores resultados usando a seguinte combinação:

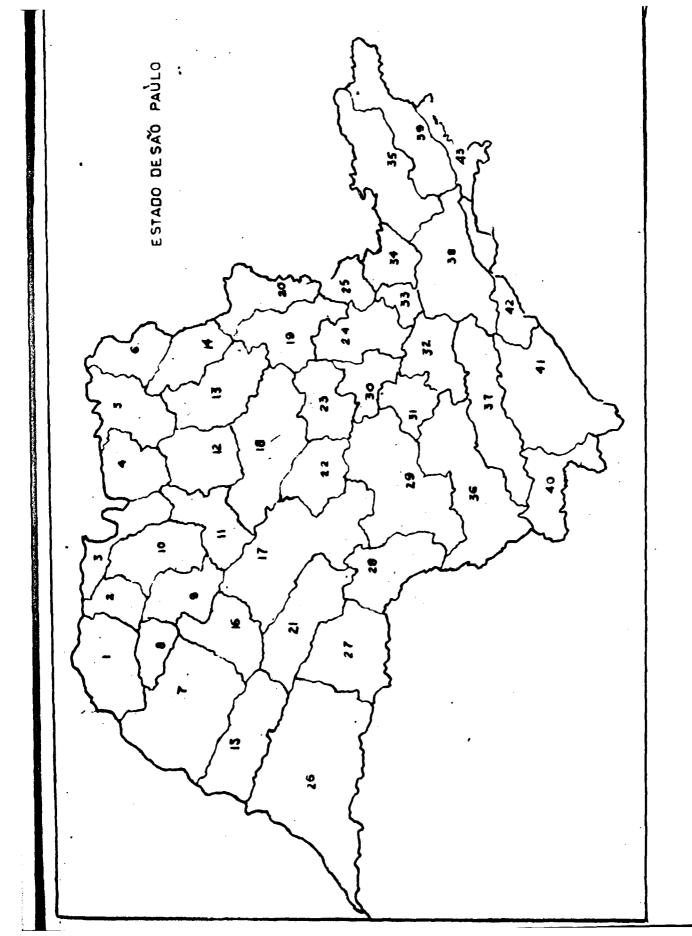
PRODUTO		IRRADIAÇÃO (DOSE KRAD)		OUTRO (S) PROCESSO (S)	
Batata	6	a	10	Frio - 5°C a 10°C	
Cebola	8				
Laranja	40	a	80	Frio - 5°C a 10°C	
Morango	100	a	300	Embalagem Plästica	
Banana	25	a	70	(Polietileno)	
Arroz	5	a	10	Silos, embalagem papel	
Trigo	5	a	10	Kraft ou plástico (polie	
Milho	5	a	10	tileno) e tratamento de inseticida dos armazens	
Feijão	5	a	10	e silos.	
Farinhas	2	a	8		
Pão de Forma	50	a	200	Embalagem plästica	
Massas e Biscoitos	50	a	100		

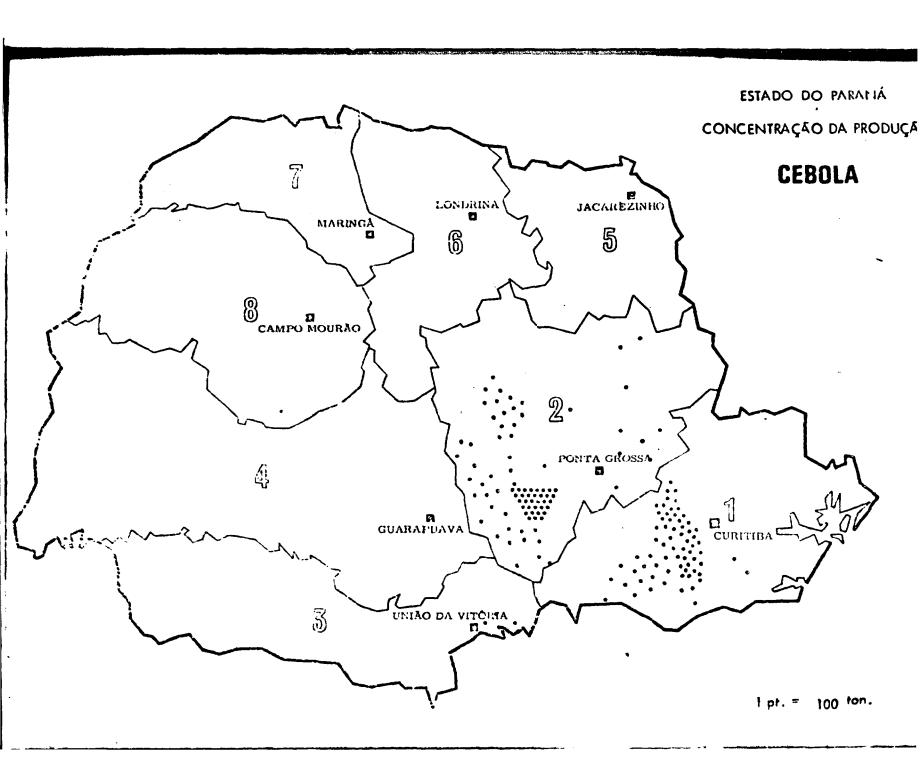
Todos os outros processos de frio ou químico são executados após a irradiação, não havendo necessidade dos tratamentos, ocorrerem simultâneamente, isto é, a maioriadas irradiações são feitas a temperatura e pressão ambiente.

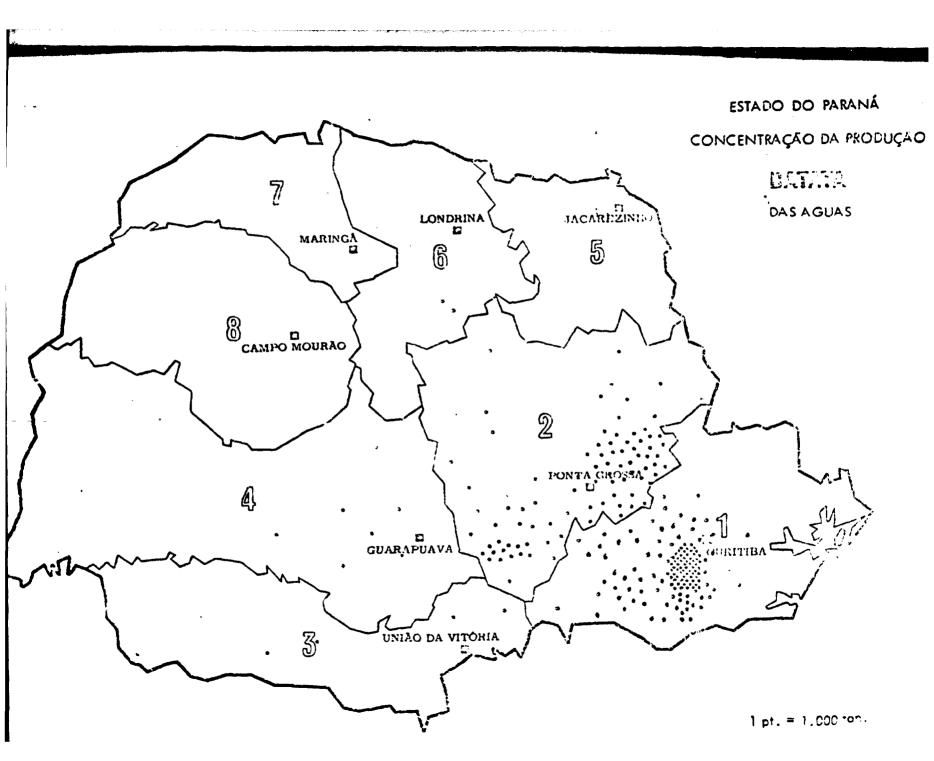
VII - DOSIMETRIA

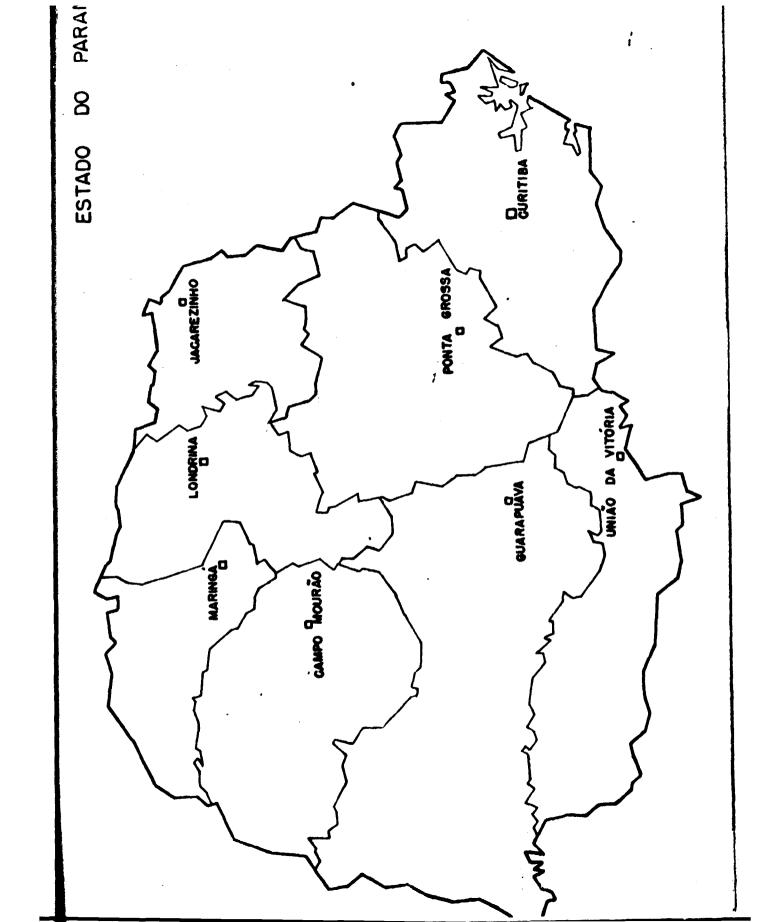
Toda Dosimetria foi feita por peritos da equipe bra sileira de Irradiação de Alimentos, pelo processo de Solução de Pricke. O controle dessa dosimetria pela variação das isodósicas com tempo, pelo problema do decaimento é acompanhado pelo grupo, embora haja a previsão da variação das isodósicas.

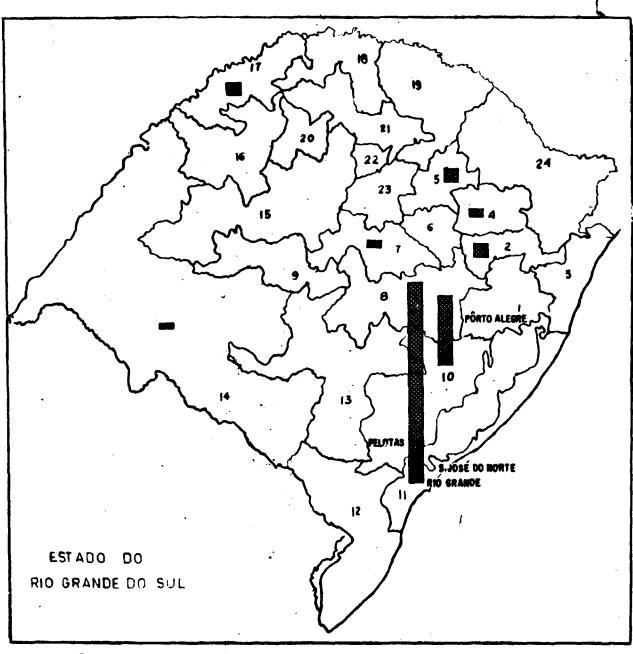

VIII - TESTES SENSORIAIS

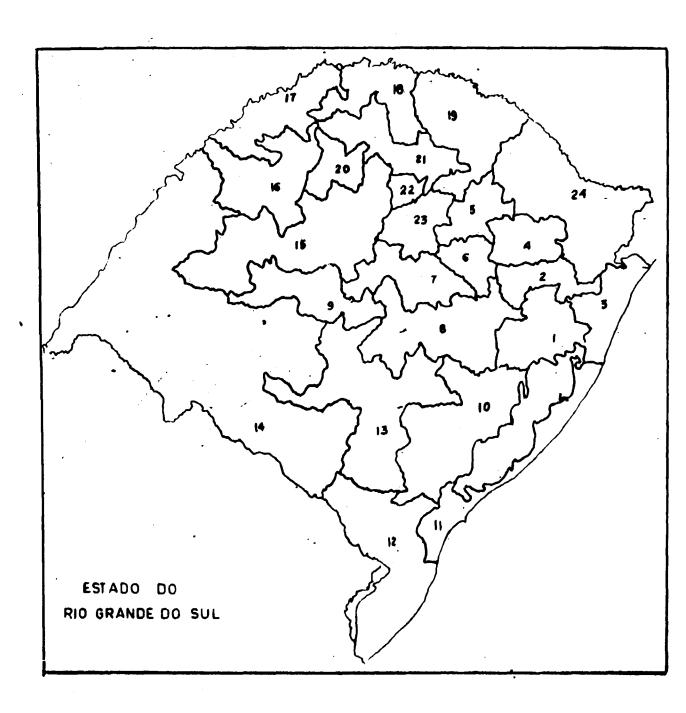

piversos "panel" testes já foram realizados com alimentos irradiados, usando batata, feijão e arroz. Cerca de 1.000 pessoas provaram o alimento e de acordo com o teste pareado ou triangular e aplicação de escala hedonica podemos verificar e constatar que não há alteração pronunciada nos caracteresorganoléticos capazes de tornar o alimento recusável pelas donas de casa.

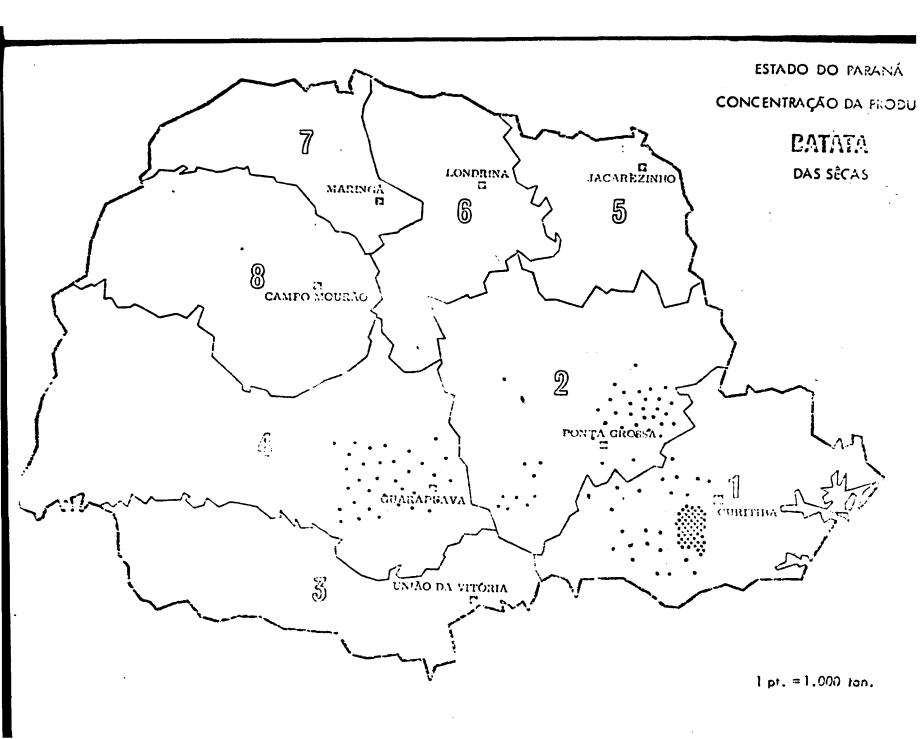

IX - ESTUDOS ECONOMICOS E VIABILIDADE


Os estudos de custos nas condições brasileiras dão, de um modo geral, o valor de US\$ 0,50 por tonelada, no caso do processamento industrial, para produções maiores que 250.000 to neladas anuais.


De acordo com o local de produção ou consumo (vide micro regiões produtoras), com a época indicada para irradiação, são feitos estudos para uma combinação de processos de preservação. Em função desses estudos, um cálculo estimativo de custo á apresentado para a irradiação combinada com outros processos, quer grão secos, batatas e cebolas.







DISTRIBUIÇÃO DA PRODUÇÃO DE CEBOLA (1969)

MICRO-RE	BIÃO	PRODUÇÃO (1		
11		72.975		
10	_	. 25.175 -		
2	-	4. 936		
5	-	4.839		
17	-	4.814		
4	· -	2.601		
7	-	2.436		
14	-	1.922		

X - DIVULGAÇÃO

Um plano de esclarecimento da opinião pública, a respeito da irradiação é conduzido em todo o Brasil, em todos - os níveis culturais e sociais.

Desde cedo nos interessou muito a questão da aceitação por parte da opinião pública, do alimento irradiado. Para isso eram fornecidas, constantemente, notícias a respeito, nos jornais, revistas, estações de rádio e televisão.

Além disso, livretos de fácil entendimento, de acordo com o nível cultural, foram distribuidos, esclarecendo so bre preservação de alimentos de um modo geral, dando enfase a preservação pelo processo de irradiação.

O primeiro a ser executado foi feito para nível - primário e foi distribuido em 70% das escolas primárias de al guns estados brasileiros, para que as crianças já se ilustrassem sobre o assunto. Atualmente, uma publicação para o nível colegial está em fase final de elaboração.

Publicações do nível científico já foram enviadas a todos os órgãos de nível superior do Brasil, que de uma maneira ou de outra se interessem pelo assunto. Complementando, pales tras, conferências e aulas foram ministradas pelos diversos peritos do Programa, em todo e qualquer setor que se mostrasse interessado ou onde fosse interessante propiciar a divulgação da no va têcnica.

XI - LEI

No Brasil a legalização do alimento irradiado começou com o Decreto-Lei nº 986, do dia 21-10-69 que diz em seu artigo 2º parágrafo VII:

"Alimento Irradiado: todo alimento que tenhasido intencionalmente submetido à ação de ra
diações ionizantes, com a finalidade de pre servá-lo ou para outros fins lícitos, obedeci
das as normas que vierem a ser elaboradas pe
lo órgão competente do"Ministério da Saúde".

Atualmente o Decreto-Lei nº 72.718 de 29 de agosto de 1973, estabelece as condições e responsabilidades do processo de irradiação de alimentos no Brasil.

XII - POSSIBILIDADES DE APLICAÇÃO INDUSTRIAL

O Brasil é um pais, que por sua situação geogr<u>ã</u> fica, suas condições climáticas, sua origem heterogênea, apresen ta costumes alimentares muito diversos.

A constituição proteica da dieta brasileira, se gundo dados da FAO é, em sua maior parte, a de origem vegetal , 65g, sendo d de origem animal de 18g. Faz-se excessão às regiões sulinas onde tem proteico animal é 81,5 g,é dos mais elevados do mundo.

O leventamento das produções desses constituintes da dieta média, levando-se em conta também suas perdas, dá
uma ideia do interesse econômico em se obter uma boa preservação.
Se for considerado ainda, ser o Brasil um país em desenvolvimento,
onde os demais reocessos de preservação ainda são incipientes ,
sente-se de imediato ser competitivo o processo de irradiação. Mes
mo considerando o uso de combinação de processos, obtem-se resul
tados mais pronomicos e eficazes.

Devido a sua grande extensão territorial, o Brasil tem outro problema que é o da distância entre as regiões produtoras e as consumidoras, o que impossibilita a distribuição uniforme de suas produções agrícolas por não dispor de processos eficases de preservação para isso.

Pelo baixo custo deste processo, que de acordocom trabalhos já publicados pelo Programa de Irradiação de Ali
mentos, fica em torno dos apresentados no quadro seguinte, pa
ra escala industrial do processo, e nos dá uma idéia do interesse da utilização da irradiação para conservação de alimentos.

PRODUTO	CUSTO POR TONELADA	
Grãos Acondicionados	Cr\$ 3,30	
Grãos a Granel	Cr\$ 2,70	
Batatas e Cebolas	Cr\$ 4,00	

Não esquecendo que para produções maiores,o cus to deverá ser menor, isto ajuda a aumentar as possibilidades - de utilização em larga escala deste processo. Mas como já foi dito, o método de combinação de processos com o de irradiação é de um efeito superior ao da irradiação somente, e embora não seja dificil de se entender, poderíamos afiançar que o custo-do processo combinado, passa a ser menos da metade do custo do

outro processo até então usado comercialmente.

Mas para utilização industrial não bastaria ser econômico, ou que o custo fosse menor comparado aos processos - usados até então, é necessário também que se tenha a autoriza - ção legal das autoridades competentes, o que de um certo modo - já se acha em fase bem adiantada pelo já citado ítem XI.

Pelo visto so faltam as normas respectivas, que serão aprovadas pela Comissão Nacional de Normas e Padrões para Alimentos, e cujas tabelas serão enviadas pelo Programa de Irradiação de Alimentos.

Mas de que adiantaria tudo isto se não houver a aceitação do processo, por parte do Público? Poderíamos correr o risco de uma reação popular que levaria a perder todo este - trabalho caro e de muito tempo? Para se evitar este problema, já há algum tempo o Programa de Irradiação de Alimentos por meio de técnicos especializados em comunicação, vem levando a todos os níveis intelectuais e sociais o esclarecimento e conhecimento sobre o processo de preservação por irradiação, mostram do a seriedade e a honestidade dos trabalhos que se fazem no Brasil e no mundo inteiro, para se ter a certeza de que tal processo so poderia trazer benefícios para a humanidade, e que com este processo poderemos reduzir um mal que aflige a humanidade- e que de ano para ano selera o seu crescimento, que é a fome.

KIII - LABORATÓRIOS QUE TRABALHAM EM COLABORAÇÃO COM O PROGRAMA DE IRRADIAÇÃO DE ALIMENTOS

- Escola de Veterinária do Exército
End: Av. Bartolomeu de Gusmão, 1035 - Mangueira
20.000 - Rio de Janeiro - GB
Participação dentro do Programa:

- Wholesomeness e Estudos de alterações do Milho irradiado.
- Centro de Tecnologia Agricola e Alimentar, do Ministério da Agricultura
 End: Rua Jardim Botânico, 1024 Jardim Botânico
 20.000 Rio de Janeiro GB
 Participação dentro do Programa:
 - Estudos de alterações em Arroz e Trigo irradiado
- Instituto de Nutrição Annes Dias da Secretaria de Aducação e Cultura do Estado da Guanabara
 End: Av. Pasteur, 44 Botafogo
 20.000 Rio de Janeiro GB
 Participação dentro do Programa:
 - Testes Sensoriais com alimento irradiado a fim de verificar possíveis alterações de aspecto, odor e gosto.
- Laboratório Bromatológico Francisco de Albuquerque, do Instituto Estadual de Saúde Pública End: Rua do Resende, 118 - Centro 20.000 - Rio de Janeiro - GB Participação dentro do Programa:
 - Estudos de alterações em Batatas, Cebolas, Feijão e Banana irradiados.

- Faculdade de Veterinária, da Universidade Federal Fluminense.

End: Centro de Ciências Médicas Universidade Federal Fluminense 24.000 - Niteroi - RJ

Participação dentro do Programa:

- Efeitos da irradiação sobre Pesticidas Residuais em alimentos e controle de Higidez em Pescado Fresco, Fresco-congelado e Irradiado.
- Instituto Adolfo Lutz
 End: Rua Dr. Arnaldo, 355
 01000 São Paulo
 Participação dentro do Programa:
 Análises de rotina e determinação de excesso de residuos de pesticidas em alimentos.
- Centro de Energia Nuclear de Recife, da Universidade Federal de Pernambuco.

End: Universidade Federal de Pernambuco 50.000 - Recife - Pernambuco Participação dentro do Programa:

- Estudos de preservação e alterações em Cebolas e Frutas tropicais irradiadas.

BIBLIQGRAPIA

- Anuário Estatístico IBGE 1970 1971
- Balanço Alimentar do Brasil 1966 1968 Comissão Nacional de Alimentação Ministério da Saúde - Rio - GB - 1969
- 19 Simpósio Brasileiro de Alimentação e Nutrição Anais do SIBAN Campinas - SP - Julho - 1965
- 39 Simpósio Brasileiro de Alimentação e Nutrição Anais do SIBAN Belo Horizonte - MG - 1971
- Divisão do Brasil em Micro-Regiões Homogêneas. Fundação IBGE Instituto Brasileiro de Geografia - Volume 3 Divisão de Geografia - Julho - 1968
- 29 Simpósio Brasileiro de Alimentação e Nutrição Anais do SIBAN Recife - Pernambuco - Julho - 1968

ABSTRACT

The Brazil, by the geographycal situation, has characteristic aspects in relation to the foods. By this reason the Brazilian Food Irradiation Program started this work only with the foods that are the main constituents of the diet of one tipical region, and studied the preservation of black beans, rice, corn, wheat, potatoes and onions, and their derivates.

Results such as doses range, others processes in combination, shelf-life, increasing cost of irradiation, legal aspects, to that foods are now in the final steps or already, finished, at this moment, to the brazilian conditions.

Others results about toxicity, by the problem of to be long term studies, are delayed, and only with potatoes has finished, and are starting the studies about rice.

It is very interesting to have an idea about the brazilian possibilities of industrial application of the irradiation process, for preservation, not only by the loss of more or less 30%, but also by the interest presented by the private companies, have contained to have a contained to have an idea about the brazilian possibilities of industrial application of the irradiation process, for preservation, not only by the loss of more or less 30%, but also by the interest presented by the private companies, have contained to have an idea about the brazilian possibilities of industrial application of the irradiation process.

By these reasons, Brazil can be one of the first countries that will use the peaceful aplication of nuclear energy in the field of food preservation.

