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THE RESOLUTION FUNCTION

FOR THE ROTATING-CRYSTAL SPECTROMETER
N.C.Popa

Institute for Atomic Physics, Bucharest, Romania

The resolution function in the (a.u) space for the rovating-
crysctal time-of-flight spectrometer is defined. All the instrumental
components bringing a contribution to the uncertainties in the mes-
sured energy and momentum transfers are taken into account. A de-~
tailed analysis of the monochromator unit transmission,including the
Doppler effect influence, is presented. An analytic expression is

derived for the resolution function in the Gaussian aspproximation.

1. INTRODUCTION

During the last years, the resolution function of the ther-
mal neutron spectrometers used in condenged matter studies has been
considered by a number of authors. Its analytical expression for a
triple axis neutron spectrometer and for a twin-rotor time-of-flight
gp2ctrometer was calculated in refs. /1,2,3/ and in /4/, respect-
ively. For the case of the rotating-crystal spectrometer /5/, a
time-of-flight resolution function has been discussed by Furrer/é/.
This function depends on the measured cross-section, hence it 1is
not defined exclusively by the instrument.

The present paper contains an analytical treatment of the

resolution function in the (B,N) space for the rotating-crystal



spectrometer. All the sources of the uncertainties in the measured
momentum and energy tranefers have been considered for a particular
channel of the time analyser and a given setting. These sourees
are: the dimensions and the shape of the monochromator crystal,
sample and detector, the Duppler effect, the width of the analyser
channel, the collimators angular divergences and the monochrosator
mosaic spread.

The resolution function is defined in sec.2 and the neces-
sary approximations for obtaining an analytical form are given. In
sec.3 the transmission function of the monochromator unit is de--
rived. Unlike the equivalent function calculated in ref. /2/, this
function depends on the crystal coordinates and on the time also.
This dependence is dus to the Doppler effect and to the rotation
respectively. The Gaussian expression rfor the resolution function

is given in sec.4 in a form suitable for a simple computer program.

2. DEFINITION OF THE RESOLUTION FUNCTION

The layout of a rotating-crystal spectrometer is presented
in fig.l. The horizontal and vertical angular divergences of the
i-th collimator Ci (i=1,2,3) are oy and B1 respectively. The col-
limators axes are contained in the horizontal plane. The moOno-
chromator crystal, of cylindrical shape with radius o and height
zZ,, .rotates around a vertical axis contained in a reflecting plane
belonging to the most probable mosaic block. lLet the coordinate
systen (1,1,3,1) be connected with the crystal in such a way, that
the 1 axis is vertical and the I axis is normal to the above -
mentioned reflecting plane. lLet t=0 be the moment when 1 becom.



r
Monocromater

Fig.1l.
Layout of the rotating-crystal spectrometer.

external bisectrix of the angle 20H between the axes of "he col-
limators C° and Cl. At t=0 the laboratory coordinate system (M,T,
3.1) coincides witn (M,1,3,1). The coordinate system for the

sample is chosen as in fig.1l. The sample is either a rectangular

prism of x

%.8'Yos' 208 dimensions or a cylinder of r radius and

os
Z,8 height. The detector (which consists usually of two rows of
cylindrical counters of po'radius and a total window of dimensions
Yoo'zoc) is considered, for the sake of simplicity, to be a rect-

angular prism of eft~ctive thickness x = "0, The detector co-

oc
ordinate systems are(C,Ic,ic,Ic) and (c',Ié,]é,Ié), the Ic and Ié
axes being the same, and the segment C’C b-.ing defined by the
weight center of the absorption function x> = C’C. ‘The value of
<x> depends on the mean wavelength corresponding to each time
channel. Lst us denote M8 with LI and SC with LPo' The segments

LI and L’ = l:.'° + <xc> are the mean flight paths of the neutrons



before and after the scuattering, respectively.

For a given interplanar distance d of the monochromator,
and given angles 20" and 208, in the analyser time channel 'ro
neutrons will be detected corresponding to the mean scattering

process ;

60 - %y - il (2.1.1)

. w2 2_,2
fu, = (B°/2m) (] - Xp) (2.1.2)

where A is the neutrons mass and

ky = w/(a sine,,) ' (2.2.1)

k' = errAth'ro/n - LI) (2.2.2)

The intensity detected in the 'ro channel will be :
1r) = 1d .0 = SR, 0mw )o@, 0 b (2.3)

where o(§,s) is the croes section of the smeple. R(A0,88) 1s the
resolution function of the instrument for a particular time channel
/4/. It is defined as the probability of detecting neutrons cor-
responding to the scattering process assoclated with the particular
point (6c+46,u°+4u) in the (3,s) space.

Let us assume that a neutron is reflected at the moment ¢
at the point (x,y,2z) with a wave-vector :I + Aii. is scattered at
(x4 (¥gs2,) with & wave-vector i'ﬂif and absorbed at (x’,y.s}) .
The resolution function will be thema ;



’['dxdyédxsdysédxédyé_idt

R(AQ,00) = ~—2
ImiIsticl

/ A(8K, )4 (8K XP (8K, ,T,¢) T, (ak;) P_(x,yl) Py (AT) (2.4)
cmé—nifuii) §(kpoko~k Ak, + (/m)Bw) §(y,-9;)8(yi~0,)

The expression (2.4) implies that in a first approxi-
mation the resolution function is not affected by the vertical
dimensions of the instrumental elements, and that Yg and yé are
not independent variables. The quantities [M|,[5],|C| are the
areas of the horizontal sections M, 5, and C in the monro-
chromator, sample and detector respectively.

The quantity AT is given by -

AT = T -T, (2.5.1)

wihere

T, = (m/ﬁ)(LI/kI + Lp/kp) (2.5.2)

'ro is the moment of detection of a2 mean neutron reflected at t=0
at the point M with a wavevector ;I' scattered at S with a wave-

vector il? and absorbed in C’. The quantity T is given by

T=t + (m/h) “‘1/"1 + Ltlkf) (2.5.3)

and represents the moment of detection in the same channel of
the neutron under consideration in (2.4).

One can write



2 2
AT = ¢t + (l/ﬁ)(ALilLI + ALf/Lf - LIAki/kI LPAkf/kP)
(2.6)
It is easily found that
AL1 = Li_LI - -clx + czv + x./coa X- ylnxth (2.7.1)
= - = - ’
ALg pf Lp E1°°'enx + ElsineHY + ElLI Y, Bx’/cosx +x/,

(2.7.2)
and also that

Ys =0 -(cosenlcosx)x+(|1neulc0lx)Y+ ylLIcocx -x'tgx
(2.8.1)

yé =9 = £2c0|9"x + £2l1n9H¥ + YlLI Ezﬂ'u/coux-wzl.P

where
3, - sineu + tgxcosd, {2.9)
cz - coseu - tq(line"
a = ilnzo' ; B = co-29. (2.10)
€, = o+ Btgx £, =a- Btgx (2.11)

X is the angle between the normal to the sample and the incoming
beam ( x= 0 when the sample is a cylinder). X,Y are the coordin-
ates of a point (x,y) of the monochromator in the laboratory
system. The laboratory system m,%,3,1) 1s connected with the
systen (,1,3,1) by the relations :



X = x cosiit - y sinQt = x
(2.12)
Y=ycosit + x sinit = y

Here was taken into account the fact that the instrument
transmits only for small Qt, dve to the existence of the col-
limators C° and Cl. The quantity /2w 1is the frequency of the
monochromator rotation.

The functions under the integral sign in (2.4) are pro-
bability functions, with the following meanings : Pn is the
transmission of the monochromator unit (collimators Co'C1 and
moncchromating crystal) T, - the transmission of the collimator
Cz, Pc is the probability'of absorption in the detector, P is

T

the acceptance of the analyser channel. P, is8 a convolution

M
between the crystal reflectivity function with the transmission
functions of the collimators S and C,. These functions have
different forms (the crystal reflectivity has a shape given by
the mosaic :>rystal theory, the collimator transmissions are tri-
angular functions, PT is rectangular with a width 4r, PC is8 of
the form en(‘uxc) in the (O,xoc) range and zero otherwise). It
is reasonable to make use of the Gaussian approximation for each
of them, on the grounds that the folding of a large number of
functions having arbitrary forms gives a nearly Gaussian.

The Gaussian approximation of the resolution function is
obtained by replacing each of the above mentioned functions by a

Gaussian of the same dispersion :

1,202
- x(x/a’)
o » 3t o ? (2.13)
i



where <x> = 0 was assumed.
For a triangle of half width at half parximum a one has
a" = a//6, and for a rectangle of width a, a'e a//12., In the

integrals of the following type :

«® -
I(...) = =~ [ Qu dvP(u,v,...)= / du f av¥(u,v) F(u,v,...)
b} D ~~ -
{2.14.1)
where
1
yia,v) = --— for (u,v)€D
Ip|
0 otherwise

the function ¢ has to be replaced by the Gaussian function
having the same covariance matrix :
2,

1,2, %2 2, &
1 - x{u“/a + v /a
e 2071 2 (2.14.2)

where <u> = <yv> = 0 1is assumed, and also <uv> = 0,
; - u; = q/2,
1f D is a rectangle of sides 8 and Oy then J; - aII/IT and

a; = azlffi.

If D 1is the cjrcle of radius a , then o

3. THE FUNCTIONS Py, AND P,

Let the vertical and horizontal mosaic spread of the

crystal be:n. Let be r = xI + yJ + 53 the position vector in a



point of the crystal. In the approximation of a weak extinction,
after having performed the approximations mentioned in sec.2 for
the collimators, for the transmission function of the mono-

chromator unit (for the unity volume of the crystal)one obtains:

a(z) 4(¥e2 8,2 a2 8,2
1 (] 0 v
ar,. = - a!’t-«![(—r) + (-T) + (=) + (—) +
M 3 o N
(2%) "a? c; B8y a5 Bo " "
Y, 2 A 2
+H= + (b }a&, (3.1)
a, B,

where Q(T) is the reflectivity of the unit volume and a;-ai//C
»
and 8, = 8,/7% .
By using relations (9,10,11) from the Appendix one
obtains :

2, ** 2
YO = 2(Ak’./k1)1:90.l + '71 - 4(n/ﬁ)tge"-1n 3" V‘l’p/f (3.2.1)
8, = Bk, /K )tg8, + v, - w - 2(m/M)tge, Vip/tl (3.2.2)
Av = (61 - Bo)/(z ‘inen) (3.2.3)

For fit of the order of collimator divergences one can

write

?p/t = T+0c 3 (3.3)

Ve~ aiysxat) T+ Q(x-yit)J (3.4)
so that .

w = Ot (3.5%)



2/B)Hp/t? = - 2m/8) (Ry /1) (3.6)

Putting all these expressions int¢v (3.1) and integrating

over 60, one obtains :

2
248k, [k tgl +y,+4mly/ ¢hv) tgé sin“6,, 2
F, (A%, F,t)= P _ exp {--;-[( 3 Stk IAF Mo MW,

%

2

Ak, /k_tg6_+y.+2mldy/ (hT)egb -0t 2 y, 2 &, 2 s
e E ) () 4+ i)
n aj 81 Bo +4n“sin”o

(3.7)

where

Q(;) lin&n
P = (3-')

o
5/2 % %« % [&3 2 2
(27) naoalsl Bo +4n“sin“e

It can be shown that for rmall enough frequencies one

has :

o) - dto) (1 + v§ 2¥) (3.9)

where v depend- on 0". The secord term in (3.9) is of the order

2

of 10 “ and therefore :nay be neglected.

In a first approximation the absorption function will

depend only on Xo !

- ux -udx

[+ Cy * [~
Po(x)) dx, = e (l-e ) = e dax (3.10)



a, -
The function Pc(xc) - xoi Po(x ) appearing in the

relation (2.4) becomes, when normalized :

v -ux “¥Xoe
P (x,) = pe WXe/(1-e ) (3.11)

The quantity p is the absorption coefficient of the detecto.. It
has a weak and linear dependence on the wavelength of the. detected

neutron :

-1 -1 -1
T ckf = ckP - ckPo = c(ﬁkzrolm - LI)/LPo {3.12)

where ¢ is a constant characterizing the absorbant). The

quantities <xc> and <x§> have the following expressions :

- L. ux
<xc> m xoc/(e oc-1) (3.13.1)
x%> = (2/u)<x> = x2_/(«*%oc-1) (3.13.2)
[+ [+ ocC’

In oider to keep the Gaussian approximation one has to put:

1 1 2,2 1 1, ., 2 n
3c(xc) = j;%: cxp[-!(xc-xc) /€ ] - ~ cxp[-,(xc/c) }- Pc('é)
{3.14.1)
where
c2 - <x? 2

c> - <xc> (3.14.2)



4. DERIVATION OF THE RESOLUTION FUNCTION

Within the approximations of sec.2 and . the resolution

function has the expression :

R(80,80) = R} fa(sk,) a(ak,) 6 (80-ok +8%,) 8 (Kpak ~ky Ak, +

‘ 1
+ mAs/h) e B +B) S ... J du, du,du, du, du, exp(~B,/2)
o/ "’[‘!‘12’]_. _J duy duyduy du, dug exp(-E,
(4.1)
where
36/7 X P
R/ --——ﬁ-_—g—: (4.2)
° 5/2 cAt |#]|8)|C|
(for cylindrical samples R")g-’ R")/J ), and
2.2 2 2
B = ajvy + a),v, (4.3.1)
2 2 2 2
E, =2, § + a5, 62 (4.3.2)

5 5 s
E, - 1%1'11"1“1’2 Eciufk Edi-u'lmzc'um'm
’ . 4.3.3)

C= XD D=sJV (4.4)

The quantities 11(1-1,?....,32) are given in table I, and
the matrices N,K,J in tables II and III1. E is the unity matrix,
and tihe vectors U and V are 3



1.11 /t vl\ M‘i
a, x va Akf
U= u, = ly Va vy H A (4.5)
Yy xs Vs Y2
’
“S Xe

Making use of the translation :

u= w-nNl (4.6)

one obtains for !3 3

Ey, = WM - C'NIC + D'ED = WNW + r, 4.7)

and the last five integrals in (4.1) may be written as (see ref.7):

[ _J - -«* -
I ) I d“lo'-dus .l‘p(-la,/Z)- .@(‘!‘/2).‘/. ct.l dwluvo“s

- @ —n

-]
exp(~ % 1%’;3";'3’ - (2')s/zap(-l‘/2)/lllln (4.8)

where |N| is the determinant of the mat.ix ¥ .
By using (4.4) one gets for !‘ s
r, = 0’ 225 ) = vipY (4.9)
where
P e 3 (E-K'N"I)I (4.10)

Now, one has to rewrite the elements 733 and r“ of the
matrix P with the aid of 31 from (4.3)s



~

P33(nev) = F33(old) + a
(4.11)

-~ o~

F“(nevi - F“(old) +a);

bt iz’ /4 v
|}
- )

Yig.2.
Geometry of the scattering process in the
rzciprocal space.

It remains to carry out the integrals over Aii and Aif.

According to fig.2, one has :

R

sk, = Ak111+k171§1+k16111 -(bAki-akxyl)I °+(an1+ka11)3°+ho11°
(4.12.1)

sk, = Ak£12+kl,1232+hl,6212 - (-nAkf-Ak,,yz)Io+ !\Akf-nkryzﬂompczlo

(4.12.2)

A8 = AQon + AQYSO + 00,k (4.12.3)

where a = sin¢; b = cos¢ ; A= giny ; B = cosy (4.13)

By taking into account that

a(ak,)a(ak ) -k;'k;a (8k,)d (8k g) &y, Ay ;a8 188 )= k";x;avlavzdvsdv 448,85,
‘ °

(4.14)



and by setting :
AQ‘ = xlx AQY = xz t bu = x‘ and Aki-vl-x:,' (4.15)
one ocbtains for the resolution fung:tion :

S/2
(2%) Ré kI

R(Aa,hu) - —I;—lvr k-:

I a8, s dcze'l"z/’ 8 (6,-8,-AQ, /kp)
- —

7 .I. 4av.av, dv. av [‘ 5(v-2‘;1 X)]exp(-l Z‘l’ v,v,)
L 12341]2 11_1 1379 Ii,j-luij

(4.16)
wvhere A= l:.‘[/kP and ;
(4] (+] 1l 4]

0 o A -n/ Mk,)
1 =| B/(aky) -A/(axI) (A=) /laky)  -m/(fak k) (4.17)

b/ (aky)  -A/(aky) (A6-1) /ky -n/ (hak3)

The integral over 51 and 62 fiom (4.16) hecomes :

2 2
/2 1 813814

1 2
2.2 2.2
I, = (2n/ (kpals H‘I,'Il” ke oxp -~ ¥ (8q,) (4.18)
kpsyatkyay,

and the Antegrals over "1"’2"3""4



4

° 1
I, = /dx;exp(-3 E%g;i R RN (4.19)
where :
8 = I'PI (4.20)

By putting :

"1j = Sij - s3is3j/s33 (i,j=1,2,3,4) (4.21)
one may write for the integrals I2 H
-1
I, =(21/S35)  exp(- 3 ;%;:1 My 4% %) (4.22)

In this last expression the indices 1,)=3 are only
formal, as from (4.21) it may be seen that ni!'“3j-° for any i
and j.

Pinally, if one rewrites :

2.2 2.2 2,2
80, ~ X, and H,y, = a)ja],./(kpaj, + kjay,) (4.23)

one obtains the resolution function in the form ;

4

1
R(Xy /Xy, X3,%,) = R, exp(- 3 “2;1 "y 4X,Xy) (4.24)

where



) (21) /2 My, 172 (
R = R ———— 4.25)
°© 0o a3, I IN| 84,

It 18 a Gaussian function in the quadridirensional space
(Q,8). As in ref./2/, the elements H31-H13 (i#3) are zero, so
that the resolution in Q% and the resolution in Qx,qy,m are in-
dependent each of another,

Al _hough (4.24) is an approximatior for the resolution
function, it accurately gives the center of gravity and the
variance of the real function. However, due to the approximation
given by (3.14), the moat probable value is not given exactly,
though it is to be expected that the difference will be small,

Finally, let us mention that from (4.24) one may define
a resolution function depending on the time of flight, RO(AT),
in the conditions which are discussed in ref./6/. Generally, this
function depends on the scattering cross-section ¢, except for

the case of a weak dependence of ¢ on 6.
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Table I
The expressions of the coefficients a,. For cylindrical
samples the expressions are given in brackets <...> .,

a = 2/8 thH/(aokI) 1 a, = tgﬂul(nkx): a, = -a/12 LI/(ﬂAtk:)

-m/12 LP/H\ATkg)I ag = li/co 3 a, = i/n a, = /6/01 ]

a, =
ag = m/12 L, ‘51/"1""‘1"/"1’/““"’ < m/127 L.E,/ (Ratky)>
ag = /12 LicosX/Y,, | <2Lp/r >3 &y = /12 lez/yoc; an-fC/azr

-1 ,1/2

ay, = TE Lply b 85 = /G(aizﬂaintnzunzan) 18y ,=/8/8,1

ajg = -/n ; a“-/ﬂ'/us al.,-/fi(zlco-en/k’-zl/kl)/mAt) 3
ag=2/ry 1 a,, =/12 cosd,/ ly_,cosx)s <2cosf/r > ;
a0 -/HCzcosOH/yoc; a - 4n/g ntgeus:lnzen/maot) '

a,, = 2mitge,/(Mh1); 3,5 = nv’ﬂ'(:lune”/k’ + 5y/kq)/ (BAT)

2y, = 2/r° Poay =/T7 siné,/ (yo.cux)r <251mH/r°.> 3
ayo = /T2, 81n8, /y 3 8, = -n/TZ(B/ky-1/k;)/ (RbTcCOSX) ;

< ~m/TZ (B/ky~1/k.)/ (hAt)> ; a. o= /I2/x 3 <2/r > ;
I <8 os os

a, - -/1Z7 tOX/Y g | <O> 3 Ay, -/Ha/(yocco-x); </1'!'a/y°c> ’

a;, = a/12/ MaTky) 5 8, * 1/e’.



-817227%219%29%2202 307

Table II

The symmetrical matrix N (1,j=1,2,...,5) (N

13 157851)

2 a,,+a

2
315%8167  Nyp = 3163197 Nyg® 8,53,7%8,43537 N

14" 2162277

2.2 2 2 . . )
2162317 M22™ 217218%19%20F  M23™ 217223%219%25%320%26°

25" 817%31 ¢

2.2 .2 .2 .2 ,.2 . .

8y11820%853 %8, Y855 867 Ny ™ 8)38,9%8)5859%326330}
2,2 .2 .2 . 2,2

838310 Ngg™ 8y9%8zg%agtag, i  Nyg™ajgay1  Ngg=ag ta,,

Table 111
The matrices K(5,5) and J(5,4)

o 314 244 o o a, ag o
o o0 8;9 &9 8, a3, o ac o
= | %21 %22 %23 %25 % I o= 8 8 33 O
o o0 89 89 83, 0O 0 a o
o 0 a”. 0o o o o0 0 a8,



APPEND1X
CHANGE OF ANGULAR DIVERGENCES AND THE ENERGY RESOLUTION AT
REFLECTION FROM ROTATING CRYSTALS

It is well known (see for instance ref./8/) that the Bragg
law is modified in the case of a moving crystal. For a perfect
crys’.al, small enough, moving with a velocity 3, the momentum and
energy conservation laws in a reflection process are (in the

laboratory system)

k, - io + T (A.1.1)
kf = k2 + 2mm)v 1 (A.1.2)

where T 48 the reciprocal lattice vector, Eo and ii are the

wave vectors of the neutron before and after reflection. If one de-
notes the angles before and after reflection by Bmo and emi
respectively (in the laboratory system), the expressions (A.l)are

equivalent with :

B
vt

g
vT
T = 2k, sind  +(Om/N) Fadie 2k 8100, - (2m/M) T (A.2)
For given omo one obtains :
T i
k, = (1-2¢ -5) (A.3)

(2 linemo)



-
and in the approximation (2m/M) v—-:—«l (A.4)
T
one obtains :

>

= (1-28B WX
):1 (1 25 ;;co-zo_o)x/(zune-o) (A.5)

nvr .2

sinem1 - -ino.o(l-uﬁ ;—’co' 0.0) (A.6)

which is equivalent with

i

0 = 0t 2;; -;;-mo_o (A.6")

Let us consider now the real crystal in the layout of fig.l.
A neutron which passes the co collimator along its axis, and 1is
reflected in the point T=0 at the momentum t=0 on the most probable
mqnic block, will have after reflection a wave vector k, and a
direction parallel to the axis of the collimator C,. A neutron hav-~
ing the direction (v, ,8 ), reflected at a mowent t in a point T on
a certain mosaic block ;(Ah,bv), will have after ‘reflaction a wave
vactor ""1’71’61)‘ Bere 4, = T3/t and i, = i/t . our purpose 1is
to calculate Yyo 61 and ki' Taking into account fig.3 orz can

write :
»
9” - eu + Ah + @ - Yo (A.7.1)

»
Ou - 6” - Ah e 4y (A.7.2)



Fig.3.

Geometry of the reflection process in the

monochromating crystal ia real space.

Here w 1s the angle between ?p and the 1 axis. Por small
values of-u* one has :

u* -7 3/1 (A.8)
P
By substracting the relations (A.7) and using (A.6') one
obtains :
N 1
Y=Yt 2(Ah+w V+ 25 :; sinzeu (A.9)

The last term in (A.9) is the contribution of the Doppler

effect. This effect does not change the vertical divergence (in a
first approximation), therefore

61 = - 60 > 2 Avlinen (A.10)

From the relation :

>
. m v1
T = 2x1-1ne" - 2kisinem1 Zﬁ P (A.11)

it follows immediately :



(1

®
‘“‘1"‘1 = (Ah-f w - yl)ctgen + 2

L)

(A.12)

-y
L]

In the relations (A.9) and (A.11) T may be replaced Ly ?p,

because only the first -order terms are retained.
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