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ABSTRACT

, The cdeveloped method for determination of material
buckling in fast reactor systems has been analyzed and some
improvements made. The non-cylindrical shape of the reactor
core is taken into account and the linear crrrelation between
experimental and theoretical reaction rate traverses has been
thoroughly studied. The corresponding coruter programme
BUCKLING is written and applied to measurements in the fast
reactor assembly SNEAK - 7A in Karlasruhe. The evaluation of
measurements was performed with the latest cross-section sets
available at the Kernforschungszentrum in Karlsruhe. i
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1. INTRODUCTIOCH

Material buckling characterizes media of a nuclear
rector, independently of their shape and surroundings. Its
experimental determination could provide a suitable test of
the cross-section data being used, since accurate calculational
methods for evaluations cf parameters of a fast reactor are ava-
ilable (material buckling is the eigenvalue of the space indepen-
dent multigroup diffusion equation). The value of material buc-

' kling is determined by the fundamental mode of neutron spectrum.
However, the interaction between the core and reflector in the
fast reactor facility is very marked, so that spectral and harmo-
nic efiects are large even at the center of the core. That excludes
the possibility to measure the fundamental mode of neutron flux

in the reactor medium directly.

The method of determining material buckling experi-
mentally, was developed by the Masurca-group in Cadarache, Fran-
ce (1). It is based on synthesizing the fundamental mode of neu-
tron flux from measured figsion rate distributions, of suitably
chosen detectors, along the principal axes of the core. The ba-
sic theory of the method is described briefly in the next section.
Further investigations and some improvements of the method have
been made by the SNEAK-group in Karlsruhe, Germany (2,6).

The present report shows the influence of the eylin-
drization effect on determination of the spatial fundamental
mode of neutron flux. The way how it can be accounted for, and
the analysis of the linear correlation between experimental and
calculated reaction rate traverses is included also. The programme
BUCKLING for determining axial and radial bucklings of the cylin-
drical core, written in the FORTRAN language for the CDC-3600
computer, is listed and its fiatures explained, It is based on
the developed theory and includes the corrections given in the
report.
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Experiments for material buckling determination in
the assembly SNEAK-7A are analyzed and the results obtained by
the programme BUCKLING are given and discussed. The necessary
theoretical calculations of various parameters and reaction rate
travereces, have been done in Kernforschungszentrum, Xarlsruhe
using in multigroup calculations the most recent cross-section
sets available there.
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2, TEZGRY OF THE EXPLRIMENT

The diffusion equation for the given multiplying
region with a constant composition, using common notations
fer cross-sections, etc., can be written in the operator
form as:

D(EIV2&(H,E) + HO(®,E) =0, (2.1)
where:

H

- ot(E) + f g (E’> E)AE” + k x (E) S vo (E“)AE”
s E f
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Symbcls o stamd jere for macroscopic cross-sections.The
contirucus energy notation is used throughott the paper in-
stead of a multigroup notation for easier readability. The ,
scalar neutron flux can be expressed through the eigenvalues jf‘
Bi and the corresponding eigenvectorsY:i(E) of the diffusion i
matrix li, ar.d the eigenfunctions £ (F) of the Laplacian:

> N . -»>
» (r, E) = E af (0P (E), (2.2)
with:
2
1 (7) + B fi (r) = 0, (2.3)

where A; are the proportionality constants.

The largest eigenvalue, "i , is by dcﬂniﬁan the
material buzkling of the medium. This <igenvalue is potiﬂw ,
for a medium with ke> 1, and the associated oimncm 71(2)




is the asymptotic spectrun (or fundamental mode spectrum).

To the material bucklingz is associated the sc called fundamen-
tal spatial mode of the eigenfunction fi (. Omitting the index
1 for the fundamental mode anc the asymptotic spectrum, and
supposing that the neutron flux is normalized by the condition

f (o) =1, Eq. (2.2) can Le written as.

¢ (r,E) = £(r) ¥ (E) + E (3, B) (2.4)
The first term represents the fundamental mode, and the se-
cond is the contributicn of transient modes.

According to the Eq. (2.3), the material buck-
ling iz given by:

v

(2.5)
£(T)

g~

In order to determine experimentally the quantities on the
right hand-side of this equation, one should measure the
spatial distribution of the fundamental mode in the medium,
As already mentioned, the asymptotic neutron spectrum is
practically never established in any part of the reactor
core. Nevertheless, it is possible to define a "buckling"
which is spatially and cnergetically dependent, by the fol-
lowing relation.

2

82 (¢, E) = -V

93, B)
¥z, E)

The measurement of a neutron flux distribution

consists in fact of measuring the reaction rate distribdution
of a detector with the macroscopic cross-section o ,(E):

Ry (E) = /o (E) 8(}, E) oE (2.6)
I o .




Using the relation (2.%) it is possible toc cdefine "buckling"
associated to the detector 4 as:

, . v r(Ede(F, E) CE
B (r) - __V Rd(r) = - L

= - (2.7)
~d(r) J od(E)o(r,E) dE
E

Assuming that the neutrcen flux can be separated in several
principal directions, <.g. in axial and radial direction

by the core of the cylindrical type, the total buckling

can then be expressed by the sum of an axial buckling, ag (T)
and a radial one Bg (T):

2 . 2 .- 2 ,»

Inserting expression (2.4) for the neutron flux into Eq.
(2.7), one obtains:

V25 (F) Jo, (EYO(EMEE +9° fo,(E) E (F,E)CE
2 B E
8, (r) = ~ -
d r_ > <>
S o, (E) [£(r)¥(Z) + E (v, E)] 4E
E

d

The following question can be raised now: What properties
should detzctor d have, in order that Bz be equal to mate~
rial buckling, Bi ? Recalling that the eigenvectors i (E)
are orthogonal to the adjoint asymptotic spectrum with

diffusion coefficient as a weight function /1/:
I e, () =0, for 1 (2.9)

it can be seen th:t a8 detector with & cross-section propor-
tional to D (E) (E),

a4 (E) ~ D (E)Y " (E) (2.10)
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would fulfill the requirement stated above. Substituting
expression (2.10) into the relation for Bé (;), one easily

ohtains:

=2
Bhoa

(r) S B2,

m
i .e., the buckling associated to a detector of a cross-
section prcportional to D(E)?* (E) is identical to the mate-
rial buckling. However, such a direct measurement of the
fundamental mode f(¥) is not possible, since there exist
no detector with an effective cross~section of Eq. (2.,10),

2.1. Determination of the fundamental mode traverse

In its original foim, the procedure for determining
geometrical bucklings and hence material buckling (by these
measurerents one deals always with a reactor in a critical
state) was the following /1/:

From the definition of Bg, Eq. (2.7), it is

2 and 82 depends on

obvious that the discrepancy between By d By

how well does o(L) fit to represent D(E)> (E)., A careful

study of various fission rate detectors has shown that the

value of material buckling can be enclosed between the
"buckling” values obtained by threshoid and non-threshold
detectors. The procedure, adopted as a standard procedure

fot the experimental Jetermination of geometrical bucklings

in nuclear centers in Cadarache and Karlsyuhe, consists in
measuring and calculating the fission rate traverses of four
detectors along the principal gaxes of the reactor core. The
four detectors (from practical reasons the measuremenis

are performed with fission chambers) include two non-thresh-

old detectors: U235 and Pu239, and two threshold onest .
U 238 and Np237, Each traverse gives the corrssponding "buck~ {;,1
1ing". The correlation between calculated and experimentsl




"buckling! values is assum:d to be linear, so that the value of
experimental buckling can be deduced, ac shown in Fig. 1.

Further investigations have shown that such a
procedure might not be reliable enough in cases of small
reactor cores /2/. On account of very strong influences of
a surrounding reflector, the values of Bg (®) are not con-
stant even in a quite small region ncar the center of the
core. In such cases one should not expcct to obtain good
single values for "bucklings", out of the measured fission
rete traverses. Their combination to obtain an experimental
value for buckling would thus be improper, too.

The way out of this difficulty was found in
determining the fundamental mode traverse, rather than
bucklings directly. Instead of representing buckling values,
as shown in Fig. 1, the same procedure is adopted to deter-
mine the fundamental mode traverse according to measured
and calculated values of fission rate traverses, as shown
in Fig. 2. This is performcd along the whole core, step by
step, at suitably chosen distances. The value of buckling
is then obtained by fitting this traverse to the fundamental
spatial mode (sine of Bessel-Jo function for a cylindrical
core).

Let us now examine more thorughly the assumed
linear correlation of measured and calculated values of
traverses along the principal axex of the core. Many cal-
culations have shown that there were no systematic Qdis-
crepancies between calculated and experimental values of
Bz for threshold and non-threshold detectors. The same was
true with comparison of traverses themselves. In each case
the correlation coefficients were close to one justify-
ing thus the assumed linear relationship. Instead of mersly
applying the regression analysis to the given set of four
pointes (see Fig.2), it might be interesting to know how
really well the fundamental mode distribution can be appro-~
ximated by the linear combination fo several fission rate
detectors.




The question of how good the approximation:

csz:.1 (;),
1l

£() =
j

" ot~ 5

is, according to the theory given above, may be written as:

K
D(E)?* (E)2 ]| a (E) (2.11)

'a.
j:l J J

The problem is to determine the coefficients %55 for X
detectors, £o that the right hand-side of the equation

be as close as possible to the left one. The best approxi-
mation is obtained by applying the least squares method.
Such minimization procedure alyays includes the choice of
weight factors. It seems logical to apply the neutron flux
in this case, or nore precisely its fundamental mode, but
other choices are possible too. The minimization condition
has then the following form:

0 (E)|%dE % min (2.12)

] X
S WEBE (®) - ] agoy

E j=1
with:

W (E) = —LSE) (2.13)

JY(E)QE
E

The calculation itself is done applying the multigroup pro-
cedure and is explained fully in Section 3.
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2.2. Cylindrization correction

The reactor core is usually of the cylin-
drical form. While in ¥he axial direction requirements of
the diffusion theory are practically always fulfilled, i.e.
the fundamental mode distribution of neutron flux obeys cos-
ine function, in the radial direction the Jo-Bessel function
hardly justifies its distribution, Namely, the cross-section
of the core is a circle only in a rough approximation (see
Fig. 3). According to the cylindrization correction already
applied for'keff calculations, it seems reasondable to applj
such a corection in calculating the fundamental mode of
neutron flux in the radial direction. This correction can
be obtained by comparing a one-dimensional diffusion calcu~
lation with a two-dims=nsional in XY-geometry, as:

£ ()
cor (x) = £ | (2.14)
fxy(x)

In both calculations the same axial bucklings are to be
used. The experimental fundamental mode, calculated by the
procedures described in Section 2.1, is to be multiplied
with this correction function.
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3. COCMPUTER PROGRAMME “3UCKLINGH

The programme calculates sets of values of
axial or radial buckling for different core regions, from

the measured Jdata obrained by fission rate detectors. It is
based on the "theary given in prerions sections. The input
descripton of the programme is given in Section 3.1, -

First of all, programme< reads input data cards

and classifies calculated and measured traverses of fission
rate detectors. Sines measurements and calculations are, in
general, performed in different points along the axial or
radial direction of the core, it is necessary to make an
interpolation and to express them for equal distances, It
is commonly used to make a polynomial fit up to the eighth
order of the measured traverse points, and then find the va-
lues corresponding to the distances of calculated traverses.
Each of the four previously mentioned traverses (U235, U238, ;
Np237 and Pul3g)y s f{fted to the polynomial consisting of |
terms with only even exponents (their distribution
resembles the cosine or Jo curve):

Tx)za +] a, (x-pd (3.1.)
- ao i=l 2i [ L]

The upper limit of sufmation takes on the values 1, 2, 3, and
4, succesively. Ater each least square fit, the sum of squ~
ared residuals is calculated and the polynomial with the smal-
lest sum of squarr 4i.,e., the one that best represents the
measured traverse, has been chosen. This part of the calcu~
lation, as well as the linear regression analygis is perfor-
med by the subroutine POLFIT, specially written for these

purposes.
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All of the four pairs of traverses, and the cal-
culated fundamentel modc, ar: then normalized to unity in
the center of the core (its positicn has been determined
by the parameter b in Eg. (3.1) for measured traverses).

Tne next step in the programme is the determi-
nation of the fundamental mode of neutron flux in the core.
Two alternatives are possible in the programme:

1. The linear regression analysis is papplied to l
the four pairs of fissicn rate traverses, as
At suitable pcints along the axis of the core
(they are taken from the calculation of fis-
sion rate traverses) the results of the mea-

explained in Section 2.1 (see Fig. 2),. !

sured traverscs are plotted against the
corresponding calculated ones, as illus-
trated in Fig., 2. The least squares fit of a
straight line is made to the four res;lting
points. From the value of calculated "D¢ "
detector, one obtains the experimental DQ*
value, The procedure is repeated for all
calculated points along the axis.

2. The procedure according to EqQ. (2,11) is used.
The cofefficients o have to be known and given
as input data.

In this report, when evaluating experiments in
SNEAK-7A, the special programme named PARAD.T was written in
order to compute these coefficients. The calculation was done
applying the multigroup procedure, so that expression (2.12)
was used in the form:

X - .
§1 W [pB¢"S '521 cjoﬂzt nin, (3.2)
8* | . . | S




12

with:

Here g denotes the number of energy group (totally G groups),
and AE® is the corresponding energy range.

After the experimental distribution of the
fundamental mode has been computed by one of these alterna-
tives, the final step in the programme is performed. It con-
sist8- in fitting the eigenfunciton cos- o?f J, - to that mode.
Before this fitting takes place, if radial buckling is to
be evaluated, the cylindrization correction can be applied.

( it”s 8D option in the programme). This correction is

given by Eq. (2.14) and it must be known previously and givén
in the input. The spacial programme, named CYLCOR was writ-
ten for this purpose. Since, as for traverses, the one-and
two~-dimensional calculations connot be generally performed

in the same points, the fundamental mode obtained by one-
dimensional calculation is first fitted to polynomial

of the .eighth order, and the values corresponding to XY-
distances are then celculated.

The obtained values fcr the fundamental mode
are then fitted to the expression:

f(x) = a19(32x), (3.3)

where ¥ takes on cosine or Jo ~ Begsel function form, de-
pending on the problem case. Parameter a, represents the
value of axial or radiasl buckling, respectively., This proce-
dure can be repeated for different ranges in the core, as
stated by the input conditions (record K1 in Section 2.1).

The errors, in the form of standard eryers, the bur
cklings are given with, can be evaluated in several ways.

RO . TGS S
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Firstly, starting with =rrors of the measurc¢ments given as
input data for experimcntal traverses, eacn fitting proce-
dure uses weight factors, based on the errors obtained from
the previous one., Variances of peints taken into the polyno-
mial and linear rzagression analysis are calculated as /7/:

02[1

16;
A

- T -1
var (¥;) = + (5, ME],

where the matrix Fa is given as:

M is the variance~covariance matrix, and ci are the weight
factors expressed by standard errors of the points. The final
fit to the fundamental mode function is performed with the
special subroutine CURFIT, which is an abreviated version
of the subroutine CURVEFIT /7/. ‘

Secondly, it is allowed that weight factors
of the determined fundamental mode be independent of the pre-
vious regression analysis. In this case they can be taken as
being constant or proportional to the amplitude of the
fundsaental mode traverse.

A complete list of the programme BUCKLING
is given in Appendix A. This is a standard FORTRAN ptogrllr
me, and no special operating instructions are nccdcd. Thl‘-

* Thc correlation of errors is not allowed in thi!
abrevisted version.
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subroutines: CURFIT, POLFIT and FUNCT, needed by the pro-
gramme are listed in Appendix B. FUNCT is a special subrou-
tine which calculates linear function, polynomial, cosine
function and Jo function, together with their derivatives.
The programme also needs the subroutines MINV and DGELG
from the IBM Scientific Subroutines Package.

3.1. Input description of the programme BUCKLING

The following list shows the way of writing
the input data, The letter K, followed by the required for-
mat statements, denotes one record. The letter S explains
the choice of various posgibilities that are allowed in the
programme, or conditions governed by it. The dimensicns of
physical quantities have to be expressad in the CGS-system
of units.

K1 (format 6315)
NCAS - If NCASz1l, the radial buckling

is determined (i.e., the radial
traverses are fitted to Jo fun-
ction), and for NCAS=2, the
axial buckling is determined
(cosine fitting); :

IG : - (IG~1) represents the maximum
number of rejected points in the
polynomial fitting. 16 is 11-1t¢¢

to log
IS - Rejection step. The ratio (16-1)
418 must be an integer;
1816 - This parameter ’ m agm

factors in the fitting pmm
to cosine ow J fmm: :




NVER

NKORR

K2 (format 2E13.6)
(Abo(I),I=l,2)

K3 (format 2E13.6)
XN

15

1l: weight factor are constant,
2: weight factor are propor-
tional to the amplitude of
the fundamental mode trav-
erse,
3: weight factors are determi-
ned according to the previ-
ous regression an:lylis;
For NVER = 1, the DY traverse is
calculated according to the alter-
native 1, and for NVER=2, accor-
ding to the alternative 2 (Section
3);
If NXKORR=1, the cylindrization
correction is to be taken into
account. If no such corrections,
NKORR = 0,

Initial values of parameters
(Eq.3.3.) by the fitting proce-
dure to the fundamental mode
function, Abo(l) stands for the
amplitude and AOO(Z) for buc-
kling.

Multiplication factor for expres-
sing measured coordinates of the
traverses in om;

Multiplication factor for expres~
sing calculated coordinates of
traverses in ca,

S4 IF NVERs2, then K4, otherwise K6,

K4 (format 15)
NAL

- Number of auetm in tmxm

mmm ﬂwlny. ma-
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K5 (format 8F10.0)

(AL(I), I=1,NAL) - Values of coefficients aj for
each cetector, according to
Fq.(3.2).

K6 (format I5)

NN - Number of calculated points of

reaction rate distributions
(maximum R0).

K7 (format 8F10.0)

(Y(I,1),I=1,NN) - Coordinates of calculated reac-
tion rates distributions.

S8 If NKORR =1, Then K8, otherwise S9.

K8 (format 8F10.0)

(CORR(I),I=1,NN) - Cylindrization correction
given for each coordinate of the
calculated reaction rate distri-
butions.

S3 For each detestor in the sequence: U235, U238, Np237,

Pu239 and "Dy ", records K9 to K10,
K9 (format I5)
KENN - Atomic number of the detestor

isotope (arbitrary for D¢ ).

K10 (format 8F10.0)

(Y(1,2),Is1,8N) - Values of the calculated reaction
rates of detectors, according to
the points given in K7.

S11 For each detector ih the sequence: U235, U238,
Np237 and Pu239, records Kll to K12,
K1li (format 2I5)

KENN - Atomic number of the destector
isotope,
N -~ Number of measured points of re-~

action rate distributions (maxi~
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K12 (format 3E13.5)
(x(1,2), SICMX(I,2),X(I,1),I =1,N) »

- Values of the measured reaction
rates of detectors, their stan-
dard deviations and cocrdinates.

END
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4. ANALYSIS OF MEASUREMENTS IN THE ASSEMBLY SNEAK-7A

The fast critical facility SHEAK /8/ (Schnelle
Null-Energie-Anordnung Karlsruhe) was utilized to perform
physics experiments on a clean plutonium-fucled fast assem~
bly 7A. This assembly was a simple one-zone core with PuO2 -
-vo, fuel and reflected by depleted uranium. The matrix
plane of the assembly is shown in Fig. 3, together with po-
sitions of control rods. The cross-section of the core cy-
lindrized for an RZ two-dimensional dscription is given in
Fig. 4. The fuel elements are suspended vertically with a
lattice pitch of 5.44 cm. The core cell consisted of two pla-
telets: a Pqu—UO2 platelet and a graphite platelet of 0,626
cm and 0. 3126 cm thicknesses, respectively. The homeogenized
compositions of the core and blanket are given in Table 1.
The control rods were loaded with an enriched uranium cell
/8{. For fomogeneous calculations they were smeared over an
outer ring of the core zone (denoted as the outer core zZone
in Fig. 4.). The assembly and its features are described in
more detail in Ref. 6.

The fission rate traverses of four detectors
(U235, U238, Np237 and Pu239) were measured in the axial
and radial directions with fission chambers hiving a 6 mm
outer diameter and 25 mm active length. The axial traverses
were performed along vertically made channels (marked
positions "x" in Fig. 3), while the radial traverses were
performed along the horizontally made chamnel (the dotted
line in Fig. 3). Axial traverse mcasurements Were perfo-
rmed in the central and edge elements of the core to check
the separability of the neutron flux. Both mesasurements
yielded the same form of the distribution, justifying thus
taht the neutr.n flux was separable in axial and redial
components. The data cof :hese measursments ave given in
Ref. 3, :




The calculated traverses w.ere obtained using
two-cdimensional multigroup diffusion calculations with
MOXTOT crocss-szction sct /4/, and the newest KFKINR set
/5/. The use of two different sets was aimed to check their
influence on the results, and therefore the validity of the
proposed method for material buckling determination. The
axial traverses were calculated in RZ-geometry, and the
radial in XY-~geometry where the control rods were considered
in their respective positions (i.e., not smeared over the
core). Since, corrections for heterogeneity and transport
effects are throughout small, they were neglected.

The cross-section data for fission detec-
tors, used in calculations, are given in Table 2. The obtai-
ned results for diffusion coefficients, fundamental modes .
of neutron and adjoint fluxes, used in computing the expe-
rimental fundamental mode (Eq. 3.2), are shown in Table 3.
The calculations were performed using standard 26-group
codes in Kernforschungszentrum Karlsruhe. The three last
groups are omitted because of the small values of neutron
flux in themn.

Calculations have shown that experimental
buckling values did not depend on the choice of cross-section
sets used in calculating radial and axial traverses. The
results obtained from radial and axial bucklings are given
in Tables 4 and 5, respectively. The values obtained for
axial bucklings when changing the region of fit, are prac-
tically constant, so that only one representative value is
given. The determination of radial buckling is always a
crucial point in the analysis, since control rods cause
flux perturbations and the core itself has an irregular
cross-section (see Fig. 3).

The influence of control rods demanded that
only a small inrer portion of radial traverses could
be used in evaluations. Therefore, the representative
values of the radial buckling are taken fpem approxi-
mately r - 15 cm. Alternatives 1 and 2 refer to two different
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ways of calculating the fundamental mode traverse, as ex-
plained in Section 2.1. An example of the output list accor-
ding to the alternative 2 is given in Appendix C.




21

5. CONCLUSIONS

The material buckling is calculated as the
sum of axial and radial bucklings and is given in Table 6
(the assembly was always critical when performing traverse
measurements). The calculated material buckling was obtained
by a zero-dimensional homogeneous multigroup calculation. In
these calculations material buckling was the eigenvalue of
the diffusion equation with keff set equal to 1. The experi-
mental value of material buckling when taking no cylindriza-
tion correction into account is by no means too small. This
correction, as expected, is important by small cores. The
results obtained with linear regression analysis, compared
to those obtained by alternmative 2, are :s0 to say more
"experimental”, since the second alternative tries to approach
the experimental fundanetal mode to the calculated one. By
varying the weight factors in the analysis one can govern
this trend. However the introduction of that alternative in
this report was mew ly aimed to show that thée linear regres-
sion analysis applied can be analytically justified.

It . is seen that the experimental material
buckling is overestimated by calculations. The overestimation
ranges from about 3% to 5% depending on the cross-sections
being used. The standard error of the experimental values is
lower than 0.5%. Results obtained for SNEAX-7A, together
with earlier experiences in material buckling determination,
show that the flux mapping technique combined with the de-
veloped method of interpretation delivers very satisfactory
results. The influence of the theory, which is present in
the method, is certainly less than the experimental error,
so that accuracy better than 1% in determining the material
buckling can be obtained.




5.

1.

22

6. REFERENCES

Barberger N., et. al.: "Analysis of experiments performed
in Masurca". Proc. Int.Conf. of the "phvsics of fast
reactor operation and design”, June 1969, London.

Pinter M., 30tié,0., Fischer E.A.: "Bestimmung der ma-
teriellen Bucklings aus Spaltkammertraversen in
SNEAK-7A", SNEAK Notiz-3u48, MaPz 1972, Kernforsch-
ungszentrum Karlsruhe.

Buyl R., Scholtyssek W.: "Axiale und radiale Xammertra-
versen in SNEAK-7A, SNEAK Notiz - 340, Februar 1972,
Kernforschungszentrum Karlsruhe.

Kiefhaber E., Schmidt J.: "Evaluation of fast critical
experiments using recent methods and data", KFK-969,
September 1970, Kernforschungszentrum Karlsruhe.

Kiefhaber E.: "The KFKINR-set of grrn.p constants,
Nuclear data ba.is and first results of its applica-
tion to the recalculation of fast zero-power reactors”,
KFK-1572, March 1972, Kernforschungszentrum Karlsyuhe.

Fischer E.A., McGrath P.E.: "Physics investigations of
two Pu~fueled fast critical assemblies SNEAK+7A and
7B", KFK-1939, March 1874,, Kernforschungszentrum
Karlsruhe.

S8otié 0,: "CURVEFIT, a Fortran subroutine for curve
fitting", IBK-1017, April 1971, Belgrade.

Engelman P., et.al.,: "Construction and experimental
equipment of the Karlsruhe fast oritical facility
SNEAK", KFK-471, October 1966, Kernforschungszentrua f
Karlsruhe, o L




SO A KU R S e ms

23
TASLE 1
Material cormposition of the assembly SNEAK-7A.
(atom densities 10-2ulcm3)
Isotope Inner core Outer core Blanket
Zone Zone iy
Al .0000080 ,0611306
c .0260987 .0255387 .0000135
Cr ,0022423 .0022380 .0011080
Fe ,0079713 .0079824 .0033549
Mn .0001109 .0001178 .0000875
Mo .0000165 .0000145 ,0000100
Nb .0000089 .0000077 .0000085
Ni .0011664 ,0011818 .0009845
0 .0218462 ,0211909
239p,, ,0026374 .00234 34
2405, .0002365 .0002105
Mlp, .0000215 ,0000191
22y, ,0000011 ,0000010
si ,0000933 ,0000932 ,0000453
235, .0000586 ,0002958 .0001624
238, ,0079604 ,0080456 .0399401
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TABLE 2.

Fission cross-sections for detector materials

{values given in barns)

Group sner§§ range 0 . (U235) of(U239)41 0 ¢(Np237) 0(U238)
1 |}8.5-10.4mev 1.532 2,094 2.08 {0.93u
2 3,0-6,5Mev 1.070 1.724 1.45 [0.540
3 | 2.5-4.0Mev 1.169 1.8€S 1.57 |0.520
v | 1.4-2.5Mev 1.290 1.95u 1.64 [0.472 |
5 | 0.8-1.uMev 1,219 1.7%4 1.42 {0.0272
6 | 0.u-0.8Mev 1.17 1.608 0.66 |8.us*10™"
7 | 0.2-0.uMev 1.30 1.552 0.076 |3.2%107°
8 | 0.1-0.2Mev 1.50 1.530 0.025
9 | 46.5-100kev 1.78 1.578 0.014
10 | 21.5-46.5kev 2.20 1.688 0.012
11 | 10.0-21.5kev 2.65 1.85 0.012
12 | 4.65-10,0kev 3.60 2.34 0.012
13 | 2.16-4,65kev 5,16 3,27 0.012
14 | 1,0-2.15kev 7.20 4,70 0.012
15 | 465-1000 ev 11.30 7.25 0.012
16 | 215-465ev 16.35 12.25 0.012
17 | 100-215kv 20.19 18.17 0.012
18 | u6.5-100ev 30.18 58,90 0.012 )
19 | 21.5446,5ev 3g, 8y 17,85 0.0 2 q
20 | 10.0-21.5ev 49.0 85,36 0.012 ]
21 | 4,65-10,0ev 50.9 33.9 0,012
22 2.15~4 ,65ev 17.1 10.7 0.012
Z3 | 1.0-2.15ev 31.9 22,6 O.QIZ_L |
, : " |
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TABLE 3.
Diffusion coefficients and fundamental modes of neutron flux
and neutron importance of the core SNEAK-7A
) o d Vo (E)#(E)AE=1 for neutron
The normalization is perfermed with:E flux
JX(E)®*(E)dE=1 for adjoint
E flux
Energy Difusion coefficient | ~ Neutron Adjoint
group p® flux flux
Y *g Y *g
1 3.322 0.292 4.786
2 2,728 1.899 4,127
3 2,157 4,206 4,217
Yy 2.122 8.251 4,027
5 1.542 7.914 3.770
6 1.344 12,774 3.757
7 1,081 16.087 3.790
8 0.971 15.746 3.756
9 0.880 14,204 3.716
10 0.840 , 11.994 3.688
11 0.786 7,908 3.778 |
12 0.645 4.936 3.891 ’
13 0.732 3.171 3.990
14 0.749 1,586 4.348
15 0.721 0,735 4,897
16 0.703 0.276 5.33%
17 0.672 0.090% 5.104
18 0.613 . 0.0159 5.302
‘19 0.634 0.00392 |  3.189
20 0.584 0.00046 5,008
21 0.666 0.000089 3,399
22 0.741 0.000031 5.408
23 0.631 ~ 0,00000% 3.0
o - deamemommmsermon




TABLE 4.
Measured radial bucklings in SNEAK-7A.

B(m 1) R = 28.63 cm

Region of 1 alternative 1 alternative 2
fit . . . . with cylindri.
no cylindriz.| with cylindr.

(r/R) (case 1) (case 2) (case 3)
0.51 6.129+40.007 6.27340.012
0.56 6.075+40,005 6.149+0.008 6.30040.011
0.63 6.,07040.005 6.170+0.008 6.322+0,010
0.72 6.047+0,005 6.178+0.005 6.346+0,008
0.76 6.03240.007 | 6.180+0,008 6.354+0,008
0.86 6.189+0.004 6.38440.010
0.89 6.00840.006 6.19040.003 6.390+0.009

TABLE 5.
Measured axial buckling in SNEAK-7A.
a(m™Y) H= 22.02 em
Region of
fit alternative 1

(h/H)

0.73 4,74240.003
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TABLE 6.
Material buckling in SNEAK-7A.
2 , -2
B" (m )
Case 1 Case 2 Case 3
Experiment 59.39+40.14 60.05+0.18 61.8440.30
MOXTOT 62,0¢
KFKINR 62.91
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Figl. Determindtion of the .experimental” buckling value
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100 FORMAT (1H193Xe#POLYNUOMIAL FLITING FROM ®9F9,4,2XsSUNTIL®+F9,4,
a® (CM)®)

101

102 FORMAT (1s)

194 FCRMAT (3£13.5)

125 FORMAT (416) :

107 FORMAT (L1HO94X9®NO CONVERGENCE oNERS®9]292X9®CASES®,]2)

12"

)21

125 FORMAT (1n093X o ®AMPLITUDE®+14A+®BUCKLING®?16X9®STANDARD®y
#6X9*REGION OF FIT®9/29x9®(CM=1)#918X9#ERROR®91]1X9®(CMH)*/)
j26 FORMAT (4X9FBe5912X9E13¢6912AE110495X9F1004)

130

150
151

153 FORMAT (BF20.0)

250

*#2pU23909 1 TX 9 #DPHI*R IO, ®TRAV® 96X 98STG(TRAV) #/6X9# (CM) @)

/6Xo8T N P UT VAL UE S*/8Ks*PROGRAM VERSION®»30X9 14/8X+

o8 TYPE OF DISTRIBUTION®(y25X914/8Xs#MULTIPLICATION FACTORS FOR COORD
*INATES®/ 15X 9 #EXPERIMENTAL VACUES®919X9F1025/15X,#CALCULATED VALUES
#921X9F10,5/8X0®MAXIMUM NUMBER OF REVECTED POINTS®912X914/8Xs0STEP
® OF REJECTION®y28Xs 14/8Xo®TYPE OF WEIGNTS FACTORS®922Xs14/8Xs

oo INITIAL VALUES FOR THE FITTiNG PROCEOURE®/ 18X ,®AMPLTTUDE® 231X
#E13.6/15X99ARGUMENT®932X9E1326/8X9*CYLINDRIZATION CORRECTION®»20X
ay1&//77)

APPENDIIX A.
LIST oF THE PROCRAMME BUCKLING

PROGRAM BUCKLING

BUCKLING DETERMINATION IN FAS! REACTORS

COMMUN NFUNCTyNCASy ICH,KP

DIMENSION IP0(10910)sAPP(1994) yAUXIP(1209%) sR(40910)9Y(12792)
DIMENSION SUMMA (40G)901(40910)98(40910)+DE(40+10)9RA(12092)
DIMENSION CORR(40) 9SIGMX(12092) 9A00110)+D(%0+10)+02(40910) 2AL(10)
DIMENSION AUX1(120)9Xk(32092)9F (1200

DIMENSION FX(12092) 9FA(120910)9A(10) 9DA(S0910) ySIGMAX(12042)

DIMENSION S5U(4C99910) yRR(4099910)
DCUBLE PRECISION AQ(1C)9sAUX20100)

FORMAT (5X¢®POLYNOMIAL ORDER®?13)

FORMAT (1HO 95Xy #COOR® 94X 9 2U2350918X9®UR38%9 18X o ONP23 709 1TX?
FORMAT (2X9F9.4%10F11e691X9E1444)

FORMAT (1H1950Xe®P R O G R A M #//4TXe®8 ‘U Cc K | I N @%//

FORMAT (61S) .
FQRMAT (2€13.6) :

READ INPUT DATA

READ (60+150) NCAS91G91SyIS1GoNVERINKORR
READ (60915)) (AUD(1)s]=}92)

READ (609151) XNeYN

1668]06~1
PRINI‘130'NVER.NGASolN,YNoIOQOISQISIO.Aoo(l).A00(2)QNKURR
IF (NVER,EQ,)) GO TO 257 .

READ (609150) NAL

READ (609153) (AL(L)eImloNAL)

{THAASSQ

NDIN®120

Msg

MAXLS=20

{2 YT L]

Eps$i®i,.E~3

SUPRE®},E300




000

READ (609150) NN
READ (600153) (Y(Iel)eImleNN)
IF (NNORR+EQ.0) GU TO Sp0
READ (609153) (CORR(I),Im]yNN)
s00 00 7- ISl oNN
70 Y(Isi)my(I,1)eYN
NCASQ
1 NCASNCAe+]
IFINCAL.GT.5) 60 TO 3
READ (609150) KEN
READ (609153) (Y(Is2)9Im]eNN)
DO 2 ImloNN
2 RIIINCAI=Y (192)/Y(192)
IF (NCA.LE,.S) 6O TO 1
3 READ (609150) KENNyN
READ (609106) (X(I92)9SIGMX(I*2)oX(I0])sIB1eN)

POLYNOMIAL FIT OF EXPERIMENTAL TRAVERSES

KMSN/2
DO 4 Is)yN
X(Iol)mX(Iy2)®XN
XX(Io1)=X(Is1)
SIGMA (192)8SIGMX(I92)®*X(192)
4 S1GMAX(I92)SSIGMX(I02)
NOSN
NFUNCT=3
REDUCTION OF EXPERIMENTAL POINTS
00 6V II=)yIGeIS
11sii
125N=11¢}
SUPP=SUPRE
1cs0
CHANGING THE ORDER OF POLYNOMIAL PUNCTION
300 ICsICe)
SUPRBSUPRE
1cr=ic
KsICH01
KP'K
rxgo THE COORDINATE O]SPLACEMENT
GuO.e
Q1%20+5
LASO
LB=0
Go TO 9
o L8=}
01-0-5001

8 859103 1a1y,12
10 X303 8XX(T91) 0
DO l T 3 ¥ 4

CALL.gatfrf'{FQNDIHOlo'o'lo?h!!!CNll|AOQOOAUlloﬁﬂﬂlolllblf'lih'ﬂa’
1r (NER,EQ,0) 60 TO 12
PRIN? lD?oN!RoNCA

12 IF(ABS(Q1T,LE.EPS1) 00 TO 18




OO0 ©

13

14

1S
3l
310
302
303
16
18
320

17

19
i)
21

IF (SUP,GE+SUPR) GO TO 13
SUPRaSUP

IF(LALGE.1) GO TO 6

60 1O 8

LASLAe}

LB=Lbe]

GeG=u]

IFILB.GT.1) GO TU 14

60 10 7

Q1==u}

LB=0

60 70 8

CHOOSE THE ORDER OF POLYNOMIAL
Ir(S0P.0T,SUPP) 80 TO 302
SUPP=SUPp

Dy 301 Is)yK
APP{IyICI=AD(])

KKBKEK

00 310 Is) KK

AUXIP{T, IC)mAUX] (1)
KiC=lc

‘IFLIC,LT.4) GO TO 300

K-KItol
{3 23 {
IcnsiC

SUMAS(

00 16 IsI1,12

SUMASSUMA®] ./ (STGMX (1 92) @0p)

SUMAS] , /5UMA

00 18 I=],K

A(T)BAPP (141C)

KKSK®K

00 320 I=}oKK

AUXRL LT SAUXIP(IVIC)

CALL FUNCT(KoNDIMpArYoFsFXoFAsLoNpiel)

00 17 Is1yNN

RREIINCAVIT)ISF (1) /A())

SUYPESUPP

DO 24 Im2¢NN

SUMMA (1) =0,

00 20 JslyK

Sumsy,

00 1Y L=)yK

SUMBSSUMSFA(ToL) PAURL (LoK® (Jol) )

SUMMA (1) SSUMMA () ¢ SUMOFA (S 9J)

SUCTINCAY STIO{SUNMATT) ¢ SUMA) ¥SUP/ (12-1108%K)
IPO (13 9NCA) 4801C '

CONT
REPEAT THE PR " r cH EXP NTAL T
trim.unm Of EAch EXPEAINE RAVERSE.

FIND THE D*PnHIes TRAVERSE
NE S

KISNN/2 ’
Ks2




KP=0
D0 61 1I=1,1G+1S
CHOICE OF THE VERSION
IF (NVER.EQ,1) GO TO 3So
LINE~R FIT OF CRUSS=SECTIONS
Dv 20 IB=)yNN
U(IBs11) =0,
DE(IS»I11)=m0.
DO 96 JJs1yNAL
D(IBYIIISD(IBII) AL (JJ)I ®RR(1BeJJeBr11)

96 DE(IDs»I1)sDE(IBe 1) *AL (JJ)oSULIBIIJ*S911) *AL (V)
IF(18,6T.1) GO TO 999
000=v(1o11)

999 D(IB91J)=D¢1B,11)/000
DE (I8,11)=SQRT (DE(18411)) /000
60 TO 26
LINEAR FIT OF TRAVERSES
350 DO 26 Is24NN
NFUNCTs2
DO 22 LslsN
X(Lel)=R(IsL) 4
X(Lo2)sRR(IoLeSe IL)

22 SIGMAX(L92)=SQRT(SU(TsL*Se]11))
X(191)20.99X(1y1)
X(201)8]1.10X(241)
X(301)m1,10X(3,1)
X(491)20.90X(4y1)
X(192)m0.90K(]192)
X(292)81410X(2,2)
X(3+12)m1,10X(392)
X(492)20.90X(492)

XAVEY,

SUMAS(,

00 80 LslyN
XAVEAAVOX (Lo 1) 7 (STOMAK (L9 2) *°2)

80 SYMABSUMA+] o/ (STAMAX (L ,2) 902)
XAVERAV/SUMA
00 23 .Jsi¢K.

23 AtJ)=], .
CALL POLFIT (RKoNDIMyXoguFXgPFAISTOMAX9AD9AIAUX] 9 AUXZoNER Y] ¢ $93UP)
17 (NER.EQ, D) 10 24
PRINT 10TINERIN

26 0(Eel1mAg(f)2A02I*R(18)

Q=0

in0,

00 &5 JsleN
ZeZoh(Jy1) 002

25 0uQe(X(Jrl) =XAy) ®03
Agl2) =g,

00 $ Y]
90 Ao‘lgikg(Z)0‘(K‘Lollill!ﬂl'!l/‘5!GHAItL03"'2’
Axlllim),
00 91 LsiyN . ;
91 A2(113A0 (1) *X (Lo TYEIRLIFTONAN (1.42) 992)
A) (2)mOSQRT (SUP/Z IReRIH 4 /A0 (2))
AQ (1) ®OSQRT (A0 (XF/BUMAY ®AQ (2)




OO0

OO0

(g X))

DE(Iv11)=DSQRT (Q/Z®AQ (1) %92+ ((R(I1¢5)=XAV)®92) 250 (2)#02)
26 CONTINUE

WRITE EACH TRAVERSE INCLUDING THE DePHI+ ONE AND ITS STANDARD ERROR

PRINI 1005 (XX(IIs1)sRK{NO=II*1p1))
DO 4.0 NCAz=6+9
400 PRIN] 101,IPO(IIINCA)
PRINT 120
otleIN) =1,
DE(1vID) =g,
D0 21 I=14NN
27 PRIN! 1214 (Y(I91) oRIIoT)sRR(IVE9IT) oR(I+2) SRR(T9T911) 9R(I 43Dy
®RR(I1BII) sR(I94) sRR(I499I1)R(105)sD(IoI1)9DECIII))

FI1T THE DePHIs TRAVERSE TO THE FUNDAMENTAL MODE OF THE FLUX
DISTRIBUTION IN THE REACTOR CORE

NFUNCT=)
11=2
00 40 I=2,NN
40 Y(I92)mD(I,11)
IF (NKORR.EQ.0) 60 TO 502
00 501 IS2,NN
501 Y(I+2)8Y(I42)®CORR(])
s02 I'(IIOGEOS’ 60 TO 50
J22sNN
60 T0 51
50 J228NN=1l+§
S1 D0 31 I2=K1s122
MAXITSITMAX
SUPsSUPRE
D0 28 1mi,x
28 AQ(I)=AQ0(])
D0 29 I=l},12
SIGMAX(191) =0,
60 10 (203v202+201)91816
201 SIGHAX(I»2)sDE(Is1ID)
6o 10 29
202 SIGRAX(I9¢2)=Y(Iy2)
60 10 29
203 SIGMAX(1s2)m],
29 CONTINUE
CALL CURFIT (KoMyNDIMIMAXIToMAXLS oEPS»SUP o YoFsFXoFA,
. SIGMAX9A0sAsDA9AUX] 9 AUX29NERYI1912)
IF (NER,EQ,0) GO TO 30
PRINT 107eNERy12
30 01(12s11)mA())
02(12e11JmA(2)
B8()2+11)8A0(2)
31 CONTINVE

WRITE THE OBTAINED BUCKLING VALUES

PRINT 129

00 38 IeK1,122
32 PRIN! 1269 (01(1911)902¢Se11) o0 (103I) 0V (193))
61 conTimue




APPEHIIX B.

LIST oF vus susrouTINES
CUREIT , POLFIT A®D ruNeT

SUSEIUTLIvE CURFIT (KeMgNOIMoMAXTIToMARLSo£PI9SUP g XoF oF XeF A,
* SIGMAXsAO?A)DAGAUX] s AUACINER 11 012)

ZSPMV L AFYNICT 9 CASe ICH,KP

SIBEISION A(4DIMe1) 9SIGHAX INDLMe1) oF §1) oFAINDIM91) sFA(NDIMSL)
CIME ISION A(L) yLa(AAKIT 1) 9AVR] (1)

ooVBLE PRECISIGG A0€1) saux2(1)

o2 T I=Yek
7 (=2 .4N)
L.
IT=s
t LSl=
L3=2=
1Zie
9 L52=L32+,
1. LS13u3ie]
Cabl FUilT (ne iDL 19AsAFoFXorAgilel2el)
Dy 14 I=llele
AUKI‘I)=-Q
D0 10 L3le
16 AUXLTD =AUR IR ti KCT o) 85 TurMnA(I,L) ) 002
17 AURLtI) =170 L)
Sum= ,
06 2¢ U=lisle
SUMSDV 19,uKL 1)) *r () #8
22 CoiaTsaaut
IF‘S“”‘.‘;’C-.S\JP) g T £y
SUPsoJY
23 Cabkl FurilCT (Re sitimpMoreFerXersnglled2e2)
TGRS | SEY §
Ui €9 J;ps} oK
LIAZIJeKR(U1=1))= &
ne & 1sf1el2
2T AUACUJoR®( J1=1) ) BaUAR L Jer® (Ji=1) ) oF AT JIRAUXL(T) ®FA (T J])
2o ConTiMys
IFileeTe ) 0O TU &b
£ 33 JmyK
FY ST Y T
D 3¢ Isljlle
32 AJIVIBA . (J)*FA(L2J) A1) \])
33 CoNTInuE
Call VGELY (AY9AIA2PRs  91e7 =)o 1ER)
IFEIER,ZV,=]1) 4D TO &5
d5 39 Usiyn
{AtlreImAc ()
34 atJ)Ba(J)eDAC[Tev)
J030 JmLen
1Z40m9500605Ted) ) euTebrs®.3(nJ))) GU TO S0
3> :;dTowJ:
v TJ 27
LR £ ) $X
e 3 usLen
37 s (uisn. ()
(Ul eaten st} T) a0 O ~e




38

39

40

@l
42

o3
46

45

46
o7

48
59

00
ol

63
64
65

6o ™V 8

Q-G.J.S

IF(LD1+GT.MAXLS) GO To 40
00 3Y JslyK
A(J)SAQ(J)=QeDA(1T=14J)
6o TV 1¢ .
IF(LY2.6T.MAXLS) GO TO 45
IF(L32,6T.1) GO To 4}

"1 3/ F'}-]

IF(IT.NE.2) GO TO 43

D0 42 Jsl,yK
A(JIBAD (J) *Q®DA(IT=]0y)
Go TV 9

00 4% J=],K
A(JIBAL (D) 2Q®DA([T=20J)
60 TO0 9

IFtIM.EQ+2) GO TO 65

DO 40 UsleK

A(J)SAQ (J)

ILslie]

6o T0 23

KKSIKOK

D0 5Y IslyKK
AURL LT ) mAUX2(T)

CALL MINV(AUX19K9DoF »SIGMAX)
D0 61 JmiyK

00 69 1=),K

AUX2({IoK® (J=]) ) BSUM/ (122114 1%K) SAUX] (14K (J=]))

AG (J)SDSART (AUXZ2 (J*K® ( y=]1)))
MAX]T®]Te]
NER=y

Re TURN
NER=]

RE TURN
NERS
RETURN
NER=3
RETURN

END
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SUHRUUTINE POLFIT (KeNDIMeXoF sFXeFASIGMARYAQ
. © AsAUKLsAUAZYNERS I1s1292VU0)

COMMUN JFUNCT3NCAS» ICH,KP

CTAESSION X(NDIM91) 9 (1) oF X (NUIMe]) oFA(NDLMe 1) sAURL(])
DIMENSION A(]) 9 SIOMAX(NDIMy 1)

DLVUBLE PRECISION A1) aUX2(1)

iTsy
30 CALL FUNCT(KoNDIMoAOXoFsFXoFA?I101201)
NS 3 JmleK
uo 3 Jl’l'K
AUAZLJ+K® (1=K )00,
co 2 I=llel
C AURZLJ*K® (J1eRR)BAURZ (J+K® (J1=1) ) sFALY o) PAe/ (SIGMAK(I02) *2) @
#FallIsdl)
3 yQNt‘NUE .
IF(ti.E2.1) ¢ B0 31
3C 6 _J=1l9K
ﬁU(J{=UQ
Do S IsilyI2
S Ac(IIZAD(J)OFALIIJI®Ye/(SIGMAR(I92)#®2)0X(]2)
o JNTLNUE
caLl UGELG (ADe AUX29K019).E=L18yIER)
IF(KP.EQe2) GO0 TO 60
IF (K<EQs3) 60 TO 10
6. 00 7 I=Ily12
G0 TV (709809909100)eICH
72 F(I)3A0(1)o(X(201)®92)aA0(2)
a0 TV 7
°1¢ F(I%‘AJ(I)O(*(IQI"'Z)'AG(2)"!(101)"0)’ﬂu(3)
G) TV 7
9. F(IFSAZ(1)e(X(T01)®02)0A0(2)*(X(1e1)"24)%A0(3)e(X(I9])®®6)"A0(a)
56 TO 7

Tor FOLIBAZ(1)0(X(T0))O®2) A (2)*iX(1e]1)®®a)®A,(3)0

o(xt1-1)~'6)0A0(4)0¢x(1 1)#08) ®40 (5)
53¢ TU ie
1 20 3 Isllyl2 4
11 FIDISAL (1) +A0(2)%%EE0))
12 suPs.,
ve l llIloIZ
! suP-bupo((xtlozacfllb)ooz)/(blennx(x'z:o'd)
iT=}
ng & Isle
<. A(1)=sAQ(])
3¢ Tv 34 -
31 IF(KP,EQe2) 60 TO 61}
1F(K:EW.2) GO TO 80
6] KKSA®K
.0 & Is]eKK
4 AUAL LTI sAUX2(T)
CALL MINV(AUX] oK9DoFoFx)
8. IF(ICR.CUe=}) G0 TO &
NERSY
RETURN
b NERS]
RETURN
gnd
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ann

10y

il
16

170 B
171

17

180

181 F
18

12
23

24
2%

SUBRUUTINE FUNCT (KoNDIMoA9X9F FXoFA9I19I29NF)

COMMUN NFUNCT 9NCASy 1CHyKP
DIMENSION A(l).XINDluv1)or(1)vrx(uoxﬂol)'FA(Notn'l)

60 TO {10920930) sNFUNGT
6o TO (11s12) oNCAS

BESSEL FUNCTION

69 TV (16917)9NF

D0 S5 1I=Ily]12
X1BABS(X(Is1)®A(2))
IF(XI.EQOO.) G0 TO 170

CALL BESJ (X1909B8091¢EnbelER)
CALL BESJY (A)9)eBlyeleEnbyIER)
6o Tv 171

Bo=l.

8130,
FI(HIEX(I92)=A(1)*80
FX(Irl)=mA())®A(2)%B]
Fx‘l'z,.lg
RE TURN

Do 18 Isl}el2

X1SASS (X(Iel)®a(2))
IF(X)1eEQeD,) GO ‘o 180

CALL BESJ (X19098091¢E=6sIER)
CALL HBESY (Kl!l!519105-6olin’
6o TV 181

Bo'lc

31'0-

A(Ivl)--uo
FA(Iv2)8A(])®ABS(X(101))®B]
RETURN

SIN FUNCTION

G0 TO (23924) oNF

po 8 IsI1e12
FII)SX(I92)=A(1)®COS(A(2)%X(19]))
Ex(lel)mA(3)®A(2)®SIN(A(2)OX(101))
FX(IOZ)'I.

RETUNN

00 25 I=l1el2
FA(I®1)s=COS(A(2)2X¢35]))

FALII2)BA(1)®X(103)*SINIAI2) *A(TsD))
RETURN

STRALONT LINE
00 4y Isl]yl2

FilISA(1)eA(2)OX{(20))
Fallel)mi,




OO0

& Falle2)aA(]s])
RETURN

POLYNOMIAL FUNCTION

3. 00 33 I=1),1I2
GC TV (5.96097Ce80)1ICH
SECO.«0 ORDER

S0 F(I)BA(1)e(X(1s]) ®02)®s(2)
Fallsl)=s],
FA(Iv2)m(X(Is]1)®®2)
6o 1O 33
FOURTH ORDER

69 FIIIBA(]) e (X(Is1)®82) @ (2)a(Al]9])004)®a(3)
FA‘I""‘.
FA(Iv2)3(X(1v])@®2)
FA(I"3)=(X(Ie])0Ps)
6o TV 33
SIATH ORUER

Te FOIIBA(L) e (X(19]1)®82)®a(2) 0 (R(T01)®04)®a(3) 0 (X(Iv1)®06) %A (w)
FA(ls]l)=],
FAalIv2)m(X(Iv])®®2)
FAlIo3)=m(X(Is])®®s)
FAlIva)a(X(Iv])®¥%e)
G0 TO 33
EIGHIN ORDER

80 F(IIBACL) e (X(T01)®92) 2 (2)a(AI]9])P*a)RA(3)e(X(J0))206)%A(4)
a(X(Isl)emg)ep(s)
Fallsl)=],
FA(Is2)=(X(191)9*2)
FA(LI?3)m(X(Ir1)0®s)
FAlIv4)=(X(1s1)®®6)
FA(IvS)=(X(Is1)®*8)

33 CONTINUE
RETURN
END




PROGRAM
. VU ¢ X L I N @

INPUT VALUVES

‘2 Xigw3day

PROGRAM VERSION e
TYPE OF VISTRIBUTION }
nu:fxpLxcnlloN FACTORS FOR COORDINATES
CAPGRIMENTAL VALUES 0.10000
CALCULATED VALUES 1.,00000
MAXLMUM ER OF REJECTED POINTS 8
STeP OF REVECTION ;

TYRE oF WEIGHTS FACTORS

INITLAL VALUES FOR THE FLTTING PROCEQURE
AMPLITUDE 9500000=001

ARGUMENT 5,500000=002
CYLINDRIZATION" CORRECTION \

=
v
|~
-
]
©
c
-
-
e
-
e
“»
-
-
[od
%
§
E
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I .

PULYNOMIAL FITIING FROM =26,2900 UNTIL 24.1600(CM)
POLYynOMIAL ORJER 8
PULyMOMiaL ORDER 8
PUOLYNUMIAL ODROER o
POLYNOMIAL ORVER @
Coon (rEL V238 NP237 PU239 OPHI+ TRAV SIG(TRAV)
(Cm)
0.00¢4 Tevl.iCa 1.000600 1.C0000¢ 1.00026G0 1.00000v0 1.000000 1,000000 1.000000 1.000000 1,000000 0.,0000%000
0:9c67  ,.997208 L,999299 (.99914U  0.999213  0.999147  0,999194  0,999198 0,9992R¢  0.999165 0,9992280 B8,3606~004
128133 ..990836 0.997196  .996502  .996b51  0.996596  ,996777  ,996788  (,997143  0.996724 0,9969]1 7.9198=0né
257200  v.99¢8B5  (,993685  §,992271  0.99291¢  (.992342 0,992753 00998774  0,993572  0,9926464 0,993047 7,2724=004
3.0207 . ¥81371  ,,988759  .986213  9.987391  0.9864,5 (,987126 0.987176 0,988573 0,986926 0,987636 6,58530=004
48334 «e¥8 3io  p.982449  ,978518  g.98p2H6  5.97879) 00979907 92979999  0.982147 0979602 0,980675 S.9470=004
$e840¢0 1 9TI739  (.974n28 1 .969198  0.971596 0969517  0.971108  0,971270  0.974299 0.970704 0.972167 5.6443=004
6,3067 r 961650  (,965«'8  ,,9581%8  ,961315  0.958598  0,960745 (,96100¢ 0,965032 0,960233 0,9621)13 S,7316=0n4
?33536 te?9041n 0.95619) " e 945440 0:94945% 009460064 0+948840 0.949233 0.95423%9 094825 0.950%22 6.1168=0p4
83600 G.933969  0,942063  1.93112% 0.936033 04931938  (0.935624  (,9359956  (,942294 0934760 0,937412 6,6017~004
$,0667 :,922517 0.929158  _.9152.4 0.921064 0.916201 0,929528 (,921327 ,928887 0,91979) 0.9228p1 7.,0014=004
99734 0909698 0.914c65  -.8977¢0  (.904586  0e8990T6  0e904196  .905272  0.9140T6 04903408 0.906725 T.1996=094
10,8800 0.88757s  0,898.26  :,2T7RTDL  0.BH6045  0.880435 (.886479 ,887891 0.897989 0.885677 0,0889227 7.1601=004
11,7867  0.871202 0.880495 (.9583%. 0.867299  0.860411 0.867433 ,869260 ,880638 0,866692 0,870389 6,9257=004
12,6934  0.851675  ,861742 £.83657¢  4.046620 0.839098 (.8647125 ,Ba94bg (,B62974 0.R46529 0,8%0180 6,6)26=004
1346000 <.831096  0.841856 0,813637  [,824698  0.816612 (.825629 ,628598 ,B842364 0,R25255 0,828794 6,3801=004
195067  0.8Q¥58p  0.820928 e 789631 ne801622 0793091 04803018  (,806799 0,821%72 0.803026 0,806257 6,3538=004
1884134 roT787208  0e799:65 1, 764677  ,777496 04768632 0.77937¢  ,78414T7 ., T7997TE  (.779962 0,.782670 6.5300=004
1043200 0, 764062 0.770478 2738857 0752625 0.7432% 0754780 0e 760706 06777052 0.756127 0,758130 6,7671=00n4
17,2267  0,74C126  0.752962  o,712171  0.726500 0.717114  0.729304 ,736812 0.753475  0,731%522 0,732718 6,8736«004
18,1234 oo Videas ve728904 fe68a69f 0+69968¢p0 00690106 0703012 0711593 0e729120 0706209 0706512 6,7372=004
1900400 Co6%9.037 0704259 0,65627Y 06723706 046622850 04675953  0,685949 0,704046 0,680190 0,679%66 6.64218=004
19,9067 0,063875  0.679327  .626903 9.644222 0+633518  (,448137 ,6%9579 0,67829g 0.,653432 0,651887 6,2078=0n¢
200534 ve030985 04653143 059651 0615274 006039¢7 0619547 0.632518 0.65186) 0626000 0,623440 6,3917=(0é
21,1:00 C.00%409 (§,026449 (,565]10¢ 05585377  0.573512 G.590115 0.604816 0.624731 048597957 0,594116 6,8045=004
22,6668  (.58.12)0¢c 0.598043 ozagzoﬂg 00554244  0,56234)  (,559693 (,576546 0,596803 0.569368 0,563696 6,8646=004
23:5734  1,55¢613  .969288 o M99215  .5216457  (.510478  0.528073 .547770 0.567926 0.560330 0,331865 7T.44e8<00é
24,9890 Le92312¢ 0.537707 0464905 0486380 0477998 Ve dY4920 0,518%68 0.537R42 0,510873 C.498130 1,4266=00)
29,3868 493362  5,5029083  .42957°  (.448161 0.464978  0.4597T72 ,489911 0.,506174 0,481128 0,4618)0 3,1867=003
. 4e®03195 4463908 393297 ge40506B 04411492  0.422032 (4459167  (,4T2429 04451188  0,422011 6.3432-003
Ge93€654  35,418842.  ,355981 9.357336  0.3776U1  0.3Y90891 0,429101 0,435917 0,421059 0,377537 1.1416=002
T%04758 04365758 ne31750y 0301319 0343358 0+335336 0,398865 0.39576] 00390864 0,326870 1.9110-002
ned7 513 Qs302069 pe277809 9+235199 04308799 Q284089 0.36849) 00350R42 00360669 9.268103 340321002
BUCKL ING STANUARD REGION UF FIT
(Cu=]l) ERRUR (cm)
6.250203002 1.1995=004 13.6000
6.273377=002 1.1942=004 14,5067
0,2087405=02 le1761=004 15.4134
6300155002 1e1407=00¢ 163200
6.311575-002 1,0968=004 1742267
6.321691-002 1,0453-004 18.133¢
604330630=002 9.9033=005 19.0%00
€.338038=002 9.3637=005 19,9467
6.346(92=-002 8.8892=005 20,8534
60353524002 8,5509=005 217900
64361639002 ¥.4539=005 22.6668
6,371326=002 8,7616=005 23,5734
6.383075=0)2 ‘9,781 =005 24,6540
6,.399988=9;2 1.1560=004 2% 30068




