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A quantum field rheory is usually described in tecms of fields
acting on a Hilbert space or in terms of some effective substitute such as the
Wightman functions or Green's functions of the flelds ., Such a descriptiin
should be regarded as incomplete unless supplemented by conditions which specify
how the observables are constructed from the fields .1 In praciice thesc
conditions rake the form of a principle of gauge invariance so thar the
observables are just the gauge-invariant functions of the fields .We are lefr
with the problem of deciding which symmetries of the theory correspond to gauge
transformations . There are arguments which lead one to conclude that certain
symmetries must be gauge transformations . The principle of locality teils one
that space like separated observables should commute and the particle spectrum
of the theory may forcelone to postulate certain superlection rules to "explaipn"
the stability of these particles . On the other hand it seems that any internal
symmetry may be treated as a gauge symmerry without the resulting theoty being
in any * >y inconsistent . It may even be the case that all internal symmetries
should be treated as pauge transformations . One may illustrate this point by
considering the isospin group in strong interaction physics , For bhe isospin
group Lo be an exact symmetry one must neglect electromagnetic inreractions
However in the absence of electromagnetic interactions there is no way of
measuring the local electric charge . The consequent reduction in the number of
observables may be summed up by saying that the isospin grxip is acrually a o
gauge group In strong interaction physics

Since by definition gauge transformations act trivially on any
observable , they cannot be given a direct physical interpretation in the way
that space-time translations can . One might even be tempted to think that
gauge invariance has no physical interpretation because the theory can be
described in terms of the observables alone . However a gauge group f} of rhe
the first kind does have an indirect physical interpretation because the
superselection structure of the theory is governed by the representationsof -%,[1]‘
In other words it is the "dual object" of % which is of direct physical
significance . rowever even this interpretation of g is valid only when the
gauge transformations are not spontaneously broken ., Under certain hypotheses ,

we shall show here that , as might be expected , a spontaneously brokengauge

1) One might expect that, in realistic models, the observables should be
determined by some self-consistency argument because the interactions present
should tell us what measurementa can be performed within the theory . However ,
in our present state of ignorance we have little choice but to adopt the

stand point in rhe text . Compare slso the remarks on the isospin group in strong
strone interaction physics
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symmetry does not give rise to supmrselection rules .
We begin by listing some of the most familiar examples of spentane-

ously broken syumetries in quantum field theory .

Example a: The free neutral scalar field ¢ of mass zero allows a spontane-
ously broken symmetry dxy > it o b . Treating this as a gauge

symmetry means that the derivatives a,u#'(-x) generate the observables .
Example b: Consider the gauge transformarions of rhe vector potential

Ath) -> A,_tr.)-t— b,,‘/\l.x) . in quantum electrodynamics , If one takes

Alx) = r.x so rhat A,.lz) -> A‘.,’-’n + T we have a spontaneously broken
symmetry and the physical phorton may be interpreted as the corresponding
Goldstone boson [2,3] - From our point of viewv rhe interesting thing is
that we have an example which is unquestionably a spontaneously broken gauge

symmetry .

Example ¢ : The o~ model ; the lagrangian for this model can be written
» . b 2 2 2

F4 : ‘fo"‘E'f, where rfo = ‘1\1;':"5,.?"- glrs iz 3OTH+ L (G "(3/*"}]' é Lo 5]

—% La-"o-:[’]z and I, = €& . Here M >0 and if /u"( [« we have

in the limit €-=»0 , <oy, % 0 and the Goldstone mode of symmetry is

realized . The theory is SU(2)XS®{(2) invariauc but the symmetry group of
the vacuum is just the isospin symmerry subgroup , This example has been
extensively discussed iu the literature ( see [4~ 6] ) particularly in the
case where the + - field is absent . Tt 1s the most important example for what
follows because we have a compact gauge group and a non-trivial subgroup as the
stability subgroup of rhe vacuum .

Example d : The non-linear realization of SU{a)» Su(r) which may be
thought of as derived from examplc ¢ by lmposing the subsidiary condition

Ty e2= 4 (see [7, 8] ) . Although apparently lirtle has changed as
regards the symmerry of rhe theory becaise the Lagrangian is still SU(2)XSu2)
invarianc and cthe isospin group is the .tability subgroup of the vacuum ,

it is not clear that the theory admits an SUDXSUG) symmetry in the
sense used here . It 1s difficult to see how the nor-linear chiral transfor-

mations can give rise to automorphisms of an irreducible field algebra .

2) This is not the case in a 2-dimensional space-~time world
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We next give a list of assumpitions designed to treat the case where the

observables are defined from the fields by using a principle of gauge invariance,

1) The field algebra ; is the global algebra of a net O - %U")’

of von Neumann algebras and acts irreducibly on a Hilbert space ie .

2) There is a strongly conrinuous unitary representation L= Ui of the
covering group ? of the Poincaré group on % inducing automorphisms o  «f
the field algebra , «Lti‘(@)) = §“"(9) . There is a unit vector
Qedl , the vacuum vector , invariant under the WL LeP and
inducing the vacuum state @, of 5‘,

W (F) = (Q,F0).

The energy-momentum spectrum is contained in the forward light cone .

3) Q is a cyclic and separating vector for each 5((9) , (Reeh-Schlieder

property )}

4) There is a faithful representation ;: Bd ﬁg of a compact group ‘% s
the gauge group , by automorphisms of .
fc] commutes with O(L and .{35(’5[(9)) = 5(@) . Further we suppose that
3)

if Fe 5(&9) then ﬁ—bps(F) is weakly continuous ,

5) We asaume that the field algebra has Bose-Fermi commutation relations . The

easiest way of expressing this is ro suppose there is a ke '% with k™= e
so that if we set ‘4 = —‘i[F'*h("") and F. =% (F-p, (M)
then

FFL - LR = 0

FRF -FFf =0 Fe §loy, Fe¥lay, 6ol

FE +FF =0
k 1s automatically in the centre cf *%

3) We use the term weak topology for & von Neumann algebra to mean the weak
topology induced by the nvormgl linear forms . This ropology iB often
referred to as the ultraweak topology .
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These assumptions have the following main drawbacks . They are not designed
to cope with theories like quantum electrodynamics where gauge invariance of
the second kind and the indefinite metric play a role . Furthermore , when
deal./ng with spontaneously broken gauge symmetries there is no reason ,as
example a) shows , ro suppose that '% is compact . However , there is as yet
no indicatlon that the general qualitative conclusion thac the superselecrion
rules are determined solely by the unbroken part of the gauge group of the
first kind needs any modificacien ,

Our assumption that the observables are defined from the fields by using a
principle of gauge invariance and that % is the gauge group of the theory
may be made precise by saying that the nec © -» oL of local observables
is defined by

oo = {(\65«(9) : PQ(M =A, 35'% 1-%0 is closad

Since 3,‘) /35 is locally weakly continucus , aw) is a von Neumann
algebra . Ty determine the superselection rules of the theory we must identify :
the inequivalent irreducibtle representations cof the net &  contained in the 1

defining representation on {e ; rhese are the superselection rules of rhe

theory .
Let '%u < g be che sctability subgroup of the vacuum state

ftc‘:{ge-%:woa(js:uo} 5 ‘
since 4§, = N {ge4: %nﬁ(r):%(m} and g B4 J

Fe gsus) {
is locally weakly continuous ., We shall see that it is only the subgroup ~%°

which gives rise to superselection structure .
This result does not depend on the full force of the assumptions but only
on assumption 4) and tbe cluster property of the vacuum , a standard result

whose proof we include for complereness .

Proposition I  If Fe § ¢ en ﬁ(_tlF) tends weakly to «,{F) X

as x tends spacelike to infinity .
Proof Suppose first My (F) = F , then any weak linit pcint & of

“,C(F)"‘Jo(F)I as x tends spacelike to infinity commutes with § Hence 6 is &

4) In pringiple there might be other superselection sectors of Of
not contained in the defining representation on # ; this would mean that e
had not used a complete set of fields in the first place
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multiple of the identlty ; however «,(G) = 0 50 &= 0 . Hente «.lF)

tends weakly to «/\F)T . Next suppose that [y (F)=-F and let G be o
weak limit point of dy (F) as x tends spacelike 1o Infinlcy , The fosc -

Fermi commutation relaticus now give

6F' s plrYe, Flek.
In particuler G"(,,(F)*: p.,“xCF)*G - -N.,_CF)*G .

llowever we now deduce for the weak limit point & that &&= - &¥G
Hence 6 =0 and o (F) tends weakly to zero . The result now frllows tor
general F by writing FaF +F
Notice that in proving the Proposition we have also shown that k¢ %ﬂ.'
Usling Jsu we can also define another net 9 — BU9) , serting
BW) = {Be WO ¢ pB)=B, 3¢ 4.}
S5ince k¢ ~%n , U—B(®) is also a local net .

To emphasize the basic simplicity of the argument we begin by assuming tvrm
"
‘% ig a compact Abelian group . Let ~% denote the dual group ¢
— ~
group ) of -% , and given @ € L% , ser

§,U9) = {FESLG)‘ @,&(F)=Fu-¢%\, }Q%} N ‘&f frey. @stF):F-s—cz), ge gt

A
Since it is‘%,racher than % itself which is of physical interest we tvry aond

~
replace %n by something related to ‘% . To this end we set

T - {a-.e -% : thewe exists Fe f with u,,LF)#O} .

The first result establishes the connexion between Z and €“

Proposition 2 \%°= Z'LE{QQ-Q‘. = 4, ¢ )_—.‘} and conversely
T = %j;iv—e% e =1, 35-%,}

Proof 1f §ef,,o€ X, pick FE ¥  witn o, {F) #o0
Then o {F) = e, (F‘JLF“ = w(F)eey , 50 wigh=1 and "S° c EL,
Now suppose g€ bt then to‘,((;iu-‘))= w, (F), Fe {.;,Ué'g.
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However ¥LO) is the waskly closed linear span of s i,.(.(” , (nee
Proposition i1) . Thus w,(Bg(F)) = W(F) for Fe e and
teking norr limits we deduce that w_,o(s% » Loy , 80 ,g_: st

To show that & w J&: 'EJ'L it suffices to ehow that

% is a subgroup of "5 { compare Propoaitfon 10) . However 1f

Fel, chen F¥ ¢ fq—_ , hence o¢é X implies F& ¥
Alsoif w,o'e¢ S , Fe ¥, and F'e ¥, then o (AIF € F |
However as x tends spacelike to infinity , (X (FIF') = W (F)wlF".

Hence cor'e L and z is a subgroup of '%\

The next result shows how the net U — 8(9) may be defined using 3}
instead of %b

Proposition 3 B(19) is the von Neumann algebra generated by r&UZ ;,.[(3).
Proof Since L= -%,L, }]-’((9) < BlS) for oceZ

Given T & '@ set M (F) = I;lﬂ P,(FJ 0\)“57 where s

is the normalized Haar measure on + Since is Abelian and 8¢9/

is weakly closed , €€ B(O) implies ™ (F) & 8O A &) -

Bur % = ‘%t , 80 M (F)=0  unless «&Z ., However F is in

the weakly closed linear span of the Mg(F! tor §€ é‘; (see
Proposition 11 ) . So ®B(E) is just the von Neumann algebra generated

by the ¥  wien ce X
We now show that we may use the net (9 -» B{(9) instead of - &(S)

to determine the superselection structure .

Theorem 4 ey -% is compact Abelian , & = &7,
Proof :It suffices to show by proposition 3 that 1f o ¢ }: then §a_c a .
However 1if I-',Gci_:han Fﬂltcﬂaand as x tends spacelike to infinity F«,{cr“—» Fey 6™,
Picking ,(8)* 6 we conclude thar F & € as required .

At this point we drop the hypothesis that '-%_ is Abelian and reprove the -
last three results for the case of an arbitrary compact group ~% . Instead
of dealing with characters , o will now denote an arbitrary finite- .
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dimensional continuous unitary representation of ‘% on a Hilbert space H,— B
The notion of an operator of § transforming iike & character is replaced
by thec of a multiplet of operators transforming like the basis vectors of Hs.
The precise definitions and a few elementary results on theharmonic analysis
of the action of compact groups on von Neumann algebras are given in the
appendix . The set z of characters is replaced by a subspace Kg& Hy

for each ¢ . We define
£
K, = w (§) e H,.

L
The stacement thac «%9 = 27 is now replaced by

Propositlon 3 4o fecg: cipb=t for all be Ky  andall v }.
Proof Let g € J%D and Fe Er then by Eq(5) of the Appendix

0 (E*) = e (f (™) = o(g™) w (F¥)

Hence o1k = & for all b&éWg and all 9¢ #g . Now suppose
g¢ g and a-(:a)(; S for all be Kg and all o then
if Fe ¥p
W (F%) = (g7 )0 CE*) = o (pgCEVF)
However since J{U) is the weakly closed linear span of }_)I,(U)H, (see
Proposition 11) , we deduce «,(F)= Lde(’z.'(F)) for F € F(V¥) or by

norm continuity ofy = W . Thus g€ 45 as required .

4L
The statement that 2 = %,, is now replaced by

Proposition 6 Ke = fheH, ¢ vigrte= b, g€

Proof In view of Propositions 5 and 10 and Eq{(6) it suffices to show that
Ks = E,- and K@K_c < Krew: . . _
However ;v,*= Iﬂ—_ s Kz = ua(]‘;) = wo(‘fv_) = ue(]‘:] = WK, .

Now if Eei,, Ge ¥, then F®w.(g)€ §r®: . As x tends
spacelike to infinity G(Fexls) > ()@ wo(8)

But KF’@'T: being a finite-dimensional vector space is weakly closed

thas Uo(f)@%cf':)é K&Qf , S0 kfﬂi 2 ks_@ Kg .
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Proposicion 7 B9 is the von Neumann aigebra generated by yi[B)K .

Proof Let mAF):fpj(F)alf.Lg) where Fo is che normalized
Haar measur~ of \%a . Since LIy is the wesakly closed 111;2:5 span
of 9 JAUG)H, and m, is weakly continuous , BY) 18 the weakﬁm‘fsr span
of U my ( 5 A0)He) -
£ Fe 1), be Hp then  pylEe) = Foiplb.
Hence ""a(},le) HQJ = ;,.(0) Ka- from whieh the resuit follows .,
We can now exrend Theorem & to the non-Abelian case .
Theorem 8 & = @7,
Proof Given b € K, ler b =0,(&) with Gé€ ¥ . Let Fe},

then Fu(t((_'r)cé BL . However as x tends spacelike to infinity , Fe(, (Qv)-a Foeq?

The result now follows from Proposition 7 .

Hence we have reduced the problem of computing the superselection sectors
to the case where ‘-%r_. is the gauge grnup and che vacuum state is gauge

invariant . Here we define

= Fe
WpFaR= alma, ¥
and verify that 3 'U‘L;) gives a strongly continuous unitary
represenctation of G, » such that p(F)= VipF U™ .

This situation has been dealt witn in [l ; Section Ilﬂ ; applying CLhese
results here one shows that &~ = B~ = 'V‘L-%b)'
s0 thar we may decompose the defining representation W (533 of X on #
into irreducible components by decomposing the representation UV of —g,,
Furcher one shows that there is a 1-1 correspondente ¥ = w_ between
equivalence classes of irreducible continuous unictary representations of %u
and equivalence classes of irreducible representations of & which are
subrepresentations of w . The mulciplicity of T in w  is equal to
the dimension of T .

This has solved the problem of computing the sectors in the case of
spontaneously broken gauge symnetries provided the gauge group -% is compact ,

In certain cases , for example if .,% is locally compact Abelian and if we

74/P.665 «
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know that each {(,(9) is generated as a von Neumann algebra by those
elements which transform like characters under ‘%, , our arguments still
allow us to conclude that O7 = 87, This remark applies in particular to
the free neutral scalar field of mass zero , example a) , where the Weyl
operators transform like characters under the gauge group .

Because we are dealing with spontaneously broken gauge symmetries there is
no associated degeneracy of the vacuum state as a statz over the observable
algebra and one may sk what intrinsic fearures o1 the observable algebra
correspond Co the spontaneously broken parc of rhe gauge symmecry .5
A parcial answer is provided by noting that the observable net 9 -
allows a non-trivial extension (9-»®O) which still satisfies locality .
Consequently , when \%a =+ -% , the observable algebra does not satisfy
duality in the vacuum representacion T : ) £ "'2.(&“9’)’

( at least for sufficiently large ) . As duality is the characteris-
ric assumption of the approach to superselection structure based on the
observable algebra given in [9] . this approach must be modified somewhat
to allow for the possibility of spoutaneously Lroken gauge symmetries .

We shall not attempt this in detail here but confine ourselves to deriving

the structural arsumptions which may be used to replace duality .

Proposition 9 a)  AEh” = @), s ot
b) If O O 0 then B < {AWY) DT,

Proof a) is just a special case of b) ; we take ‘.91 = 0, and recall that
®(19,) is by definition the C¥ - algebra spanned by all &((5)

with ©c (9: . Tc prove b) it suffizes , by proposition 7 , to show that
for all &, EK, < {09, g, .

However , .f F ¢ ;vu_\;) and be Ky we moy pick a _.l?régf;((B)
with w, (&) = b and hence there is a seque-lce b x'j‘ such that
xi tends spacelike to infinity and such chat ((_-‘..) € Q(@ In Q.

Taking the limit as i — e ve deduce that F‘-%CGQ = Fbt € $ 9 ©)) 4 O, )}
The evidence , such as it is [1 3 Section IV] suggests that
O —» B9 will sacisfy dualicy in the vacuum sector
w (BlO)) = T (8.

5) Of course the connexion between spontaneously broken symmetry and zero
mase particles is equally valid for gauge symmerries .

74/P, 665
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Now by proposition 9 a) above , we deduce from this that
‘ t
(8W) = W ()

Since w, is a faithful representaticn of B , we may use this equation
to idenrify 9-» Bi5) if we are given the observable ner ¥ — GLLO).
Thus we replace the duality assumption of (9] by the two assumptions on the
vacuum representation of UL
a) O Bto)z AW  is a local nat ,
) 1f © € 9 n¥; then GO © Joud)n IR
Condition a) gives a net U~ 3l9) satisfying duality and b) guerantees
that a representation W satisfying the selection criterion 1,1 of 5]
may be extended in a canonical way to a representation * of @B on the
same Hilbert space sarisfying thr selection crirerion with 8 in place of O.
The superselection structure is then determined as in [9] in rerms of
equivalence classes of localized morphisms of [ example ) shows , there
may be many inequivalent localized morphisms ( even automorphisms ) of o
which do not correspond to different sectors of [v4 ; rhese become
equiva‘ent when extended to localized worphisms of @& .

Ve close with the remark that the situation in Stacistical Mechanies is
quite different “rom that in Quantum Field Ther.y . Alchough we may prove
Thevrem 8 as abov: if we assume §- is a facror { corresponding physically
to a pure phase ) the results of i:l 3 Section III] no longer apply . Instead one
can show: that W~ = 87 is also a Factor so that gauge symmetries do not

give rise ro superselection sectors in Statistical Mechanics .,

APPENDIX

We collect here rhe few slementary resulfs on the harmounic analysiwz of the
action of compact groups on von Naumann algebras waich are used in the text .
Let o be a finite-dimensional continuous unitary repregentacion of a

compact group ‘%, on a Hilbert space H, . We denote by T the conjugate

representation on the opposite Hilbert space P H‘,—. . We first establish

a purely group-theoretical result needed i- Proposition 6 which expresses the
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duality between a closed subgroup of \g and an assignment K of a subspace

ku- < Hq_ to each ¢ satisfying the following three properties
: K(!' = k; (1)
4 2
K@l = Kege ) @
1f t intertwines o and T , i.e . if t is a bounded linear operator
mapping W, into MW, such that t Tiy = Tly) t, 3¢ % then

L) € K - (3

1t £ ¢ -% , then setting @L)q- = fle Uy Tyl = &, g€ Xt
we see that o —» fl')‘.,_ satisfies (1) , (2} and (3) . Conversely if

Knr < Hu_ for each a chen
K‘L = 5 3_54} v foeal oy \7‘13)(7=Lr, Lrek,.}
is a closed subgroup of ‘%_

6)

Proposirion 10 It o= K\rc’ Hv_ satisfies (1),(2) and (3) above
and ‘%u = Kt then K= -%:‘--k‘u* e, Kg= flew, ¢ atplb=b, 3e§°§.
Praof Let J denote the complex linear space of continuous functions on
% spenned by funcrions § of the form fegy = (&' =eqr6)
where b'e Wy, be W and ¢~ is some finite-dimensional continuous
unicary representation . The space %Iﬂa of left cosets equipped
with the quotient topology is compact and we let @(-g f‘%o) denaote
the c*- algebra of complex continuous functions on “sl‘%,
Since an e f satisfies {(33'{ = “F‘?’»S‘E%a" we may consider X as
a subspace of 'e('gf'g,_) . Conditions (1) and (2) ensure that 'f is a
% -subalgebra of -@(%I%b) . Now suppose that ¢, 9_1(. 4 and that

for all o

(!1‘,0'(3)(:) = (&',r(g‘)(r) , e “a-: re K,

6) This is just a variant of Theorem (30-47)-of [10]
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then g b = s, be Ko . Hence 3"5'6 k= 4o -
Thus f separates points of ~€C-§ /'fa) and tiie Stone-Weierstrass
Theorem implies that P 1is dense in '4('9/'§aJ .+ Now suppose @(g)c =¢
for all 39 ﬁe but ¢ ¢ k:r then we may suppcse that ¢ is orthogonal
toKe . If ¢'€¢ Hp and Ffegpr= tehogre) ,  fe €(4714)
Pick e K¢ and G'e He then

5(&’, =) ) Fl—g) d,ug) =(e,tb) where &t = fa'(g) /® Ercg)"ayxé)
and C'@C’ denoces the rank one mapping from He to He
taking @ € M to (&', o) ¢ . Now t intertwines T and o
so by (3) we have bt e K and {e,t6) =0 | pogee £ is
orthogonal N 1n Ll(-g) but since ¥  is dense in ‘(g i4.)
this implies that -f:o , Hence <¢=0 and this conctradiction compleces the
proof .

Now let M be a x-algebra and 3= PS’ a representation of ‘% by

: + 1
x-automorphisms of M . In order to describe elements of M which transform

. . 1 : - mn
according to che representation 3~ ', we consider the tensor product ™M & H,

as a space of row matrices with entries in M by picking a basis 'b..,'b,_d,-n By,
d = dim o= of M, and expressing FeMp ﬁq_ ir the form f=i2';" Fa ;‘ ;
F is then regarded as the row matrix F=(F) , We may define an

action ( again denoted by ) of on M@H by acting with on the
|4 - -4 F?

components of f , Set
M= { EeM@R, ¢ RLE)= Eoip, gedl,

where Eu-(%) denotes the matrix multiplication of E on the right by

g . Another way of looking at Mr is as the fixed points under the

action g —» By ® Fegy  of -% on M@ﬂr

There are a number o. elemen:ary operations we may definme on the Ma— .
Given F==x E@E—i € M@ﬁ, we define f'l‘e M®& He by
F¥ = 5 F*el, . Clearlyir FeM, , F¥* M=

< L i

If 6= X G'j@;} € M, cthen ve may define F@G =3 F. 6 ®((;L,®EJ))
i s 4

an element of MU, . - and verify chat f@§ i Mege -
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-13-

If © =06 chen E Qt = }% F"C'.i is a P-invariant element of M .
1f t o H o M intertwines o and < and Fe M, chen FeFeM_
vhere fl;"‘ denotes the matrix multiplication of on the right by t’l3
this operation may also be regarded as induced by 19 on M@ l-—lq_
where v is the identity automorpnism of M and € ﬁv-» ﬁ=
denotes the conjugate intertwiner
1 £=ZF, @EL € M® W, we define for a state wof M

w(F) e R, by w(F)=Zw(F)k; , and see that
L
@(EH) = (D) )
Tf E € M:r then
u(Fa(f)‘, = Feghe(E) (5)
and if t inrertwines & and T as abwe
a(Ee¥) = Lwl(f) (6)
if F= 3 r. si;EMQIT and b= I%;b € He  ye define
-~ R o
Fv = ZaF M, 7
This is of course nothing but multiplying the row matrix £ on the right by the
column matrix b . If Few, we term Fb a rensor of type o
-
in M and denote by
MeH, = {Fb i Fem,  beH} (8)
the set of tensors of type ¢ in M . This set depends only on the equivalence

class of o

Proposition 11 Let M be e von Neumann algebra and suppose 3-»“({35“7))
is continuous for each Fe& M and each nor- g1 state (> of M then M is the weakly
closed linear span of U Ma- Hr where a rung over a complete set
of irreducible continuo:s unitary representacions of ‘% ,

Proof : Given bE Hq_ define for FE M

M.b_i‘.b[l-—) = j (w(?)b) b)) FS(F) d/..(%)
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The integral exists in the weak topology of M | i.e. cthe toupology generated
by the normal linear forms of M , and an elementary computation shows that if
E = :L_ Hé()b(F)Q’(;L. , then fe M- . It follows that
if b, Y € Hy and  {(g)=(otyblt then  ffegrpglfldpey) € Mo H,
Now ler denote the linear space of funcrions of the form g—;(rts)b.&:')
with B,L’ € Hu— and 9 any irreducible continuous unitary representation
Y~ is uniformly du-se in ﬁ(‘%) . This may be proved using the Stone-

Weierstrass Theorem ( compare the procf of Proposition 10 ) . Hence we m~

approximate the Dirac measure ar the identity weakly by funcrions from v
In other words there is a net of functions "\d ' such that

$i) = lim [ hetpfgrdpy,  fe €(g)
Taking feg) = u(rz.:’( ) with w a normal state of M we see that F is

the weak limit of the net Fy , where

R = j\ Ld 4) P}(F)‘{/“P is in the linear span of g M, Hq..
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