e

wrm o S bk o e RO | et

UCID - 16719

This 15 an nformal report mtended prnmatily for internat or
limited exzernal distribution. The opimuns and :nnclusmm_
stated are those of the author and may or may not be those of
the laboratory.

&
LAVWRENCE LIVERMORE LABORATORY
Uriversity of Cabtornia /Livermore. Califorrka

ROCK MODELING IN TENSOR74, A TWO-DIMENSIONAL LAGRANGIAN
SHOCK PROPAGATION CODE

Donald E. Burtom
John F, Schatz

Marck 19, 1975

NOTICE

The repunt wus Prepared 43 an awcount wf wark
spansared by (he United States Guveramens. Newther
the United Statry nar the Unied  Shates ey
Revcarehy g Deveinpment Adném.tmation, nor any of
the  employess, nur gy of <ONLrcy s,
subcontractorss,  or  theip emptoyees.  Makes  any
wUIATY, eaprexs ar implied, ur sngmes any legal
lubility or jesponribi y for the Aturdcy, complelcnris
o1 Lefithies ot any information, ApParatus, prosunt e
Frovess dischinsed. 11 represents that iy nse would mn
infnings pmately awned rights,

\\\\\S‘\Y.\\

Prepareo far U. S. Atomic Energy Commission under contra:t no. W-74056-Eng.48



CONTENTS

ABSTTECE . ¢ v ¢ v v e« ¢ o o 5 2 2 4 s e a4 e 4 e s e e e m e e a e e e .
INtroduction . & . v . L o v e e h e e ke w et e e e e e e e e e e e e
Sclution of the Incrementally Elastic Preblem . . . . . . . . v . ¢« v v o v « &
Pressure Integration . . . . . o . . v v - 0 o 0 o0 e e e e e e .
Ductile shear Failure . . . . . . . . . . . . f e m e e e e e e e e e e 1

brittle Shear Failure . . P T

; Tensile Failure . . . v v v v v v v v 6 b 4 s e e s e e e e e e e e
: Artificial Viscosity, Stability, and ENETEY « « « » « « « « = 0 « « « o 2 4 b o - 19

Future WOIK . & & 4 & v v v v e 0 6 v 0 v 4w e e s e e et e e e e,

ReFETENCES + .« . . & v v ¢ 4 h 4 s e s e e e a4 s e e e w e e e a e

U o B 1 e

ii-



R T N

§

ROCK MODELING IN TENSOR74, A TWO-DIMENSIONAL LAGRANGIAX
SHOCK PROPAGATION CODE

ABSTRACT

TENSOR74 is a major revision of TENSOR, a computer code designed to solve stress
wave propagation problems in twe dimensions. The major physics modifications in TENSOR74
are in the area of constitutive modeling of solid materials. The new models, which are
described in detail, take into account pore collapse, ductile and strain suftening
brittle fajilure, as well as temsile failure with void opening and closure. In addition,

a medified form of linear artificial viscosity is described.

INTRODUCTION

TENSOR74 is a major modification of the TENSOR code which was originally conceived
and written by Maechen and Sack! and later adapted by Cherry.z TENSQR74 provides
numerical solutiomz %o problems involving the propagation of stress waves in two
dimensions. The code is a Lagrangian, explicit finite difference, continuum mechanics
code which can take into accoumt highly nonlinear material behavior.

Thiis report gives a brief overview of the continuum mechanics equations which are
solved and describes in detail the rock mechanics model used in TENSOR73., The finite
difference equivalent for the differential continuum mechanics equations has been treated

ps
e

in consideralle detail by others and is not discussed here. The rock mechanics mode]
is a two-dimensional ve: .on of a model Formulated by J, Schatz for SOC73, the one-
dimensional companion code of TENSOR74, feneral discussion of the philosophy of
constitutive modeling used in both TENSOR74 and SQC7% may be found in Ref. 3.

As a vonvenience to code users, Table 1 lists the relationships between the notution

used herein and code variables and input parameters.

SOLUTION OF THE INCREMENTALLY ELASTIC PROBLEM

puring each code cycle, stress loading is treated initially as an incrementally
elastic or "h;.—[;melalstic“4 process which can be described by two independent elastic
moduli over the range of stresses encountered during a single time step. The calculated
stresses are leter adjusted, if necessary, to take into account any inelastic behavior
85 described by the constitutive model,

The detailed finite difference solution ta th; incrementally elastic problem has
l)

been discussed in considerable detail elsewhere, so only a brief outline of the
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Table 1. Felationship betwecen notacion and code variables or mmemonics.
(ENSOR Additional Additional TENSOR
Materia! Parameters 4irid Variables TENPLT Mnemenics Output Names
Card 24
Position Notation Variable Netation Moemonic Netation Heading Notation
1 o u u RY Ty MU MAX L
2 [ v u Fa') z ING Y
Q 2 .
3 oOF -uy b r LN ):2 + z- T1 11
4 0 : 2 wioA Tl (2/m) T2 )
2
5 Material number N, ¥ Volume change » 3/7 sp Vu% . ui T3 T,
o g, qQ Q SPA 1‘m.’](uz/ur) DEL R Ar=7-r,
7 +W or -y | t CURLY ey GEL 2 62 = 2 - z
8 Number of LA(P) table P P DEVY Qou QY Equivalent of ¥
9 Number of £, (F) table vz Initial volume % 3/m CURLD ks for @ tenzor
10 Number of gas table ;C(F'J AM Mass x 3/7 12p 'ZD
11 A'l. sosp < 13p iS()
12 A AW Zone arca * 1 Y Y
13 Ay TikQ Hb lighting time + bits PBAR B
14 Fe s, My 4
15 - 5. Dk P
16 - TRZ STy, CoMp el
17 L_‘ Q Qr MAT Mpterial number
18 !’l Qz Q. tins Material state
RZ Tl "
18 I o q,, RR T
20 Cy 450 Overburden pressure * bits TZZ 1,
2l fia svl ' P T,
22 - CONL P ™ 5
v »
23 Number of NV(F) - Nle v Initial compression 5161 1]
24 L s ¢, 5162 T,
25 Number ur(r-) table 1] ar =T - r, 5163 1
P CJ ™M Lz = T - Ly SILA [
27 - req PeQ
28 Overhurden constant KED Kinetic energy density
29 Overburden constant 1o Internat cnergy density
30 - TED “otal encrgy density
KEM Specific hinethc enerpy
IEM Specific internal energy
TEM Speciine total energy

T
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solution will be presented, Although TENSOR74 can be used in either plane or cylindrical
coordinates (r, 2z, ¢}, the latter mode is most cften vsed and, consequently, will be the
one described here, The region to be described in the ccleulation is discretized inte

a large number of quadrilateral zones in the r-:z plane, the z-axis being the symmetry
axis. The state of the material within each zone is described by a stress temsor (J) and
a strain tensoar (g] vhich are hoth separated into their isotropic (P and ©@) and dev‘iatoric

(§ and ¢) compenents:

1 R
(Tr Trz 0 rSr rz 0
—rz ‘1'a 0 = -P] + S:rz Sz 0
_0 0 T¢_ _0 0 S%
(1)
E':' Er: 0 1 e Tz 0
rz %z 0 = %i * frz %2 0
Lo 0 €y ) L(J o e¢-

where 1 is the identity renspr. The pressure or mean stress P and the volumetric strain

¢ are then given by

4

!
- ?(Tr + Tz + T¢)
(2)

The introduction of the first invariant gquantitijes, P and O, allows the ¢ components to
be varried implicitly in the solution, The off-diagonal components, Tr: and Sr:, are of
course identical, as are E, and € .-

The calculstjonal procedure “ollowed in a given zome during 2ach c¢,cle is shown in
Fig. 1. In terms of P and the deviatoric stresses, the conservation laws reduce to the

coupled equations of motion,

- _ _d 3 I

Pup = - 3P - S0 v gy Sy ¢ 725, v 5,0 ey

B 3 ] 1

pu, ® - w5l - S)) ¢ gp S, 7S, v 08, )

where u is the velocity, ¢ is the density, a.l g is the gravitational body acceleration.
The dissipative viscosity terms which are added to each of the stresses to smooth the
sharp Jiscontinuities characteristic of shock phenomena are not s’ own in the abave
cquations. [t is che user's option to include the gravitational terms. When they are

included, each 2one is given an initial pressure in an effort to partially balance the

-3



t+ At PSS S t
r

Inelastic
constitutive Equation of
madel motion

Stress rates Accelemtions
P s 3 Se
r%z%rz Ytz
Generalized Integrations
i Hooke's law
H
Strain rates Velncities
T e e =
Be e_e uu
rzorz rz
1
Geometry Integration

Displacements
rz

Fig. 1. Calculational ucycle.
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equations of motion te produce an initial equilibrium. While this procedurce is inconplete

because the devieiors are nct also initialized, it is probably adequate for many problems.
ihe acceierations are then integrated to yield the velocities, u, and u_, oad the

new coordinates, r and z. From geometrical considerations, the strain rates'c:m then be

caiculated as

e

B-autau¢_"
F r ¥z T

3

r

v F u
(‘F“r - T)

- u
é =lZ°u-au-—r—
2 VT Y AN T
_ 1f? 3
érz_f(?:— Ur T IF u:) . (1)

The resulting strain rates are then used to calculate the elastic stress rates using
2 generalization of tooke's law that assumes the material is describable by an elastic
bulh modulus k and an elastit shesr modulus . which are characteristic of the current
state of the material. This is a 'variable modulus” mcdel in that it assumes a pressure
dependent b and a similar dependence in [ if a constant Poisson's ratio (v) is assigned.
This arises through the relationship from linear elasticity,

Wik,V) = %}, (.l - Zv) )

1+ v

In addition, the bulkh modulus may also cepend on the previous state of the raterial, as

discussed below, The isotropic and deviatoric stress rates are then given by,

Po= 2

$r T b e IS e

é: T ud, - ISy,

érz = ZM'r:: MR CPE S1-:“'"rr. . =)

where the factor

3ur du,
“rn 7 12 (52— - sr)
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is an wnguiar velocity which corrects for the rigid budy motion of the zone during the
time step. The finite difference equations actually used in the code carrv an additional
higher order rotation term not shown in the ubove differential tar.u.lations.5

tquations (5) apply tu solid materials shich are capable of supporving shear stress.
The relevant expressions for fluids are obtained as a special case by setting the shear
modulus te zero. The modeling of grudual phase transitions between the solid and fluid

.
state is achieved through the artifice of using an effective shear moduius

E
Ll=\-|(l'?—,:").-
0 Fe

whore Mg is the shear medulus for the solid, Ef is the specific intermal energy of fusiom,
and E is the current specific intemal energy.

The next section discusses the mouc] assumed in determining the bulk modulus and
therefore the pressure integration. A& later section discusses the integration and

modj fication of the deviatoric equations.

PRESSURE INTLGRATION

In gencral, the pressure will be a function of both internal epezgy and specific
volume; and several fluid models in TENSOR74 zake this dependence into account. The
pressure in solid rock, however, is assumed to have no dependence on internal energy.
The madel used in determining the effective bulk modulus for earth materials is intended

to take ipto account two specific effects, The first is the permanent loss of porosity

. - : . 6 : -
which occuss as the strength of the material bonds is exceeded. The second is the void

volume which is produced concomitant to tensile failure.
A given material is assumed to be describable in terms of two pressure-volune
relationships, such as those labeled A and 8 in Fig. 2. These relations are given to the

code as tbles Jf pressure versus the excess compression L, which is defined as

4¢3

n
A2 IT)
Loy

]

This effective modulus is to be used in all expressions in this report except those
defining the damage parameter ¢, Equations {20) and (24j.

+’rhe traditional netation, W or mu, has been discarded iu favor of f to avoid possille
confusion with the shear modulus u.

6
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Excoss compression {§

Pressure-volume model.
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where V. is the specific volume at P = €. In these terws, the bulk modulus is given by

£ &2

where u is i1he slope of ihe current trajectory in P-f space.
The prescriprion followed in determining @, and therefore k, is illustrated in Fig, 2.
The materiel is taken to load alomg a path termed the virgin leading path (a). The

subsequent un)oading behavior depends on the muximum compression tn experienced by the
material relative to two experimental points :;1 and ;2. If ;m has not exceeded L’,I, then
no permanent compacticn can tahe place because the internal stresses have not exceeded
the pore wall strength and allowed pore collapse to occur.” 1f the maximum compression
"m has exceeded 1:2. then all pores have presumably collapsed; and the material rust
unload alang the path B for completely crushed meterial. In principle, the crushed path
would be the lo-ding and unleading path for pure nonporous matrix material. The

intercept Gs is the maximum permanent coppaction and is approximately equal to the gas-

filled porosity of the material,

hew S is greater than r,] but does not vet exce:d ., then the naterial is only

pariially compacted and must wiload along a path between the crushe! and virgin iocading

curves,
waould have to be consistent with the unloading behavior of the fully c¢rushed matrix

material. That is to say, partielly crushed material would have to unload along path

Cin Fig. 2, which is parallel to the crushed path B and will intersect the { axis at

If the partial pore collapse were permanent, the appropriate unlvading path

P
Lo,

r

I e A

Howaver, pariially compacted material usually exhibits elastic recovery of some
porosity, iresumably because many of the pore walls have not been stressed to failure.
This means that the material must unloa! 2long some path U which lies to the left of C.
The specification of this path is acvomplished as foilows, The residual poresitv, which
is the intercept ":r of D with the 7 axis, cin be deduced from laboratory data and
expressed as a polynomial,

<3 (8)

2 3
AT 55(Als * AT 4 A ) 5t tEy

T
In praciice, the slope of curve A between the origin and &y is usually selected to
yield the correct sonic velocity for low amplitude signais.

~8-
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where the sum oi the Ai coefficients must be unity to guarantee that crL;q) = cs. The
2
quantity x is related to the maximum compression and is expressed as a fraction

G - &
x5} = 55 <1, t9)

It is then necessary to require that D lie to the left of  and intersect the I axis at

r
of P, then the follewing relationship for o along path D is easily derivable,

4., 1f the recovered porosity (;rf cr) is assumed to be restored as a linear function
-

CT' - b

11
aipj - uc'l'pj * Pn ’ (10)

where o, is the slope of C it pressure P, and Bo1Is the pressure corresponding to the
naxirum carpression ¢ . Since o is determined, the effective bulk modulus k is known
and the pressure integration can be accomplished,

The preceding discussion concerned a model for the behavior of microscopic voids
normally contained within rock or soil materials, A second type of void must alse be
zaken into account in the pressure c¢alculation, These are voids formed by the opering
of cracks in the rock during tensile failure, TENSOR74 deoes not literally create crached
zones, but it simulates the effect of cracks in a continuum. The occurrence of tensiie
failure durirg unloacing causes the material to follow a path to the left of the normal
unloading path. This behavierr is modeled in TENSOR74 by adding a pressure correction
éPl to the pressure when tensile relaxation is occurring. This can happen during both
loading and unloading. Similarly, when voids close, a .crrectinn 6PC is subtracted. The
SPt calenlation will be described in detail when tensile fajlure is discussed. For now,
it will be sufficient to say that éPt is indicative of the void volume procuced by temsile
failure. The voids are taken to increase at a rate determined by the bulh rodulus b or

equivalently the slope ®, so that the total void volune is given by

GPt - GPC

by T :S a(P) ' (n

t

In practice, @ is assumed to be approximately constant dursing t£asile failure so that

this particular sunmation is simplified tc

‘lnr‘nite or negative slopes are not forbidden by Eq. {10). Should such » value be
calculated, it is replared by the slope of a straight line drawn between [p and r.
Although setting the slope to ae might seem to be mere appropriate, such a procedure
could cause unintentional bulking by unloading to the left of the origin, depending on
the shape of path B,

9.
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P = z (6P, - #P) , (123

: v
t

and a "void pressure” Pv is accurulated instead of <. Void openings from tensile
failure add to this sumaatic.; svid clorures subtract,
The net change in pressure during one cycle then consists of three separate

B contributions

H P = b 6f‘t - &5!"‘: R

where 67 = p':')thpo is the incremental velume change. The first term is the simple
incvementally elastic contribution. The second term contributes only during tensile
failure, and the third term contributec only during loading or reloading provided there

are voids.
The form of 6Pc duri,.g loading must be such that &P is small when P‘_ or 3, is large,

aliowing the voids to close without resistance. In fact, if the material is rot allowed

to bulk, &P must be zers until the voids are clesed, A form for EPC which does allow

bolhing is
: uds loadi éP >0
i _7—“] + oL /P ovading { )
B v
o < (13)
c
0 wiloading (&P < 0} ,
where ¢, enters as a characteristic value for the expancion, This form yi2lds the
following limits for &F during loading if the cSPl contributirn is ignored,
( 0 A
v
-P Jful
_ viTTB -
&P = [ adg P" ~ UCH
adt, Por 0
and the

$0 that the effect of {, becomes significant when P /a is of the order of ¢,
correct extreme limits are cbtained. 7The quantity Sh is an input parameter to the code
and is reset to &t if it falls below this value. This artifice ollows the veoid c¢losure
to be spread over a minimum of about five time steps in the interest of eliminating
nurerical noise.

As final comments on the pressure calculation, it should first be noted that no
rate-dependent effects are incorporated in the present pressure integration. Secondly,
as discussed in the next section, no dilatancy is considered in the present wodel of
shear failure. Should dilatancy be considered at a later date, it could be treated in

-10-
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somewhat the same fashion as the voud volume. Thicdly, the technique for accoumting for
voids ix npt wnique, Maenchen an-ld Sackl in their oripinal version of the TENSOR code
zccounted for 3, directly inst ~u of l“'_. Finally, the void clos:re is independent cof tir
orientation of the tensile fa:rlure which preduced the voids. “The scheme of Maenchen
and Sack alse tool this oricntation into account, Inm futuze models, their approach or a

generalization f it is preferable.

BUCTILE SHEAR FAILURE

The Juctile shear failure used in TENSOR74 is essentially an elastic-perfectly
plastic model in wiich the deviatoric state of the material is constrained not to exceed
some failure surfuce. In generzl, th:s sursuce would be a function of strcss tensor
invariants7 correspending to the assumption that the material is imitially isotropic.

in terms of the stress deviators, three such invariants are

)

e

P = -[1/3 = - Tr 1 ']'z «T

@

2h

1/3 2 1/3
i = Bsr * Sz)(Fr: - STS:)] ' (4

bata for rock miterials indicates that the ductile failure surface can often be adequately

L=130% = (s? +s] vss +sz)”2
T Z rz TZ

Jdescribed in terms of P and 1 alone or equivalently P and Y which is defined to be

(3 /s
v (4 l:h)
= 0.800 i . (15)

¥ 1s proporticnal to the octahedral shear crress and i equal to the maxiTum shear
suress (0, - c.)/2 if ¢, equals oy as would oceur under uniaxial loading.

owever, in the realm of brittle fuilure {which occurs at lower pressures than
ductile failure), compression, extension, and torsien data often camnnot be reconciled
into a single failure surface by employing only two of the invariants,s's However, the
data can often be reduced to a single surface defined in terms of Y snd the guuntity,

1 A\L/3
P=p. {30 6
P=r (16 ) N (16}

* s . . a :
Were, we follow the usual convention in describing the principal stresses: that
¢ > 0 in compression, and that gy £6, £ 0.

-11-
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which reduces to P =

P+ Y/5 = [c] * 02)/2 when S, equuls o5 In the duetile region, the
sccoud term is neglib.ble, so that both brittle and ductile failure surfaces wilil be
described in terms of only Y and B as indicated in I'ig. 3. The shape of the failure
surfoces is similar to that of a nodified Pragev-Drucker yvield criterion.” The details

of the brittle failure model will De cgnsidered in the next secticn,

In Y-P space, marerial which is shocked will load along 2 path of slope epproximately

{1 - 2v), corresponding to uniaxial strain loading. If the lpading or subsequent

reloadings along other paths cause the failure surfdace to be intersected in the ductile
regici, the materiai is saild to have experienced ductile fallure and the stress state is
forced to remain on the failurc surface until such time as the stresses subside.

Ler us suppose that the integration of the incrementally elastic problem {Eq. [5})
gave solutions §T, gz’ and §rz which in turn gave a value Y which lies above the

failure surface K at some P. The final state on the surface is cbtained by performing

no adjustment on P and by adjustiszg each of the deviatoric stresses as follows

2]
o
it
|-
—
-
I
-
L3
-
Ik
s

This, of course. results in a value of Y = K as desired.
The above stress adjustment, caused by failure, is most certainly accompanied by

amage to the material. On¢ measure o * dama is a quantity terc inel ic
d to ti T 0 asure of the d e i antity terced the jpelasti

-
or faijure-associated strain which is definad as

1
6€p‘i'p-l51|
-yl
i K
_:‘-u_’l-;;?l . {16a)

The absolute value is taken because the integral of this quantity is intended tu be a

measure of the pagnitude of incoherent strain experienced by the nateriatl,

Yhe above formulation for ductile failure dees not appear explicitly in LENSORV4.
pather, the ductile probler is formulated as a special case of brittle failure .nd

stress relaxation as discussed below.

*
An equivalent parameter differing from this by about 15% could have been defimed in
tev. - of Y instead of I.

_12-
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Fig. 3. Shear failure surfaces,
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BRITTLE SiEAR FAILURE

‘The concept of brittle fujlure employed in TENSGRTY is depicted in Fig. 3 and assumes

that the strenith of virgin (unfaiied) material can be characterized by a curve K\_ in
y-f space which can be defined by laboratery data, usually triaxial, The unconfined
conpression test, for exam.le, will define one point along a 45° line from the origin.
LT the material has tensile strengtl, K_‘_ will intersect tihe P aris at a negative value
of P, The description of eacl. strength curve is equivaient to a Mohr failure criterion,
previded the slope is less than unity,

Further, materiazl that has faile¢ in the brittle mode is assuned to sirain scften
and to be characterized by a lower stremgth envelope h that depends on the amount of

damage the material has undergone. The damage € 1s defined in some fashien analogous to

In particular, it is assumed that for some limiting vilue € of the Jamage parameter
It vill then pcssess its Iowest possible strength
Such a

€ .
tﬁe material has completely fatled,
Kf whicn arises only from the interlechirg of the fraguents under pressure.
material would poszess no tensile strenhgth, and l-(f should pass through the origin.

A final constraint on Kv, K, and !\'f is chat zhey just join at the transition (ﬁBn)

into the ductile region, in effect requiring that there by no sharp discontinuity in
the strength descriptions letween the brittle and ductile regions. Figure 3 depicts
curves satisfying these constraints.

In temms of K and e the location ¢f the effective failure surface at a given P

is taken to be

hie) =

where all quantities are to be cvaluated at F, ‘lhis fomm assumes that the effective

failure surface is a linear Function of €. Other forms which allow a more gradual onset

or termination could certainly be justified,
It is next necessary to dcscril:e how the Jeviatoric stresses ave to be relaxed in
relation to the effective fallure surface K. Ome option would be to simply “pin' the

material to K as in the case of ductile failure. Ve, however, use g viscoclastic model,

which allows some rate dependence to be tahen inte account. The swdel used for brittle

fuilure is that of u simple Maxwell solid in shear., This in effect reans that stress

adjustment beliaves as & viscous texl in the stress rate Lgs. (5). The form used in the

code is

14~
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s = (i=1r, 2z, rz} , {18}

LT
-

i K
where €t is the time step. "14%is model produces a damping which increases as ¥ exceeds

K, and which i1s zero when Y and X coincide. The quantity 1, called the Maxwell relaxation
time, is the characteristic time over which the stress relaxation is to take place.

It should be noted that if T is taken to be §t, then this equation reduces to the
relaxation equation for ductile failure, Accordingly, it is possible to develop an
artifice which allows the unified treatrent of both brittle and ductile relaxation. This
is accomplished by defining,

Tl - Kg/k )

T = (19}
6t as a lower bound ,

where T, is the input relaxation time. This relation produces an effective relaxation

time wl:fch reduces to &t in the ductile region, which is Ty when Kf = 0, and which
possesses a smooth transition Letween the two limits,

The net effect of the above formulation [Eq. (19)] is to allow Y to overshoot the
faj lure surface K in the brittle region under rapid Icading conditions (thus producing
a “rate hardening"), and to gradually force the overshoot to vanish as the ductile
transition is approached. This is done in the interests of using an elastic-perfectly
plastic mudel of ductile flow. It may well be that rate dependence jn the ductile region
is also desirable, in which case Eq. (19) should be modified or discarded.

We need finally to fully specify the calculatior of the failure associuated strain

e for all shear failure.

_ 1
be = g l61]
§t -~ X 4
=?ﬁ][1 -?l » (-0)

which is consistent with 8¢_ as defined for the ductile region [Ey. [lea)] when 1 = *t,
The shear failure model as descriled above does not take into uaccount shear-vilume
interactions (dilatancy and shear enhanced compaction). This would require a flow rule
that adjusts P as well as Y. Once such a flow rule is adequately defined, it can be
incorporated .» the code in much the same manner as is the tSI't adjustment descri’erd
below. The current model also neglects ductile strain hardening in which the strength

increases with the strain. 15
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Tensile relaxation is described in the principal stress coordinate system (in which

the off-diagonal component T,, vanishes, This system is obtained by a rotation in the

r-z plane of

25
, o L -1 T2
=z 153 ’
2z T

®
which results in principal stresses of

T
1] . 1 P 2 1/2}
" P+ 5{51_ w5, 2 [, - 80"+ (2s_p°%]
Tg=-P-S_ -5 . (21}

'l‘_.s is always in the 4 direction
by definition, T2 i5 the
Tl is the

If any of these are positive, the material is in tension.

and is commonly referred to as the hoop Iress. As Tl > T2
and is directed perpendicular to the shock front.

most compressive of the two
and, by default, lies

the r-z plane but may be less than T3

maximum principal stress in
The tensile states f{ypically

parallel teo the shock front in compressive shock loading.
encountered are those in which two of the principal stresses are tensile and the third

is compressive. In Y.[ space, these stutes lie to the left of the dashed line of unity
slope depicted in Fig. 3.
In the code, the criterion for initiation of tensile tailure is taken tc v the suace

although the relaxation technique is difterent. This

as that for shear failure,
to the potics that tensile failure

wified shear-tensile 1ailure criterion corresponds
stress deviators, ™muoe a crach has

nust be preceded by the creation of crucks by large
occurred for any reason, it is then free to open it there :s tensivn. Along with the
opening of the c¢rach, toasile stress reluxation oveurs. All principal stresses which
are tensile are allowed to relax, Unlike =hear fuailure, i shich the materiul strength

is gradually reduced to tero, the raterial lybhaves under tensile fatlure as ir its

tensile strength has been instantaneously set to sere shen the failure surface 3x Nivst
reached, Alternatives to this approack are discussed later.
Jd,osw

The relaxation modei for temsile failurc is agair tuben to S a Maaweli -~ U

thit the tensile principal stresses are adiusted as folloews:

-
The venvention Foliowed i defirang 0 s oo ddentioal te that of -0 lere, ] Lo
tenisiorn, and 11 - T., and Tj lies an the § dircctiion,

S 1
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in which the tilde indicates the old value from Eq. (21). Usually T is very close ta L
{Eq. (19)] because most tension occurs near P = 0 at which Kf = 0. The relaxation time
for tension ana shear have been taken to be the same for lachk of compelling reasons why
they should not be.

It is next necessary to find the new values of Sr‘ Sz, and Srz corresponding to the
tensile-relaxed principal stresses. If it is assumed that the opening of tensile cracks
as modeled by the above relaxation does not rotate the principal coordinate system, then

the transformation Eqs. (21) can be inverted to vield,
S fT. » T -,
Th-p +(L.—-£-)i ((—1—,,—-;) cos 2y
5, P z
. Ty -1y .
':)r_ 2| —==——] sin 2y ,

During the relaxation, the trace of the stress tensor is altered, so that the
pressure and other invariants must also be adjusted, The expression for the pressure

correction is

-1
[
]

[
T

"
wil —
on
=

—

where éli is the amount by which each of the tensions was adjusted. This is the final
cotrection to the pressure calculation.

because rensile railure also alters the second deviatoric invariant, the final
step in the tensile failure scheme is to increment the accumulated damage. In addition,
we add a term which represents the volumetric strain associated with crack opening.

ihus,
PO NP B N S (24)

where each tenm is Jdetermined by comparing the old and new values for I or Pt,
resprotively,

The foreguing has Leen a description of the primary temsile failure model used in
inhs0t T, The model is intended te be a isorronic continuum mocel and consequently
sescribes inciherent breahage. That is, the planes of separation or fracture are assumed

t¢ b randomly oriented, Such u model is easily Jefensible in a one-dimensional code,

-17-




however, the desirability of an jsotrepic model in a two-dimensional code is yuestionable
because tensile failure should inclade an,sotvopy via aligned cracks. For exarple,
suppose '1‘3 > \'], an:d that 'I'3 is primarily responsibie for Jriving thz material to failure.
Intuitively, one would expect that the fracture plane would Le perpendicular to Ts. A
description of this phenomenon would require that T, be allowed to relax, 2nd that tle
material maintain its scrength in the Tl directjon. One way to achieve such w effect
vould be to test each tensile principle stress independently agaiust a single tensile
strength limit. Only those tensions exceeding the limit waould then be relaxee. Once
tensile failure occurs in a givem direvticn, the strength in thwt direction is all wed
to drop to zerp either gradually or immediately, Such a model was erployed by ‘“lacncben
and Sack! in their original version of the TENSOR code.

An altemnative mechod which preserves the unified shear-tensile failure criterion

was formulated in a special version of TENSOR74,  In this model, two tensile relaxarion

schemes were emploved.

) (rapid relaxation),

14
or
= §t e i . ae
T, = Ti (1 i ) (slow relaxation) . (235)

The second equation has an effective relaxation tim of 15015 whidh is Jarge wti] the

raterial is heavily damaged, As in the previous medel, the maximur. principai stress which

is responsible fur failure (say, T3) would be allowed to Telax rupidly according to the
first relation, TJ would follow the second relation in iyg. (23) und would relax slowjy

or rapidly according to the extent to which the material is dumaged, Because of the

it may well l'e that after o few cyeles their roles

rapid relaxation of ‘[3 relative to T1
Ify

are reversed ('I] > '1'3). This situation is handled in the fullowing namner:

exceeds tie effective failure surrace K gt any given time, the rest tensile stres- at

that time is flagged and assigned the repid reisxption in addition to any other stresses

which may have been previously flagged. In this way, both T_.) and 'I'1 can be relaxed

quickly if each was at one time or another the tensile stress which drove the raterial

above the failure surface. This scheme takes coherent failure inte account but allows

the possibility of incolherent velaxation at large &

age levels,

Both this scheme and the one of Maenchen wund Such suffer a serious Jiaw. The true

planes of failure should be fixed in the material covrdinates. In both of these schemes,
the planes are fixed instead in the principal coordinate system shich is tree to retace
with respect to the raterial as the applied stresses vary with time. This probler ix
especially acute when several enerpy sources ure invelved or when reflcotih, surfaces

are preseit,

» : : - - n
The version TEN3LE halr,obefn used extefirively in 2 study of the blasting effects of
1
’

long cylindrical charges.
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Another serious flaw in the tensile failure models discussed above is that, untike
tiw shear failure model, the material tensile strength is immediately set to zero on
failure. UDecause of this discontinuous alteration in behavior, the first zone in a
region to fai: may be relaxed before adjacent zones are stressed to failure. This
apparently leads to the propagation of finper-like regions of failure which resemble
fraciure planes.l ! While there is some physical reality to these propagating
disturbances, it would be imprudent tc place much credence in tiem without more study,
Fer the present, it would perhaps be more desirable to follow the shear failure procedure
and jet the tensile strength be gridually reduced to zero depending on the damage
parapcter. A model which properly solves uoth the isotropy problem and the tensile
strength problem might involve the replacement of the damage parameter by an inelastic
strain tensor. Both the shear and tensile reiaxation rates could then be governed by
the extent of damage in the appropriate direction. The relaxation, in turn, would
produce inelastic strain which would be added to the proper components of the inelastic

strain tensor,

ARTIFICIAL VISCOSITY, STABILITY, ENERGY

Artificial viscosities are used to damp out spuricus oscillations. In all, six
such terms which Jepend on three inpuc coefficients C‘i and one width W are used in
IENSOR74.  Four of the six viscosity terms are Q, Qr’ Qz' end Qrz which are added
respuctively to P, Tr' l'z, and Trz in both the momentum equations [Eq. (3)] and also in the
intemal eneryy cquation, which is discussed later im this section,

lhe viscosity @ applied to the pressure is & sup of two terms, a quadratic and a

volupvtric viscosity,

G = L’l;(l.u]: - pcld . (26)

. . . . 12 . 3
lhe first er quadratic term is a “standard” \on Neumann ~ term discussed by Schatz™ and

is proportimal te the squale of the velocity difference Lo acruss the zone. [If the
zone 18 eapanding, &4 is set to zerv,

For shock loading or one-dimensionul louding, the secony term can be properly
referred te as a linear \.‘ir.‘os:t)‘. except very near the crigin ur axis of symmerry.
tnlike “he quadratic term, this term 1s always used independent of the sign of ¢, The

daaracteristi. length | has been found to produce a shock width of ab-ut five zunes ween

cule usur also ias the option of using 4 cenventional linear viscosity instead of
the V- Lunelyic viseesity,

4
Q(lincar) = \_,Ct"t-'l*' .
W owitn the o oratic term, du 3s set te 3ezo if the lone is vaxpanding. If this uption

pxoused, ., repsaces the uantity 1%b an the stability bq. [28),
H
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L is about one-tenth of the zaone size.3 This relationship enables the code user to
select the shock width W, usuall; taken to be abuut five rone sizes, The input width is
then converted to L = W/SO internally. This form for the linear viscosity has the
property of damping the motion o1 both contracting and expanding zones, an advantage in
spherical shock expansion problems, but a disadvantage in spall calculatioms. Spall,
which involves the free expansion cf zcnes near the surface, cannot be modeled accurately

unless the viscous terms are negligible during expansion. In this case the optional

conventional linear artificial viscosity should be used.
The deviatoric viscosities are determined from

Qi = CzocL %— e (i =71, 2, T2) . @zn

The ratio 2u/a is intended to produce greater darping for highly compressible materials

or for those with a high shear modulus.
The final two viscosity terms q. and q, are add=d, respectively, to the two

momentun equations (Eq. (3)] to control “hourglass' distortion. This is a type of

osciilation in which the zone diagonals are translated in opposite directions, This

cscillation arises because the numerical expressions for the stralm rates are unaffected
by this type of distortion. Consequently, the artificial viscosities previcisly discussed
will not damp this mode of oscillatien. As this is purely numérical phenomenon,

expressions for . and ., which depend on a coefficient Cl. will not be given here.

Reference 2 contains a complete discussion.
The artificial viscosities affect the time step threugh o stability criterion,

C 8D
L (28)

ét = v

2 2. L .2 2 2
[+ ac” (g + 3¢, "(2w)")

This quantity is calculated for each zonc, and the smallest &t found throughout the mesh

is used as the time step for the neat iteration. C, is the Courant number and &D is a

number which is approximately the smallest :zone dimension. Equation (28) is a
generalization of the stability condition proposed by Von Newnann and Richtnyer.“ If
the first term under the radical is considered alone, kEq. (28) represents the stability

condition for the pure hydrodynamic [hyperbolic} equation. The last two tems correspond

to the volumetric and quadratic viscosities, respectively, and force Eg. {I8) to

represent the stability condition for the diffusion equation, Thir is done because the

equations of motion |Eg. (3)] reduce to a diffusion (parabolic) equation in the limit eof

large viscosities. The stability requirements cerresponding to the brittie and ductile

rejaxation schemes are not presently reflected in the stavility
TENSOR74 problems are often discretized so that smull zones are near the energy

calculation,

source. The zoning is then graded to larger e sizes near the periphen of the

prot-len. This is wsually dJome in an effort to sim:ltaneousiy oltain solutions To hork
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a finely zcned close-in problem and a conrsely zomeu Fa=-out problem. The form of the
volumetric viscosity, however, works against such an approach, First, for the solutiun
to be stable when the shock reaches the larger zomes, L {or equivalently %) must be
chosen to correspond to Lhie size of the larger zones, This means that the nroblenm is
highly overdamped in the region of the small zohes where the sheck originates, resulring
in much soaller initial time steps than necessary.

The above ]JIOb].elIl does not arise in hydrodynamics cedes using a conventional linear
viscosity formulation” because L is in effect chosen for each zume by keeping c, - L/&D
venstant, In problems with nonuniform zoming, there may be large systematic variations
in the zone size between two regions at the same distance from the source. lor such
problems, the variation in artificial viscosity resulting from a conventional formulation
can result in systematic motions which may be easily confused with a true problem
solution, The elimination of spurious zoning effects such as this is one of the primary
advantages of the viscosity forpulation used in TENSOR74,

There exists a compromise between the two methods which is worthy of further
consideration. This involves simply forcing the code to choor. L based upon the largest
zone which is active at a given time. In this way, all zones experience the same danping
ot the same time. As the sheek wave moves outward, activating more zones, the viscosity
then increases cverwhere as required to give o stable solution for the larger zones,

Finally, the internal energy equation

=2t
n

-p0 - f_:Sr - S:)ér - (I‘.Sz + Sr}é: - :srzérz {29)

is integrated ta arrive at the new intemal ciexgy (per original unit volume) for each
cone, As indicated carslier, the appropriate viscosities are added to each stress in

tq. (289} berore the integsation,

FUTURE WORK

Much work remains to be dome in the rock mechanics modeling of TENSOR74. In the
near future, we hope to examine the question of anisotropy and its modeling with respect
to shear and tensile strength and relaxation, damuge, and void closure. The desirability
of the present unified shear-tensile failure will also be questioned, In connection
with the relaxution schemes, it will be necessary to exanine their effect on stability,
The effect of shear stress on the compaction of porous material will also be modeled.

ke plan to formulate a new artificial viscosity tensor in the coordinate system of
the principal strain rates. This will replace the present formulation — Eqs. (2b) and
(27).

In the area of general code development, we plan to improve the convergence rate
of the existing quasi-static mode of operation, 1o iiu.umipe the presemt gravity and

overburden formulations, and to develop new nonrefiecting boundary copditiens.
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