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EXACT SOLUTION TO GELL-MANN-LOW EQUATIONS

. *
IN A SIMPLE RELATIVISTIC MODEL

ABSTRACT

We study the exactly soluble relativistic model field theory
provosed by Zachariasen. Renormalization of this model is carried
out both in the conventional manner, and by choosing the point of
renormalization at an arbitrary space-like momentum. The Gell-Mann-
Low equations are then set up for the coupling constant, and the
exact solution obtained. The asymptotic value of the coupling is

seen to go to the bare constant. Some implications of the model

are considered.



I INTRODUCTION

Renormalisation group has been used in rccent years in :ie-
veral important applications, esperially in proving tnat Yang- '
Mills theories are asymptotically {ree 1. The renormalivation
sroup method has also been employed by Adler 2 in a programme to
determine the fine structure constant., The purpose of this paper
is the modest one of setting up the renvormalization group equatiomns
for a sample model which is exactly soluble. The model we employ
is the one due to Zachariasen 3, and is similar to the lee model
in ‘N® sector, except for relativistic kinematics, Different for-
muk tions of the model are presented by Deshpande and Bludman h,
and earlier references are cited therein, The Gell—Mann-Low5equa-
"tions for the effective coupling constant are set up by choosing
the renormalization point at an arbitrary space=like momenta, The
equations can be exactly sol%ed, and the effective coupling constant
is seen to interpolate between the on-shcll coﬁpling‘and the bare
coupling constant., The model thus provides an illustration of tlre
contert pf renormalization group equations, Gur treatment ot the
model parallels the lucid paper by Wilson 6 o: the renormalization
group, Several implications of the model are considered, 1In parti-

. cular we find that finite Z3 or bare coupling constant docs not
lead to an eigenvalue aquation for the physical coupling as con-
jectured by Adler in quantum e;ectro-dynamics. The relaticn ol tLe.
renormalization group to the arbitrary choice of the substraction '

point in N/D médthod is also shown in context of this model,



II. CONVENTIONAL RENORMALIZATION OF THE
ZACHARIASEN MODEL.

The version of the model we shall consider is the one with
ivre Yulawa eouplinggo -B'UA, and only the procoess A -» i) + T s
allownd, Cressing is violated by the model in that =1 + £ is
not allowed, Thus BB scattering amplitude is given hy a swum ol
bubble diagrams., The unrenormalized but exact Green’s tunctions
ot the model arc thus easily calculated.,

. s L4 .
‘Ao Unrenormalized Green s IFunctions,

The wnrenormalized A-particle propagator is

Au® = S=fio - T @n

2 )
where/(lo is the bare mass of A particle, and /7(5) is the proper
selfyenergy. The particles are all assumed spinlesé, so that 7775)

is a logarithmically divergent integral if cut-offA_ is not em-

-ployed. Thus A
i ﬂ(s')alsl

T A = - F L[ L2 (22)

7, 8Ls-ce -
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where /(SJ = ({//‘7)[(5"’)/5] is the two particle density of states,

and we have assumed units such that the mass of B particle is 1/2.

The BB scattering amplitude is given by
2 | .
T = g Ayl VEY)

B, Renormalization of the Model,

~ 2
The physical rmss/ is defined through the mass cquation

K= o+ TS N) (247
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This cquation ensures that Au has a pole atS:/‘ the upronorrvig-
lized proporator can now be writterr as
-~/

Dy = S5 T (25)

where A , /
) (L2
/

notice that A-’oo limit can now be taken because J?S) is o con=

vergent integral,
The conventional renormalization now defines a renormalived propa-~

gator such that the residue at S=/‘1 is unity

Ac = A Z;i @)

R =
vhere .8)
Z o Lm (5= Ay @
3 St
Thus ’ , d /
-y % Ly ds (2.1
Z; + 2[5

The physical renorma.lized coupling constant is

-1
2 Z ¥ fﬂ(s )0/5 (,’2./0)
= + =
y 35 j’- T @—/a)
It is possible to express Z3 in terms of the coupling constant
. : ’
Z = /) - .ﬁ‘:‘_)_df Q-n)
3 () :
Lquation 2,9 ensures the bounds 0€ Z2,<£ 1 , while Eq 2.11 1leads

3~

N
to upper bound ong « The conventional renormalized Green’s furc- ¢

tion are then .given by

2 (-ub) x/"(s’) As' @n)
( VA ls)) = (3"' )[’+ 9 > ,a (5 /a;{—(s-s-ce):]
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and 7—(5) = g AR(S>' (_2/])
a convevient form tor T(s) which shows the unitarity cxplicitely in
7¢s) = V5 /D(s) | (24)

with ey = gz/(_;._/p) (215
D) = e (=40 /es') /V(]f')cf’!' (z2.46)
7 J (sta*)(5-5-¢<)
1IT. WNORMALIZATION AT Tl ARBITRARY POINT;

We shall now define a renormalization program for the Zacha-

riasen model which is unconvertial., The conventional definition of

the physicai mass, ie.,

H* = p e T A) G1)

is retained as in the Gell-Mann-Low approach, We choose the norma-
lization point at A for the renormalized Green's‘functions, in-
stead of the mass-shell value//dz; The Green’s function so obtained
are related to the renormalized functions in the conventional ap=-
.proach by finite constants, The renormalization group equation- re-
sults from comparing renormalized theories for two different values
of ;l , and diff'erential equations can then be set up for the coup-
ling constants as in quantum electrodynamics.

[y

The renormalized propagator is now defined through the nor-

malization?

Aés) s 1[(s- %) ' (3-2)

S A

from the unrenormalized propagator, we see tiaat

o2 -l
> 9ds’
| (s-;\)f/’m : ] @3)
A A = |1+ B S
/ .

where we have defined

o o. ¥} -
! /‘(s)ds_‘_
A [‘3!.-‘+ T c«i/‘)(s'-ﬂ—.] (36
! ‘ S




the value of ’A. is restricted to bhe less then the lowest threshe-
hold at s = !;m;'; 1. For A> 1 the intepgral develops irvaginary
parts, and the definition of coupling constant becomes wmeaningless,
The relation between the conventionally renormalized-fiold
and the field renormali.zed at Z is
' 2 ,c
A:(z) = (Z;)/ Ae 0 (39

it is easy to see from the propagator,

- A A LC :
AR (s) = Zs A‘(x) : (6

e

A . o g
An argument simijar to Wilson , then gives the renormalized coup-

ling constant
2

gz =g - BE v

we have from Eq (3.6) two alternate expressions for Z?' s depending

on S-’/uz or S5A . We thus find

gz o j: [/ + (A‘.f;._&)f; WLl _7-’ G-8)

|, (s~ (stat)™
o /
2 /0(‘/) A’ J (3_
or ( —aut) - = 1)
= g ['* -”—77?—-3/,@'_»7(.:-/&)

7

From lq (3.9), (2.10) ana (2.11) one can establishl Iq (3.14),

‘thus proving that ia. introduced before is indeen .the renormalized

coupling constant,

The scattering amplitude is given by

2 LA _ ,
775)4‘2 % A’ (s) . (3.10)

The equivalence of the two renormaiization prescriptions can be
shown after using equation (3.9) and a few algebraic manipulations.

The scattering amplitude in Equation 3.10 corresponds to N/D am-



Plitude with a diffeorent substiraetion point For the I funetion:

7{s) = s //J)a(‘)
ﬁ?'/(s-//t‘)

A
vheore /V {5)

U

and (5—70//(‘/) /}’7‘(5')4/;/

A
3(5) = [+ 7[51}1)(,{£5—C'€)

IV, RENORMALIZATION GROUY,

-

(3-12)

We now look at formulae comnecting renormalized fields at

/
two different values of A , say, A and A « The two sets of fields

are commected by renormalization constants
2 1 W
A = Z 0" A
since' ¢ x‘ '/’- ¢
A: (Zs) ’436
‘ Y
AX = (2])" Ae
J
A 7]
z,00 = 2 [Z5

We further have

: 2
U
r A - 'Zb (), 2 ) ?)I
T ,
it then follows

B 7.‘ 2
Rz =Hl =

or equivalently,

g;:'- = 23(7""\‘)3;-

therefore

We can now set~up the Gell-Mann-~Low equations for

C4:1)

%)
%3)
(G-+)

& &

(« )

(47)

r N
. 1
2 Note

Z. ) = 22 /20 L (Oh /BB o

choosing S=2 A we obtain

ﬁIS')a/r'

- |
' 1_ * 4$-9
2 L= f: [’ * QTrZ\")j ? (s'_-z)(d/‘J(s’—a"] “"
A | L
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Taltding an infintkesirnl) chaosoe )—A = 37\ PRRITENN ITRUS

26 _ _ & /0{"),_“4" (4-10)
DA T Jama)y (s

This Is the Gell=Mann-Low lqration for our wmodcl, A :,E.lpler'

form is

3<\J_) . L [Leds G
AN T J(sA) (s4a2)

| 3
The solution is obvious (boundary condition yaqi as 75-"/“

is assunmnd )

: P Oty (e oS (#-12
a j—_" T J GG
A

The aswviptotic value of % as A-»-00 is

/ / Gra G 13
Gt = o T = 2=
N g 7rJ (ste?)
Lrom kgs (2.10) and (2.11) we have 9: = 92/25(3‘)

x 2
or ?_a. = 90 (the bare coupling constant )

2 S
Note that just as in quantum electrodynamics, since ﬂ, >j

which follows from / 2 23 2O , such a theory can never he asyilp-
[ ]
totically free, Same conclusion is also true for the Lee model,
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The uodel we have considered provides a simple iliustrn-
tion of the methods used in Renormalization Group, In particuianr
w see that the Gell-Mamm~Low equation onn he solvea axactly and
yialds oo conpling ;a wl'»i(:ll interpolates bolweon ﬂ,} cirie! f
Lt is to be noted that since '/.3 is finite In this theory, botn
;‘, andj are simultgneously finite, Adler has congjectured
that tinite '/.3 or tinite bare charge will enable one to set up
an eigenvalue equation for the physical charge, This model is
seen to be a counterexample ,since finiteness gf 3: does nrort
lead to eigenvalue condition for the physical charge. Nevertiie-
less the program may succeed in quantum-electrodynamics, which
is an extremely complicated theory,

The model also provides ~an interesting connection be-
tween N/D metho;:l and Renormalization Group methods., In a forthe
coming article we shall explore the constraints on N/D method

arising from asymptotic freedom,
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