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ABSTRACT 

After a brief survey of Hamiltonian theory and of relevant notions of set theory and 
manifolds, these lecture notes present some general properties of orbits, paying special 
attention to integrable systems. This is followed by a discussion of the Kolmogorov-Arnol'd-
Moser theorem, dealing with the stability of orbits under small perturbations, and its 
importance for ergodic theory. Ergodicity and mixing are then treated in detail. In parti­
cular, the ergodic theorem of von Neumann is derived, and a specific example is given of a 
(strongly) mixing system. 
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1. INTRODUCTION 

A subject such as classical mechanics is interesting because out of very simple general 

laws — essentially the laws of Newtonian mechanics and their relativistic generalizations — 

emerges an overwhelming richness of phenomena. I do not think I have to review the begin­

nings of classical mechanics, as I assume that everybody knows about this. But I will try 

to come to the more interesting situations which have a great amount of richness and compli­

cations. Usually one does not notice them because the problems one can solve are more or 

less, by definition, simple, and what is hidden in the unsolvable are just the interesting 

aspects. Nevertheless, we shall see that we can make some statements and at least get an 

idea of the complicated real situation. 

Just to be definite, let me write down the laws of classical mechanics. They are diffe­

rential equations of a particular type, derivable from a Lagrangian. In the non-relativistic 

version, the Lagrangian is the kinetic energy of the particles minus the potential energy, 

L = E T 4Ï " VCqJ , CD 
i 

where the coordinates q- and potential V(q-) will be specified later. 

If you treat electromagnetic interaction of a particle relativistically, you have a 

Lagrangian which looks similar, 

L = f q 2 - e qA(q) , (2) 

but now q, q, and the vector potential A(q) are four-vectors, and the dot means derivation 

with respect to proper time. 

Finally, if you want to treat gravitation relativistically, you have again a Lagrangian 

which for a single particle is of the form 

L = f qVga B(q) • (3) 

The interaction now is contained in the g (q). 

The structure in all three cases is very similar. The equations of motion are the 

variational equations. Of course, the above problems can also be stated in Hamiltonian form, 

with the Hamiltonians ' 

(non-relativistic) (4) 

(relativistic electromagnetism) (5) 

= 1m pV&efa) ( r e l a t iv i s t i c grativation) . (6) 

i •"• 

= i [ p + eA(q)]2 

*) Notice that, in the second and third examples, H is not the generator of time translations, 
but of translations in proper time. Accordingly, the value it takes is not the energy but 
the mass of the particle. 
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These are the standard formulations. To discuss the coordinates in detail, let us go 

to the non-relativistic Kepler problem. There, a natural choice for the q^ is the Cartesian 

coordinates x, and the potential is 

V(x) = -pn- , a = const. (7) 

There is a small difficulty. You may ask what happens if the particle hits right at the 

centre, where the equations of motion become singular, and you do not know what really hap­

pens. You might say that singularities do not really exist in nature, so the centre is in­

deed smooth and the particle goes straight through. Another argument might be that you do 

have a point mass at the centre, and when you hit closer and closer, the orbit looks more 

and more like a reflection. (Though a reflection seems strange for a purely attractive 

force, you might have seen this in movies where Kepler motion is filmed.) 

Perhaps the best is, however, to say that the problem is somewhat academic. If you 

apply Kepler motion to stars, neither the one nor the other will happen, but a terrible cata­

strophe will be the result. So we have to exclude the origin explicitly and to say that the 

equations do not apply in all space R 3, but only in R 3 - {0}. At this point, and for future 

reference, it will be useful to recapitulate some modern mathematical notions. 

2. A MATHEMATICAL INTERLUDE 

I assume that you are familiar with the notations of set theory, so I will not spend 

much time on this: R means always the set of real numbers, R3 the space of three dimensions, 

{0} means the origin, and R3 - {0} means the three-dimensional space with the origin taken 

out. 

Perhpas not so familiar as set theoretical notions are the topological ones we shall 

need. First we need the concept of open and closed sets. To start with the simplest case, 

open intervals in R are intervals which do not include their end points. Open sets are just 

arbitrary unions of open intervals, and thus arbitrary unions of open sets are again open sets. 

If you generalize this to R 3, you can similarly define open cubes, and arbitrary unions of 

them form open sets. Closed intervals are defined as complements of open intervals, or equi-

valently as intervals including the end points. Closed sets are the complements of open sets, 

and arbitrary intersections of them are again closed sets. According to this, a single point 

is a closed set because it is the intersection of all sets containing it, and R3 - {0}, being 

the complement of a closed set, is an open set. 

Another notion we need is the denseness of a set. Consider a set A. The union of all 

open sets contained in A, which by definition is again open, is called the interior of A, 

denoted by int(A): 

int(A) = u B ; B £ A , B open . 

Similarly, the intersection of all closed sets containing A is again closed. It is called 

the closure of A, and is written Â; 

A = n B ; B 2 A, B closed . 
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A set A is called dense in another set — say in M — if Â = M, that is if the closure of A 
is the whole set under consideration. If A is dense, it means that there are no gaps left 
between the points contained in A, but it does not mean that A makes up almost the whole set 
M, or even a big part of it. A good example is the rational numbers which are dense in R 
(there are no open intervals which do not contain a rational number). But the complement of 
them — the irrational numbers ~ is also dense. 

If a set is not dense, this does not yet say very much. A more useful statement about 
a set is to say it is nowhere dense, which means that even its closure has an empty interior, 

int(Â) = 0 . 

A finite number of points, for example, are nowhere dense in R. 

We shall come back to these notions later, as they will arise. What was important above 
was to consider the equations of motion not on the whole of space but in an open subset where 
they make sense. In this open set there are still orbits which at some later time hit the 
excluded point, but we shall see that in simple cases we can take out some further part of 
phase space which contains these orbits. In the remaining part the time evolution is defined 
for all times, without any catastrophe ever occurring. The importance of this is that time 
translations then form a one-parameter group, which will be used in Section 6. In the ex­
ample of Kepler motion, we had to take out only a single point of R 3, and correspondingly a 
small portion of phase space. In the other two examples, the problem is somewhat more serious. 
In the relativistic Coulomb problem, i.e. Eq. (2) with the vector potential given by 
A = [A0(x),0], A 0 ( X ) = a/|x|, a particle hitting the centre at a sufficiently small impact 
parameter will spiral into it in a finite time, and so we have to take out all such orbits. 
Similarly, in the case of relativistic gravitation, we have the possibility of black holes, 
and thus we have to exclude a sizeable part of phase space. 

To make the mathematical setting somewhat wider, we have to introduce also the concept 
of a differentiable manifold, which is a generalization of the concept of a smooth surface. 
A differentiable manifold looks locally like a Euclidean space of a certain dimension — 
which is then called the dimension of the manifold — but it may be different globally. A 
circle is, for example, a one-dimensional manifold, and a sphere a two-dimensional one. Open 
subsets of R n are other examples of manifolds. 

Why should one consider this notion? We shall see that the motions which emerge are 
characterized by certain constants, thus the orbits will not fill all of the space but will 
be constrained to satisfy conditions 

f ifa) = ° » i = 1> •••> k 5 q e R n . 

If the f-(q) are independent and sufficiently differentiable functions of the coordinates, 
this defines just a manifold of n-k dimensions in n-dimensional space. The unit circle is 
for instance defined by f(x) = x* + x^ - 1 = 0. It is advisable to study the equations of 
motion directly on such manifolds. In particular, in the generally relativistic case the 
space to start with will not even be part of Euclidean space, but something which locally — 
as seen by a short-sighted observer — looks like Euclidean space. Globally it might be com­
pletely different. 
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The mathematical definition of a manifold is that locally we can always introduce co­
ordinates which map it into some open subset of Euclidean space, although these coordinates 
cannot be used globally. To cover other parts of the manifold, we might be obliged to use 
different mappings. There are a great many technicalities that go along with this, but we 
do not have the time to go into them now. To keep the course at an elementary level, it will 
be necessary to sacrifice some precision and elegance, and only the general idea can be 
described ' . 

As a simple example, let us again discuss the circle or, equivalently, the use of polar 
coordinates in the plane. (The freedom to use other coordinates besides the Cartesian ones 
corresponds exactly to the fact that one is working on a manifold. A manifold is not charac­
terized by a single coordinate system but by a 
whole equivalence class of coordinate systems.) 
To describe the position on the circle, we will 
naturally introduce an angle. But this is not t l t l C Orr»nH 
a permissible global coordinate since, as we go ., ,. . ...̂  „-,. 

V\ / f i rs t maD/7: map 
around the circle, it would jump by 2TT. Co­
ordinates should of course be smooth functions. 
But we are free to use the angle for almost all 
of the circle, and to use another angle for the Fig. 1 
rest. 

3. CONSTANTS OF MOTION AND GENERAL PROPERTIES OF ORBITS 
Let us come back to the equations of motion, which we write in the Hamiltonian form: 

the time derivative of an arbitrary differentiable function is given by the Poisson bracket 
with the Hamiltonian, 

f(p»q) = (H(p,q], f(p,q)} 
(8) 

d7f. L (H,Pi £ V ~ H,ii f'P^ ' 
i 

According to what we said above, this function can be considered as a new coordinate which 
is as good as any other — and in particular as a Cartesian coordinate. 

If we can find an f such that f = 0, we see that the orbit is restricted to a subma.iifold 
defined by 

f(p,q) = const. 

One constant that is immediately seen is the Hamiltonian itself, the corresponding manifold 
**) being called the energy shell . An interesting question is, of course, how many constants 

exist, and whether they determine the orbit. If there are n degrees of freedom, the phase 
space has dimension 2n, and the energy shell is 2n-l dimensional. If we can find a sufficient 
number of constants of the motion, we can maybe reduce this to a one-dimensional manifold, 
which we would call the orbit. 

*) Technical details can be found in lecture notes: W. Thirring, Vorlesungen iiber Mathematische 
Physik, T5: Punktmechanik. (Inst. f. Theoretische Physik, Universitat Wien, 1974) 

**) Or mass shell (see footnote on p. 1). 
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Let us look at the Kepler problem, given by Eq. (7), to see whether this works. Here 

n = 3, so the phase space is six-dimensional. Conservation of energy and angular momentum 

L restricts this to a two-dimensional submanifold, which in our case corresponds to a motion 

in a plane perpendicular to L with the momentum uniquely determined by the position. As we 

can easily check, a further constant quantity is the Lenz vector: 

F = [p A L] + ma £ . (9) 

Now it seems we have seven constants (two too many). This just means that they are not all 

independent, and we find indeed two relations, 

->- -* 
F • L = 0 

F 2 = 2mL 2H + m 2a 2 . 

Thus we have exactly five independent constants, and the orbit is uniquely defined. The 

actual Kepler ellipses are obtained by noticing that Eq. (9) implies 

F • x = L + mar , 

and therefore 

Î 2 

(10) F cos 9 - ma 

At this point some confusion might arise. On the one hand, it is well known that in a 

system of 2n first-order differential equations there are always 2n integration constants, 

and 2n-l of them are time-independent constants of the motion. In fact, locally we can al­

ways introduce a coordinate system (y , , y ) such that the time evolution becomes tri­

vial: when the time changes from zero to t, (y , ..., y ) changes: 

[yi(°)» y2» •••» y 2 n] •* W 0 ) + t, y2,.... y 2 n] . (ii) 

On the other hand, we learn in statistical mechanics that there is in general no constant 

of the motion except for the energy, which seems to be a contradiction of the above. 

The point is that one has to distinguish between local and global quantities. Coordi­

nates satisfying Eq. (11) can in general only be found locally, i.e. the constants change in 

general if we go from one mapping to the other. In order to define a submanifold, we need, 

however, quantities which are globally defined, independently of any map. I will use the 

term "constant of motion" only for global constants, since they are the ones that really matter. 

Let us take the example of a two-dimensional harmonic oscillator, defined by a 

Hamiltonian: 

H = ftp? + w 2q 2 + p 2 + w2

2q2) . (12) 

We assume the potential to be anisotropic, so the frequencies u)j and u 2 may be dif­

ferent. Two constants of motion are clearly given by the two energies, or equivalently by 

the functions 
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Using these and the angle variables 6, ,, the solution can be written 

(̂ iiPi) " /^i (sin 2719!» U>i ' COS 2TT6J . 

The time evolution in the new (local) coordinates (k-,6-) is simply 

(14) 

(Ki.eJ + Ki, 6i + (i^t 
2TT 

i.e. the 9- change linearly with time. 

Phase space in this example is four-dimensional, and we have already found two (global) 
constants. The maximum we might hope to get is three constants. Whether we can indeed find 
a third depends on whether the to. are rationally 
dependent or not. The 9- are local variables, 
defined only modulo 1, and in the (9X,92) - plane 
the motion appears as shown in the figure. The 
fact that the 9. are defined only modulo 1 
means that after the orbit reaches one of the 
boundaries, it will reappear on the other side. 
A local constant is easily found to be 

9̂ 2 — 62W! , 

but each time one of the 6̂  jumps by one unit, 
this quantity will in general also jump, so it 
is not a global constant. If, however, the fre­
quencies are rationally dependent, that is if w xg 2 = u^gj with some integers g., a global 
constant is for instance given by 

Fig. 2 

K3 = sin 277(9! • g2 - 92 • gj . (15) 

In this case the orbit is a one-dimensional manifold, which means in the above figure that 
after some time the orbit will close. 

If the frequencies are not rationally dependent, we can of course not construct K 3 in 
the above way. Indeed, it turns out that we cannot find a third global constant at all, 
since we can show that the orbit is dense in the square (0,1) x (0,1). According to the 
definition of denseness, this means that its closure is the square, and that the orbit comes 
arbitrarily close to any point in it. 

You know that historically this had some significance since originally Boltzmann, in 
his ergodic theory, assumed that an orbit may even go through each point. In fact there 
are the so-called Peano curves that have this pathological feature, but it is impossible for 
differentiable curves. In particular, an orbit always has measure zero. Nevertheless it 
can be dense. 

Let us now prove that in our example the orbit is dense in the square. To do this, 
we consider a fixed value of 9j. We have to show that the corresponding values of 9 2 are 
dense in (0,1) or, equivalently, that there is no open interval which does not contain a 
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point of the orbit. Two different times t and t' which correspond to the same 0! must obey 

o)l(t' - t) = 2-iïgj, where gx is some integer. The corresponding difference of 6 2 is 

62[t') - 92(t) = — (o)2g] - oijgj, g2 = integer (16) 

which is different from zero by our assumption of rational independence. So there are in­

finitely many different values of 8 2 corresponding to the same value of Ql. Since all these 

values are on the compact interval (0,1), they must have an accumulation point, i.e. for any 

e one can find two times t r , t 2 such that 

|92(tJ - 9 2(t 2)| < e 

Owing to the time translation invariance, 6 2 will advance after a second elapse of the same 

time difference t2-tj by the same small amount, and so on. Eventually, the values of 62 will 

fill the whole interval with points whose distance is closer than e, which just means that 

they are dense. Q.E.D. 

This example suggests the following as a general rule: if an orbit is restricted to 

a certain manifold, it either fills it densely or there are further constants of the motion, 

defining a submanifold which is then densely filled. Unfortunately, this is not true in 

general, which comes from the fact that the topological notion of denseness is not quite 

adequate to this problem. Later it will be replaced by measure-theoretic concepts. 

Let me illustrate this by a one-dimensional 

potential of a shape which nowadays is a favourite 

among field theoreticians. Since the energy 

shell has already only one dimension, one would 

expect that the orbit fills the energy shell 

densely unless there is a further constant of 

motion. For E < V 0, the energy shell consists 

of two disconnected pieces, and each orbit covers 

only one of these halves. Now one can construct 

a constant of the motion for this, namely a suit­

ably "smoothed" step function, which is +1 on the 

right part and -1 on the left. So this is not 

yet a counterexample. But if E = V 0, this no 

longer works. At this energy there are three 

different orbits: one where the particle is always on the right of x 0, one where it stays 

on the left, and one where it sits just at x 0, on top of the bump of the potential. In this 

case, no separating constant can be constructed. In particular, if we wanted to use the same 

trick as for E < V 0, we would have to use a true step function. This is, however, not per­

missible since a constant of motion should always be a differential function. 

Although this counter-example shows that the above suggestion cannot be exactly true, 

what we have learnt from the harmonic oscillator is rather typical of what happens in general. 

Most of the solvable problems are of similar type, and the interesting problems are just those 

which go beyond this. 



INTEGRABLE SYSTEMS 

Those systems for which the pair of harmonic oscillators is the prototype are called 
"integrable systems". A Hamiltonian system of n degrees of freedom in general is called 
integrable if there exist n (global) constants of the motion K^, which satisfy 

{K̂ Kj} =0 i,j = 1,2, ... n . (17) 

In our example, these were just the K. defined by Eq. (13). Besides them, we had two 
other variables, namely the angles 8. defined by Eq. (14). One easily checks that 

M = 0 (18) 
and, apart from constants which could have been eliminated by redefining the 6., 

{Mj} = «ij • (19) 

Indeed, this is a general property. There is a theorem by Liouville which states that 
in any integrable system with n degrees of freedom, one can always find n variables 8^ in 
addition to the K. such that the Poisson brackets (17)-(19) hold. The K. are called action 
variables, the 6- angle variables. 

One has to stress that the 6- are only local variables, i.e. they are not defined every­
where on the manifold, and they are not uniquely determined by Eqs. (18) and (19). For any 
arbitrary differentiable function f(K) = f(Kj, ..., K n ) , 

are also suitable angle variables, and this is exactly the whole amount of non-uniqueness. 
The proof of the theorem is not very difficult, but I do not want to go into details. 

Let us now use the fact that the K's are constants, to deduce the time evolution of the 
9-. Since the K- at two different times are the same, the corresponding 9- must be equal 
modulo the above arbitrariness, 

SiM = 9,(0] + ̂ f- . 
Because of the group property of the time development, f(K,t) must be a linear function of 
time, which we call t-H(K), and we write 

6iW = 6i(0) + t -ffl_ . (20) 

Obviously, the H(K) introduced in this way is the Hamiltonian expressed by the K^, and we 
have in general exactly what we had found in our example, namely that the angle variables 
vary linearly in time. 

So far, the 8^ are only locally defined. There is another theorem, due to Arnold, that 
the manifold described by the 6- (keeping all K- constant) is the product 

T n~ r x Rr, 0 < r < n 
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of a torus in n-r dimensions times the real numbers to the power r. This means, in practice, 
that n-r variables are cyclic, i.e. are angles varying over a finite interval, while the 
others correspond to linear motion. Trivial examples are: 

i) one free particle — in this example, the K^ form the momentum vector, and the 6̂  the 
position. There is no cyclic motion, thus n = r = 3; 

ii) the pair of harmonic oscillators considered above — here both 6̂  are angles, and thus 
r = 0, n = 2. 

Non-trivial examples for the above are the relativistic motion in a constant electro­
magnetic field or in the field of a plane wave, and the betatron. As another example, let 
us discuss the relat-ivistic Kepler problem in somewhat more detail. 

In the notation used in the introduction, we consider Eq. (5) with a static vector 
potential Ay(x) = (A0(x),0) with 

r-M a 

AolxJ = TTT » a = const. 
m 

In Eq. (5), the Hamiltonian for relativistic motion was written in extended phase space, in 
which both space and time variables are functions of proper time. With the above vector 
potential, p 0 (the energy) is constant and the dependence of time on proper time is such 
that the latter can be trivially eliminated from the equations of motion. The spatial part 
of the motion is described by a Hamiltonian, 

H 2m + _ n. _ 
r m 2mr2 

(21) 

which looks very similar to the non-relativistic Hamiltonian except for the last term and 
for the constant factor p0/m in the term proportional to 1/r. 

It is clear that angular momentum is con­
served and the motion will be restricted to a 
plane. Thus a first pair of action and angle 
variables is the third component of angular 
momentum L 3, and the angle <|> between the normal 
to the plane of motion and the z-axis. A se­
cond action variable is 

K2 =|L| , 

the absolute value of angular momentum. Its 
conjugate variable is x> t n e angle describing 
the actual position of the particle in the 
plane of motion. For the radial motion, one 
usually takes 

Fig. 4 
K, = - 7 L 2 - a2 + 72m|H| (22) 

The conjuj 
momentum, 
tween the 
above. 

;ate variable is a somewhat complicated function ffr^) of the radius and the radial 
which we will not bother to write up. It is clear that the Poisson brackets be-
K. vanish, and we can check in detail that the conjugate variables are as stated 
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The recipe now is to express the Hamiltonian in terms of the K^, and its derivatives 
with respect to the K will give the frequencies of the corresponding motions. Inverting the 
above, we find 

2m IK3 + J K 2 - a 2 I 

This does not depend on Kj = L 3, so the corresponding angle <J> is fixed, as was already clear 
from the beginning. The derivative 3H/3K2 gives the frequency u 2 of revolutions, while the 
radial oscillation is governed by another frequency w 3 = 9H/3K 3. The manifold of solutions 
is thus described by three cyclic variables and is therefore restricted to a torus T 3 , with 
however one of the frequencies equal to zero. 

In general, the two other frequencies u 2 

and a>3 will be rationally independent, and fill 
densely a two-dimensional region. Of course, 
as you change the constants continuously, the 
frequencies will change between rationally in­
dependent and rationally dependent. In the 
latter case, you will get closed orbits, but 
infinitely close to this there will be orbits 
which fill the shaded ring densely. 

Fig. 5 
5. PERTURBATIONS AND THE KAM THEOREM 

The above are those cases which are usually found in text-books because they are solvable. 
But already in slightly more complicated cases — as three bodies with gravitational inter­
actions — one is in a situation where one cannot find the constants of the motion exactly. 
Often, however, one can consider problems as approximately integrable, with some slight per­
turbation. 

Consider, for example, a three-body pro­
blem where the distance between the first two 
particles is small compared to their distance 
from the third. The sum of the three potentials 
can be approximated by an interaction of the 
third particle with the centre of gravity of the 
first two on the one hand, and the interaction 
between particles 1 and 2 on the other hand. 
In this approximation, the Hamiltonian splits 
into two separate parts, and the exact pro­
blem is reduced to two separate Kepler problems 
with a slight disturbance. 

So assume you have a Hamiltonian ' 19-

(12)3 

3 3 
exact approximate 

H = H0(Ki) + eHtKi.Bi) (24) 
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which consists of a piece H 0 depending only on the K-, and of a piece eH' which depends also 

on the angle variables 6̂ . The usual way of proceeding is to search for other K^'s which 

are such that expressed in them we have again an integrable system. So one makes a canoni­

cal transformation 

Ki - Ki , 

in order to eliminate the part in the Hamiltonian depending on the 6̂ . In general, this can 

be done only successively, getting first 

H = H0(Ki] + e'Ĥ Ki.ÏÏi) , 

and suppressing the perturbation term in each step by a factor e. 

This was attempted long ago, mainly by Poincaré. He found that this iteration procedure 

does not converge in general. This led him to suggest that the whole idea is wrong, and after 

a slight disturbance one will in general have no global constants of the motion (except the 

energy). In such a case, the orbit would fill the energy shell completely, not just some 

submanifold. But there were some assumptions involved in his proof of non-convergence, and 

Weierstrass, for instance, pointed out that there might be circumstances where it does not 

work. Nevertheless it was widely accepted, and was used later by Fermi to show that any 

small perturbation renders a system ergodic (we shall come to this notion later). Immediately 

after Fermi's paper, in the middle of the twenties, somebody pointed out that this was not cor­

rect. But his opinions were brushed aside by claims that this concerned only some irrele­

vant mathematical pathologies. 

The correct answer clearly depends on what is a pathology, i.e. what is likely to happen 

and what is unlikely. To get a good idea of this, we have to introduce another notion, namely 

that of the Liouville measure. I suppose you know Liouville's theorem which tells you that 

one has a natural volume element in phase space. 

dqj... dqn dpj... dp n , (25) 

which is invariant under canonical transformations. Thus it does not depend on what vari­

ables one uses to write it, as long as they are canonically conjugate. It is reasonable to 

assume that this measure is also natural in the sense that processes which have a big volume 

in phase space are likely to happen, and vice versa. 

We will not go into the details of the proof of invariance, though it is not difficult. 

In the modern language we have used, there is indeed hardly anything to prove, as the de­

finitions were arranged such that the invariance is automatic. Canonical transformations 

were per definition such as to leave the two-form dq A dp invariant, and dq! ... dq n dpx ... dpĵ  

is just the n power of this and is thus also invariant. 

In particular, Liouville's theorem tells us that the Liouville measure is constant in 

time, since the time evolution is a particular canonical transformation. 

Using the Liouville measure to estimate what is a pathology and what is likely to hap­

pen, the question raised by Poincaré was finally settled by Kolmogorov in his famous address 

to the mathematical congress in Amsterdam in 1954. Later on, his proof was improved by 

Arnol'd and Moser. 
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Kolmogorov showed the following (KAM theorem): if e = 0, the motion is constrained to 
tori (assume there are no variables describing linear motion), the revolution frequencies o>-
depending on the K^. In general, these frequencies are different from each other. Now turn 
on the perturbation. Those tori for which the frequencies are sufficiently irrational re­
lative to each other, are not completely destroyed but are only deformed. Those tori, how­
ever, whose frequencies are not sufficiently irrational, are completely destroyed and nothing 
is left of them. The concept of sufficient irrationality means the following: frequencies 
to- are rationally dependent if there exist some integers g^ (not all equal zero) such that 

Z gi"i = 0 . 
i 

If the u- are irrational with respect to each other, this is not true, but the sum can be­
come arbitrarily small by taking some of the g^ large enough. Sufficient irrationality finally 
means that this sum is not arbitrarily small, but 

I Si^i * ffei) Hi , (26) 
i 

with a certain well-defined function f(g^). 
.In addition, if this condition is satisfied, the above iteration scheme converges and 

yields the correct constants of motion. 
The most remarkable thing found is that Eq. (26) — and thus the stability of the tori — 

holds on a closed subset I of phase space (essentially a set of closed surfaces) which 
is nowhere dense but nevertheless has a measure of order of magnitude 1 - 0(e). Here, the 
total measure of phase space is normalized to unity, so the complement I e has only a measure 
of magnitude 0(e), though it is dense. On this complement I the motion is rather chaotic, 
and therefore the components of I are called zones of instability. 

Thus, if denseness were the correct property for estimating what is probable, Fermi 
would have been right. But what really counts in this respect is the Liouville measure, 
and he was essentially wrong. For small perturbances the stable parts fill amost all of 
phase space. Presumably, this is the only wrong paper by Fermi, but it was copied in many 
textbooks. In particular, the above means that the famous "speck of dust" does not work in 
statistical mechanics. 

You see that the whole depends on an apparent clash between topological and measure-
theoretical concepts. To see in some more detail how a paradoxical situation such as the 
above can happen, let us consider a simple example. Take the real numbers, and among them 
the rational ones. Though the latter are dense ,,. 

£ e/2 
they are countable, and we numerate them , 
q x, q 2, ... . Take an open interval (qx - e/2, ' i I I •*• » -
qj + e/2) with length e centred at q p a simi- Q 1 ^1 3 ^2 ^4 
lar interval (q2 - e/4, q 2 + e/4) with length 
e/2 around q 2, one with length e/4 around q 3, 
and so on. There is a general theorem which tells us that the measure il of a union of sets 
is never larger than the sum of the individual measures, 

n(y A J < £ n(Aj , (27) 

'1 "3 '2 % 
Fig. 7 
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which in our case means that the total length of a union of intervals is always smaller or 

equal to the sum of the individual lengths. (This is of course very plausible: if the in­

tervals do not overlap, both sides are equal, whereas overlapping intervals contribute twice 

to the right-hand side and only once to the left.) Therefore the union of the above intervals 

has a measure which is less than e + e/2 + e/4 + ... = 2e. Since it is the union of open in­

tervals it is an open set, and it is dense since it contains all rational numbers. Its com­

plement is nowhere dense since any two of its points are separated by one of the above inter­

vals, but it has nevertheless a big measure. 

One might suspect that this example is a mathematical pathology with no relevance for 

physics, but indeed we have seen essentially what happens in physics. 

The proof of the KAM theorem is too complicated to be given here. It is just a careful 

estimate of the convergence of the iterative procedure discussed at the beginning of this 

section. The physical idea is, however, not too difficult to understand: if there are two 

frequencies which are rationally dependent, an arbitrarily small perturbation will lead to 

a resonance behaviour between them in which the two modes influence each other strongly and 

destroy the regular motion. Since we consider in general non-linear systems, the same will 

happen if the ratio of the frequencies is irrational but sufficiently close to a ratio of 

small integers. If this is not the case, which means that the frequencies are sufficiently 

irrational, no such internal reasonances will build up, and a small perturbation will lead 

to only slightly perturbed orbits. The difficulty of the proof consits essentially in find­

ing out precisely what is sufficiently irrational. 

6. ERGODICITY 

Up to now, our main concern was the study of individual orbits. The KAM theorem showed 

us, however, that this is not a very meaningful problem: infinitely close to each stable orbit 

there are unstable ones, and since it is impossible to prepare a system with infinite accuracy, 

one does not really know what will go on. The only thing one can really do is to give the 

probability that the system is in a particular point in phase space, at some given time. In 

a quantum mechanical language you would say that the probability distribution p(q,p) describes 

the state of the system. The observables are functions f(q,p) of the coordinates, which may 

be the coordinates themselves. If you want their expectation values, you have to integrate 

over phase space: 

Ï = / dn p[q,p] f [q,p] , (28) 

with dfi = dqj, — , dp n. 

The time evolution is described by 

T t = / d£J p(q,p) f[qt,Pt) . (29) 

Because the Liouville measure dfi is invariant under time translations, we can replace this 

also by 

T t = J dfi p(q_t,p_J f(q,p) . (30) 
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Obviously, Eq. (29) corresponds to the Heisenberg picture and Eq. (30) to the Schrodinger 

one. 

If you consider a sharp orbit, as we had done before, the density p(q,p) degenerates 

to a S-function. By the study of general p(q,p), we will be led to the notions of ergodicity 

and mixing of a system. Ergodicity is a purely measure theoretic notion which is related but 

not identical to the topological statement that the orbits are dense on the energy shell. It 

is slightly stronger as it implies that almost all orbits are dense, while the converse is 

not true: density of almost all orbits does not imply ergodicity. We know already that we 

cannot hope that all orbits are dense, as we know that there are always periodic orbits inter­

spersed between the dense ones. Even for very complicated systems it is rather simple to 

find individual periodic orbits. 

It is amusing to see that we can find such periodic (therefore not dense) orbits even 

in the n-body problem with gravitational interactions, so let me discuss this in some detail. 

Consider the special case of n particles with potentials 

Z m^m 

. , r i k 

i<k 

moving in a plane. Because of this constraint, we can unify the x and y coordinates to com­

plex variables 

ZjM = xjt) + iy/t) . 

To simplify the problem further, let us assume that the time dependence of all z-(t) is given 

in terms of a single complex function z(t) by 

z/t) = z(t) • Cj , 

le-independent complex 

motion, you find 

with Ç- being time-independent complex numbers. If you insert this into the equations of 

j+i 1 ^J ft 
2 Z 

Z = ~ W ÏTÏÏ" ' 

'z'[t] *?i ^ m j ^Ftr FT 
This, however, can be separated into two equations 

(31) 
" ft ' iSj-*il" 

and 

The latter is exactly the equation describing a planar Kepler problem, for which we of course 

know the solution, and thus the whole problem is reduced to finding complex numbers which 

satisfy Eq. (31). This is not very difficult; for three particles a solution is just an 

equilateral triangle. The whole motion consists of a rotation and periodic dilatation of 

this triangle, with a common frequency to. 

So we can find periodic orbits even in very complicated systems, but our point of view 

will be to forget about this as they have only measure zero. What will interest us are those 

things which are more likely to happen according to our measure. 
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As we have already said, the observables are functions f(q,p) of the variables. In the 

following, we will assume that they are square integrable with respect to the Liouville mea­

sure, i.e. we assume 

/dfi|f(q,p)|2<°° . 

Instead of integrating here over the whole of phase space, we shall sometimes restrict the 

integration to some invariant region C of phase space, in particular to the energy shell. 

These square integrable functions over C form a Hilbert space, 

S c = jf: /dfi|f(q,p]|2<~j , (32) 

<g|f> = / dfl g*(q,p) f(q,p) . 

with 

The time evolution is obviously given by a linear invertible operator U(t), 

|ft) = U(t]|f0), f E g c . 

Since we have assumed that C is invariant, the norm of f must be constant, 

<ft|£t> = (f0|f„) , 

which implies that U(t) is a unitary operator. 

This simple observation allows us already to prove the so-called 

Ergodia theorem (von Neumann): there exists the (strong) limit 

T 

lim — J d t I f t) 
T+~ 2T _JT ' v 

(the so-called Cesaro average), and the limiting vector is obtained by projecting onto those 

components of |f ) which are invariant under time translations. 

In order to prove this, we have to introduce the spectral representation of à unitary 

operator. You know that unitary matrices can always be diagonalized, and the diagonal ele­

ments are then all of unit absolute magnitude. In infinite dimensional Hilbert space there 

is an analogon: the Hilbert space S can always be written as an orthogonal sum 

S, = fSj ••-'c 

of other Hilbert spaces, in each of which there exists a resolution of the identity 

1 = / dp-(h) P^ such that U(t) applied to P^ is just a phase factor e 1 .. More specifically, 

let me call |fj) the component of |f> in S^, so that 

<fIf) = I < ^ > 
j 

and (h is some function of q and p depending on the dynamics) 

<£ j|f j>=/d U j(h)|f j(h)|
2 . (33) 
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Then, U(t) acts on |fj> according to 

[U(t)f J (h) = e i h tf lh) 

Using this, we notice first that 

± J dt[u(t)f J (h) = ̂ - ^ f/h) . (34) 
-T 

The function sin hT/hT is frequently encountered in physics, and one knows that it converges 
everywhere pointwise to a function P0(h) which is 

, , sin hT fl for h = 0 
P0fhl = lim = \ n , . (35) 
°̂  J T-o hT 10 otherwise 

As a next step, let us define P 0 as the operator which projects onto time-invariant states, 
which means formally 

<gj|P0f3) = j duj(h) g*(h) P0(h) f/h) . (36) 

Using Eqs. (33)-(36), we get 

lim ||i / dt|fj> - P0|fj> If = lim f dy^lf/h)! 2 l ^ f - - P0(h) 
_ T -*•» I 

Now |f.j(h)|2 was integrable by assumption, and the curly bracket converges to zero pointwise. 
There is a famous theorem due to Lebesgue that in such a case you can interchange the inte­
gral and the limit, which means that the Cesaro limit for each [f-> is equal to P0|f^>, and 
consequently 

T 
lim ± J dt|ft) = P0|f), Q.E.D. (37) 

-T 

Notice that we do not know yet whether Pjf> is different from zero. From Eq. (36) we 
see that this can only be the case if (at least) one of the dy^(h) has a 6-function at h = 0, 
corresponding to an eigenvector of U(t) with eigenvalue 1. Whether such an eigenvector exists 
is in general not known. However, if the subset C of phase space is compact, i.e. has a finite 
volume, the vector |l> which is defined by f(q,p) = 1 is square integrable and time invariant, 
so P 0 projects at least onto this vector. 

Let us make some remarks : 

1) The existence of an invariant mean for functions which depend on time can also be shown 
in a more abstract way. Consider the time axis, i.e. the real numbers, as an additive Abelian 
group. There is a general theorem that Abelian groups are amenable, which means that you can 
always define an invariant mean n(f) for functions depending on the group parameter. An in­
variant mean by definition is a positive linear functional, i.e. 

n(f t + f2) = n(f J + n(£2] , 

ri(af) = an(f) , 

f > o =* n(f ) > o , 
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it is normalized to n(l) = 1, and it is invariant: 

n(fj = n(f ) • 
The von Neumann ergodic theorem tells us that, for dynamical systems, the Cesaro limit 

exists and is one such mean. For functions which do not describe dynamical systems, such as, 
for example, f ^ sin (In t), the Cesaro average does not converge but the general theorem 
just mentioned tells us that some other average does exist. 

2) In view of this, more important than an existence proof such as the one given above would 
be a uniqueness theorem. We would of course like the outcome of an averaging procedure not 
to depend on the detailed prescription how to take this average. For mechanical systems such 
a theorem can indeed be easily proven as follows: 

As we have said, for each function fCqt,pt) we can find a mean n[f(qt,pt)]. It defines 
an operator n on the Hilbert space S c by (nf)(q,p) = n[f(qt,pt)]. Let me first show that 
P0n = P 0. Take any two square integrable functions f and g e s c. Since (g|P0rjf) is an ab­
solutely convergent integral, we can interchange the integration and the averaging so that 

<g|P0nf> = (P„g|nf) = n((P0g|u(t]f)) . 
Here, we have also used that P 0 is hermilean and f t = U(t)f. Using furthermore that |P0g> 
is time-independent, we can also write this as 

n((u1t)p0g|f>)=n((p.g|f» = <g|Po£> • 

Since this is true for all f and g in our Hilbert space, this means that P0n = P 0. On the 
other hand, since n|f ) is time-independent, one has P0n|f> = n|f) for all |f), which means 
P0n = n. Taken together, these two results show that n = P 0, i-e. independently of how the 
time averaging is defined, n is given by the projection operator onto the invariant states. 

We are now essentially in the position to define what is ergodic. Before we do so, let 
us recapitulate our definitions: 

i) Previously, we had said that a state is given by a density p(p,q) in phase space. More 
generally, a state is a positive measure dp in phase space. I assume that I can restrict 
myself to a finite invariant region C in phase space on which dp will be normalized 
to unity, 

/ dp = 1 . 
c 

ii) Observables are square integrable functions f(q,p) with respect to the Liouville measure. 
Square integrability is not a serious restriction but it allows us to consider f as a 
member of a Hilbert space with <g|f ) = / dpg*f. The expectation value of f is 

I = J dp • f = (l|f) . 
c 

i i i ) A s ta te is called invariant, i f a l l expectation values are independent of time, more 
specifically if for a l l f 

J d p | f t | 2 = / d p | f 0 | 2 . 
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A specific example is the Liouville measure dp = dfi; another is the energy shell 

dp = / dfi Ô (H - E). 

Now in a dynamical system it might be that if you start in a specific region of the 

energy shell, the orbits do not leave this region, while orbits from outside do not enter 

it. This would mean that there is an invariant measure dp! restricted to this region, and 

another measure dp 2 concentrated outside it. More generally, adpi + (1 - a)dp2 (with 0 < a < 1) 

would also be an invariant state. Such a situation is surely not what we would call ergodic, 

which suggests the 

Definition: An invariant state dp is called ergodio (or maximal invariant), if it cannot be 

decomposed into two invariant states dpt and dp 2, that is 

dp + adpj + (l - a) dp2 ; for any 0 < a < 1, dpi * dp2 . (38) 

Similarly, a dynamical system is called ergodic if the energy shell / dfi S(H - E) is an 

ergodic state. This agrees with our general understanding that for an ergodic system there 

should be no invariant subsets on the energy shell. 

How is this notion of ergodicity related to the ergodic theorem? Assume that there 

exists a continuous function f(q,p) which is constant in time but not constant over the sup­

port of a particular state dp. The function f defined by 

f"(q,p) = inf[l,|f(q,p)|] 

is also invariant in time and — perhaps after having rescaled f — not identical to 1. In 

this case, we can write the state dp as a sum of two invariant states 

dp = \{l + I) dp + \{l - I) dp , 

which means that dp is not ergodic. In particular, taking dp to be the energy shell, we 

see that a system is not ergodic if there exists a continuous function which is constant in 

time but not constant on the energy shell. 

Let us see how this applies to our example of the two-dimensional harmonic oscillator, 

or equivalently to the motion on the two-dimensional torus. In this model, we had two action 

variables K x, K 2 which were constant in time, and two angle variables Qlt 6 2 whose time evo­

lution was linear on the torus, 

eiW = 6i(0] + t(V2ïï (mod l) . (39) 

First of all, since there are two independent constants of the motion, the system cannot be 

ergodic. But we can replace the energy shell by the region of phase space characterized by 

constant K-, and can ask whether the state 

dp = d6j de2 ; 0 < 9i < 1 

is ergodic. We already know that for rationally dependent frequencies u- there exists a 

third constant of the motion K 3, so we expect dp to be ergodic only if the frequencies are 

rationally independent. Let us verify this in detail. The unitary operator U(t) describing 

the time development is, according to Eq. (39), given by 

u(t) f(6!,e2) = e

i ^ p i + u ^ ffo.ej , 
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where the operators p^ are displacement operators 

- 1 JL • • - i ? pi i 3e± ' x 1 , z * 

The observables f(8 1,9 2) have to be periodic, 

ffafii) = f(ei+ n> 9 2 + m] ; n,m integer 

since the 9^ are only defined modulo 1. The problem of finding the eigenvalues of U(t) is 
now an elementary problem encountered, for example, in quantum mechanics, and we find that 
all eigenvalues can be written as 

exp [2-rri(u)lgl + w2g2]t] , 

with g x and g 2 being integer. For g : = g 2 = 0, one has of course always a unit eigenvalue 
corresponding to the eigenfunction f = const. Whether there are further eigenfunctions with 
unit eigenvalue depends on the u.. If the u^ are rationally dependent, one can find such 
g- f 0 that Uigj + w 2g 2 = 0, and the state d8 1d8 2 is not ergodic. If the u. are, however, 
rationally independent, there are no such further eigenfunctions, and it is ergodic. 

MIXING 
In the above example the whole energy shell was not ergodic (for u^ irrational) but 

only the states in which Kj and K 2 are fixed. Besides this, the motion had another regular­
ity which we could describe by saying that the states do not get mixed. By this we mean 
the following: assume that your state is at time t = 0 confined to some domain 3) of phase 
space. As time proceeds, this domain will be moved to any other place in phase space such 
that the time-average becomes uniformly distributed. But for any fixed time, the state will 

t=0 
Fig. 8 

not spread out and mix with other states, originally concentrated in other domains. It is, 
however, just the latter which would be more interesting for statistical physics, as it would 
tell us that after sufficiently long time all information referring to the initial state is 
lost. 

To be more precise, assume that the measures dp^fh) appearing in the spectral representa­
tion of U(t), 

(gluW^^/dy/hje^g/hjf/h], (40) 
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are of the form 

d y i ( h ) = | ^ h ) d h + C l 6 W d h £ ° r J = 1 (41) 
<}>j(h) dh otherwise 

with integrable functions cj)̂  (h). That is, U(t) has only one non-degenerate discrete eigen­
value at unity, while the rest of the spectrum is continuous. Now consider the limit of 
Eq. (40) when t -*• °°. Owing to the Riemann-Lebesgue lemma, the integrals 

/ dhe^jMaMfjCh) 

vanish when t -*• °°. The only piece remaining then is the contribution of the 6-function, 
and it projects onto the only time-independent vector which must be the vector |l> constant 
over phase space. So we can write 

lim (g|U(t)f) = <g|l> <l|f) (42) 

or simply 

(-\ means "converges weakly"). Another way to write Eq. (42) is 

/ dpgft £> J dpg • J dpf , (44) 

which shows that if you measure the product of two observables at sufficiently different 
times, your expectation value will be just the product of the two separate expectation values, 
i.e. all correlations will be lost if you wait long enough between two measurements. Systems 

*) which obey Eq. (42) are called mixing systems ' . This notation is suggested by taking for f 
and g the characteristic functions of two domains A and B. Then 

dpf = y(A) 

is the measure of domain A, and similarly for B. Equation (42) reads in this case 

y(A n B t) — > p(A) • y(BJ , 
t-»-co 

i.e. after a long enough lapse of time different parts of phase space will be completely 
mixed through. 

As we had already said, the two-dimensional harmonic oscillator is not mixing. Formally, 
this follows from the fact that all eigenvalues of U(t) were discrete there, while mixing re­
quires a continuous spectrum of U(t) except for a single non-degenerate unit eigenvalue. 

8. AN EXAMPLE OF A MIXING SYSTEM (following R. Jost, private communication) 
There are actually not many systems for which the mixing property has been proven exactly. 

One would hope to get it in a system resembling the two-dimensional torus, but with Q1 and 6 2 

varying over a region with oblique boundaries. 

/ 

*) Sometimes called "strong mixing". 
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Here we shall study a similar example, namely the free motion on the pseudosphere 
xj - Xj - x| = 1. In a cosmological setting, it is the motion of a particle in a de Sitter 
universe. More exactly, we shall work on a pseudosphere which is made periodic in a similar 
way to that in which the (8j,82)-plane was made periodic by identifying 6. with 9- + 1. 

An advantage of this model is that we can use powerful group theoretic methods. Notice 
that we started with the study of differential equations, later used the techniques of Hilbert 
space, and now we shall see that even the theory of group representations becomes a useful 
tool. 

We consider a three-dimensional Minkowski space with a scalar product 

(x.y) = x i y i + x 2y 2 - x 0y 0 . 

The pseudosphere is defined as the surface satisfying 

(x,x] = - 1 

with x 0 > 0. A particle moving freely on it is described by the Lagrangian 

L = l[x,x] , 

where the dot denotes derivative with respect to a parameter called proper time s. If you 
derive from this the equations of motion, you have to remember the constraint (x,x) = -1, and 
thus you get 

Xi = XXi, i = 0,1,2 

where X is a Lagrangian multiplier. In the usual way you then find 

\ ± (x,x) = (x,x) = X(x,x) = %\± (x,x) = 0 . 

Thus one has already three constants of the motion: 

M = - 1 , (45) 
(x,x) = 0 , (46) 

and 
(x,x) = 1 . (47) 

The last equation is a normalization for s. Equations (45)-(47) define our three-dimensional 
energy shell (or, strictly speaking, the "mass shell"). The phase-space measure on this 
energy shell is 

dfi = d3x d3x ô[(x,x)] ô[(x,x) + l] s[[x,x) -1] e(x0) . (48) 

Further constants of the motion are obtained from angular momentum conservation. One 
checks immediately that 

% = e i km x k x m> i = 0»1>2 

are three constants, but they are not independent. There is the relation 

[SL,l) = (x,x) • (x,x) = - 1 



- 22 -

among them, so you have a one-dimensional manifold left for the orbit, 

phase space is simply given by 

Its projection into 

M = 0 , 

which is the intersection of the hyperboloid with a plane through the origin. 

Equations (45)-(47) are obviously invariant 

under transformations belonging to the three-

dimensional Lorentz group SO(2,1), and the same 

is true for the measure dfi defined in Eq. (48). 

Even more, you can reach every point on the 

energy shell by applying a Lorentz transforma­

tion to the point {x0,x0} = {(1,0,0),(0,1,0)}, 

i.e. 

{x,x} = {M(l,0,0), M[0,1,0)} , (49) 

for every {x,x}e J2 and with M denoting a special 

Lorentz transformation. This is perhaps most 

easily seen by looking at the inverse transforma- Fig. 9 

tion: 'every point {x,x} can be translated into 

{(1,0,0) ,(0,1,0)} by first transforming x into (1,0,0), and applying after this a rotation 

such that x goes over to (0,1,0). Here we use, of course, that x and x are orthogonal. In 

fact, Eq. (49) is an isomorphic mapping (i.e. a one-to-one correspondence) between the group 

S0(2,l) and the energy shell. 

Since in course of the time development the energy shell is mapped onto itself, time 

evolution can be represented by a one-parameter subgroup of the Lorentz group SO(2,l). Take, 

for instance, 

M(S) = 
ch s sh s 0 
sh s ch s 0 
0 0 1 

(50) 

This is a particular orbit where you cut the hyperboloid with the plane x 2 = 0. Any other 

orbit can be obtained from this by an s-independent Lorentz transformation. 

Another fact we shall use is that the group SO(2,l) is isomorphic to the group 

SL(2,R)/{1,-1}, that is the group of special linear transformations of real 2 x 2 matrices, 

divided by its centre {1,-1}. This correspondence is well known from the four-dimensional 

Lorentz group: take a matrix 

fa 6' 
(51) 

in SL(2,R), i.e. such that aô - By = !• The corresponding element of SO(2,1) is defined 

by the transformation {x,x} •+• {x',x'} with 

fx'0 + x2, x'A _ fa3ï fx0 + x2, x^ fa 

Ui, xj, - x 2 J ~ [y6j Ui» x 0 - x 2 J [3 
(52) 
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The fact that SL(2,R)/{1,-1} is isomorphic to S0(2,l), instead of SL(2,R) itself, just means 

that you should not distinguish between the matrix in Eq. (51) and its negative - both give 

the same Lorentz transformation. 

The problem we have considered so far is not yet the one we wanted: the orbit is a 

one-dimensional submanifold of the energy shell, so there is no ergodicity. Furthermore, 

the volume of the energy shell is infinite. Indeed, up to now the problem is very similar 

to the free motion of a particle in the plane. In the two-dimensional harmonic oscillator, 

we had a motion which looked like a free motion in the iQ1,62)-plane, except that we had 

taken the 6̂  as real numbers modulo 1. In a more abstract language, the 6̂  were not just 

real numbers but elements of the factor group R/Z, where Z is the (additive) group of in­

tegers. By doing this, we had distroyed rotation invariance, so that the constant K 3 [see 

Eq. (15)] was in general no longer a global constant, and the motion could become ergodic. 

Also, the volume of the energy shell became finite, as we restricted ourselves to 0 < 6̂  < 1. 

We want to do now essentially the same. Instead of considering the motion on the whole 

pseudosphere, we want to work on the factor 

Q0 = fi/Z = S0(2,l)/Z = SL(2,R)/{1, -l}/Z , 

where Z is now some discrete subgroup of Q. In a less abstract language, this means that 

we shall identify two points {x,x} and {x',x'} on the energy shell, if {x',x'} can be written 

as 

{xlx'} = {Mx.Mx} 

with any transformation M e Z. Otherwise stated, we restrict ourselves to periodic obser­

vables which are invariant under transformations in Z. 

A discrete subgroup Z of SL(2,R) is simply given by the matrices 

with integer a, B, y, and <5 * • Integer matrices would not work if we had started with the 

motion on the sphere instead of the pseudosphere, where the discrete subgroups are the cri­

stallographie groups. 

Our next problem is now to construct a fundamental region, corresponding to the square 

0 1 8j, 8 2 5 1 in our old example. By fundamental region we mean a region in fi which contains 

exactly one point of each equivalence class {Zx,Zx}, except on its boundary where to each 

point corresponds another point on the other side of the boundary. To find it, let us look 

in detail how the simplest elements of Z act on the pseudosphere — or rather on its pro­

jection onto the (xt,x2)-plane. Besides the unit element, the basic elements of Z are 

A = 
[0 1) 

and 

B = 0 1 1 . 
l-ioj 

*) Notice that this is not an invariant subgroup, so Ù0 is no factor group. This is however 
not necessary. 
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According to Eq. (52), the matrix B gives a reflection (x1 ,x2) •»• (-x^-x^. So the funda­
mental region can be restricted to the upper half plane, part of its boundary being formed 
by the x^axis. On the other hand, take the curves h + and h_ defined as the images of the 
positive x2-axis under the transformations 

to l) ' 
i.e. 

f , fxi + 4, xn = (i ± i) fvmE| + x2, <n r 1 <n l 
h ± | X i U xi - x j to i j to, jm\ - x j L±5 iJ J ' 

They can also be written as 

X 2 = * if xf " 3 XîJ ' X 2 > 0 ' 
Since 

[o Î) (o i) = [o 2i] • 
the'matrix A maps the curve h_ onto h +. A fundamental region is then given by the boundaries 
h_, h +, and the part of the xx axis between them. This is shown in Fig. 10, where also the 
action of the matrices A and B is indicated. Indeed, we have not shown that there is no 
other element in Z which maps any two interior points of this region one onto the other — 
in which case the fundamental region would be part of the above. A more careful study shows 
that this does not happen. 

When the orbit reaches the boundary of the fundamental region, you apply just the ap­
propriate element of Z — either A, A - 1, or B — to bring it back into it, as indicated in 
Fig. 11. It turns out that this leads to a rather irregular pattern, so almost every orbit 
fills the fundamental region densely. Indeed, the orbit will even be dense on the three-
dimensional reduced energy shell fi0, the projection into configuration space of which is 

Fig. 10 
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just the fundamental region ' . This will be a by-product of our result since mixing =» 
=>ergodicity => almost every orbit is dense. 

Another fact is that fi0 has a finite volume. It is very plausible, and it would not 
be too difficult to show it in detail**'. 

What we shall demonstrate is that the system has the mixing property discussed in the 
last section. To agree with the notation used there, let us again denote the (proper) time 
by t instead of s. As already mentioned, the motion is generated by a one-parameter subgroup 
of unitary transformations of S0(2,l), which we can write as 

u(t) = e m t . 

Here, the antihermitean operator m is one of the three generators of the group. In analogy 
with the generators of the rotation group S0(3), the three generators m, m , and m_ of S0(2,l) 
form a Lie algebra with commutation relations 

[m,m±] = ± m ± , 
(S3) 

[m+,m_] = 2m . 

The only difference to the rotation group is a difference in sign, and the fact that 111+ are 
here defined as m x ± m 2 without an i, so they are antihermitean. This slight difference is 
however crucial. We know that the rotation group has a discrete spectrum, while we want to 
show that the commutation relations (53) lead to a continuous spectrum, except for one dis­
crete point. 

As we said, m+ is an antihermitean generator of the group, and the two elements m and 
m + alone form a Lie algebra as well as the pair {m,m_}. Thus they generate two subgroups, 
the elements of which we can write 

U±(a,t) = e a m i e t m . 

Using the commutation relations, we find indeed 

U±(a,t) U±(a;t') = U±(a + e^'a', t + t') . (54) 

If we set here a = 0, we get back the transformations U(t) describing time development 

U(t) = U+(0,t] = U_(0,t) . 

On the other hand, the transformations (U+(a,o)} and {U_(a,o)> together generate the whole 
group. Though they do not involve the generator m, this generator arises from the commuta­
tion relation [m+,m_] = 2 m. A general element can e.g. be written as U+(a,o) U_(a',o) 
U+(a",o). 

*) Points in Çi0 are essentially points in the fundamental region to which a direction is 
attached. The denseness of the orbit means that arbitrarily close to any point in the 
fundamental region is a part of the orbit the direction of which is arbitrarily close to 
any prescribed direction. 

**) / d 3x ô[(x,x)] ô[(x,x) - l] = F [ ( X , X ) ] < °° and F(-1).J d 3x ô"[(x,x) + l] < », where the 
integral extends over the fundamental region. 
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Let us now study the irreducible unitary representations of the group {U+(a,t)}. [The 

same results hold, of course, also for the U_(a,t).] These representations are well known 

and indeed there are only two types of representations: 

I : One-dimensional representations 

U+(a,t) = e
i x t, X e R . 

These are of course not faithful, but they are faithful representations of the factor 

group {U+(a,t)/U+(a,o)}, which is a one-parameter Abelian group, isomorphic to the group 

of real numbers. 

II: Infinite-dimensional representations which act as operators on square-integrable func­

tions ijj(x) according to 

[u+(a,t)i|j] (x) = exp (iae
x) ty[x + t ) , ty s L2(R, dx) 

These are faithful, and one can explicitly check that the multiplication law agrees 

with Eq. (54). 

The subgroup of time translations is represented in these two types simply by 

I: U(t) = e i x t 

I I : [U(t>] (x) = i j{x+t] . (55) 

The Hilbert space of observables can then be written as a direct sum of two terms 

§ = Si" © sïi » 

which are defined by the way U+(a,t) acts on them. Similarly, we can decompose it into 

S = S^ © Sn , 

according to the representations of U_(a,t). The time translations both on SJJ and on STj 

are simple shifts as shown in Eq. (55). This is exactly the same way as momentum is usually 

represented in wave mechanics, and we know that this spectrum is absolutely continuous and 

(Lebesgue-) integrable. Thus, according to what we found in the previous section, the only 

trouble for mixing could come from those functions which are in 

Si = : S^ n Si • 

But for any function y e S j, we have 

U±(a,0> = ty . 

Since the whole group can be generated by the U +(a,o), we see that if is invariant under the 

whole group SO(2,1): 

U(g)i|) = I|J for all g e S0(2,l), iji e \ . 

Finally, because the group is isomorphic to the energy shell — or because any point on the 

energy shell can be reached by some g — this means that \\> is constant on the whole energy 

shell. 
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This argument shows that if there is a square- integrable eigenfunction 41 of U(t), it 
must be constant over phase space, and the mixing property holds. This argument is indepen­
dent of whether we use the whole energy shell Q. or the part Q0 (whether we consider the 
Hilbert space of all observables or of those which are invariant under the discrete group Z). 
The reason for working on fi0 is from this point of view that it has a finite volume, so 
I(J = const is square integrable, and we do get mixing: if you start with any distribution 
and wait long enough, you will finally end up with an equilibrium distribution which is 
evenly distributed over phase space (the so-called "microcanonical distribution"). 

The above is the simplest known model which displays mixing. There is a physically more 
interesting but mathematically much more complicated model consisting of hard spheres con­
fined to a box. In an unfortunately unpublished proof, Sinai has proven mixing for this. 

One should, of course, not overestimate the importance of this for statistical mecha­
nics, as quantum mechanics is relevant for real matter. It makes it however more plausible 
that the same will happen there, as the uncertainty principle implies that the states to 
start with are already more diffuse. 
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