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A. Dosimetry and Tracer Kine t ics 
1. Methodology 

Hardware Development 
1. Whole-body Scanning Bed 

The c o l l e c t i o n of da ta requ i red f o r ex tens ive dosimetry i n v e s t i g a t i o n s and 
surveys from r o u t i n e c l i n i c a l p a t i e n t s i s complicated by the time and inconvenience 
Involved in repeated measurements on o f t e n very i l l people . In o r d e r t o 
Inc rease the number of p a t i e n t s with var ious forms of pathology in whom we a re 
ab le t o assay the i s o t o p i c d i s t r i b u t i o n we have designed and begun t h e implementa-
t i o n of a computer con t ro l l ed scanning b e d / s c i n t i l l a t i o n camera da ta c o l l e c t i o n 
system. Figure shows a block diagram of the system. This da ta c o l l e c t i o n 
system was developed around a CAMAC module c r a t e i n t e r f a c e d to the PDP/9 
computer ( r e f . 1974 AEC Report) . The scanning bed al lows the e f f e c t i v e f i e l d 
of view of the s c i n t i l l a t i o n camera to be increased to t h a t r e q u r i e d f o r a t o t a l 
body image. The scanning bed system c o n s i s t s of two p a r t s , i . e . , bed cont ro l 
and camera data a c q u i s i t i o n . The camera data a c q u i s i t i o n system c o n s i s t s of the 
s tandard s c i n t i l l a t i o n camera, a commercial ADC f o r d i g i t i z a t i o n of the p o s i t i o n 
s i g n a l s and a CAMAC input r e g i s t e r module. The ADC i s designed to a l low the 
c o l l e c t i o n of images using two photopeak e n e r g i e s . The image in format ion i s 
t r a n s f e r r e d from the input r e g i s t e r i n t o the computer by program c o n t r o l . While 
t h i s i s slower than d i r e c t memory access count r a t e s observed in c l i n i c a l s t u d i e s 
(•v-lOOOcps) can be c o l l e c t e d with l e s s than 3% data l o s s . The bed con t ro l subsystem 
c o n s i s t s of a CAMAC output r e g i s t e r module and an in-house designed module 
conta in ing l i n e d r i v e r s , s t a t u s r e g i s t e r and level c o n v e r t e r . The bed can be 
scanned with a p o s i t i o n a l accuracy of .01 inch . The computer can cont ro l the 
d i r e c t i o n and motion of the bed but the scanning speed i s determined by the motor 
c o n t r o l l e r on the bed. The maximum scan s i z e i s approximately 75 inches Dy 30 
inches and r e q u i r e s a minimum of 10 minutes f o r a 4 l i n e 75 inch scan. During 
c o l l e c t i o n of a whole body image the bed with the p a t i e n t i s scanned along the 
length of the bed. When the end of t h e scan l i n e i s reached the bed indexes s i d e 
ways 6 inches and r e t u r n s along the length of the bed. 

Data from the camera i s combined with t h a t i n d i c a t i n g t h e bed p o s i t i o n and 
s to red in l i s t mode on e i t h e r d i s c o r magnetic t a p e . This data format allows 
t h e r e c o n s t r u c t i o n of the image or any subsec t ion of the image wi th high 
d i g i t a l r e s o l u t i o n . All image data a r e s to red with a r e s o l u t i o n of 256 x 256 
which i s more than adequate f o r the s c i n t i l l a t i o n camera. 

Figure 2 shows the a n t e r i o r and p o s t e r i o r views of a Tc-99m polyphosphate 
whole body scan acquired with t h i s system. Each view c o n s i s t s of 3 scan l i n e s 
separa ted by 8 inches . Each of the 65 inch scan l i n e s requi red approximately 
5 minutes to c o l l e c t f o r a t o t a l of 15 minutes per yiew. The image r econs t ruc t ion 
and photo genera t ion a l so r equ i res approximately 10 minutes per view. Thus 
a t o t a l time of 50 minutes i s requr ied f o r t h i s s tudy. This i s compared t o t h e 
1% to 2 \ hours requi red f o r a comparable study performed with the r e c t i l i n e a r 
whole body scanner . These images each contain about 300 K counts and a re 
comparable in informat ion content to those obtained from the scanners . The 
images shown here a r e . i n a 128 x 500 d i g i t a l a r r a y . I t i s p o s s i b l e to r ebu i ld 
subregions of the image with higher d i g i t a l r e so lu t i on thus providing a "c lose up" 
view of any region of i n t e r e s t . The images inay a l so be manipulated by a s o f t -
ware package we developed to provide contour ing; smoothing, and foreground-
background e r a s e . I t should be noted t h a t the computer c o n t r o l s t h e scanning 
process and thus al lows one to scan any smal le r region than the e n t i r e body i f 
one wishes and consequently not spend time imaging body re igons not of i n t e r e s t 
t o the cu r r en t s tudy. 
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The dual i so tope c a p a b i l i t y of t h e camera a c q u i s i t i o n subsystem can be 
used wi th the scanning bed t o al low us to do dual i s o t o p e imaging. In t h i s 
case however the 256 x 256 r e s o l u t i o n i s degraded t o 128 x 256 to al low cne 
da ta b i t t o be used as an i so tope f l a g f o r image r e c o n s t r u c t i o n . 

The scanning bed imaging system wi l l be used in the i n v e s t i g a t i o n of t h e 
dosimetry of Tc-99m l a b e l l e d pyrophosphates . This rad iopharmaceut ica l i s 
r a p i d l y ga in ing p o p u l a r i t y f o r c l i n i c a l whole body bone imaging but as y e t t h e r e 
has been l i t t l e q u a n t i t a t i v e dosimetry performed. The scanning bed w i l l al low 
us t o ob t a in data on the d i s t r i b u t i o n of Tc - l abe l l ed pyrophosphates (and r e l a t e d 
compounds used in our c l i n i c ) in a l a r g e number of p a t i e n t s t u d i e s . In t h i s 
i n s t a n c e t h e scanning bed has severa l advantages over the dual probe whole body 
scanner . These a r e : 

1 . decreased scanning time 
2. t h e response of the camera i s more depth independent than t h e focused 

c o l l i m a t e r s of the scanner 
3 . f i n e r d i g i t a l d e t a i l i s a v a i l a b l e . 

2 



PDP-9 
COMPUTER 

CAMAC 
CRATE 

3TT 

ENCODER 
FOLLOWER 

A 

OUTPUT 
REGISTER 

CAMERA/SCANNING 
BED"INTERFACE 

A 
JCL 

SCANNING 
BED 

INPUT 
REGISTER 

-) DUAL ADC 
/ 

ANGER CAMERA 

Figure 1 Block diagram of Scanning Bed Data 
Acqu i s i t ion System. 

T K 
i 

i 

ANTERIOR POSTERIOR 

Figure 2 Whole Body Scans of P a t i e n t c o l l e c t e d 
with Scanning Bed. 

3 



2. CAMAC: Design of an Autonomous Crate Con t ro l l e r 
Experience with the CAMAC ins t rumenta t ion system cont inues t o demonstrate 

t o us t h a t such s t anda rd iza t ion and modulari ty b e n e f i t medical systems by 
enabl ing them to become opera t iona l sooner and t o be both more r e l i a b l e and 
more e a s i l y repa i red than those conta in ing spec ia l purpose e l e c t r o n i c s . CAMAC 
i s supported by a c r a t e which conforms to AEC s p e c i f i c a t i o n TID-25875. This 
c r a t e i s connected to one of the PDP-9 computers by means of a dedicated 
c o n t r o l l e r adapted from an Argonne National Labora tor ies des ign . 

Funds were requested by not granted l a s t year to br ing t h i s system i n t o 
conformity with AEC s p e c i f i c a t i o n TID-25876. The reasons f o r t h i s reques t 
remains with us: 

1. In developing new d i agnos t i c t echn iques , such as scanning bed 
tomography, mul t ip l e energy camera s t u d i e s , e t c . i t becomes necessary 
to t e s t new devices ana concepts without j eopa rd i z ing opera t iona l 
systems. 

2. Higher data r a t e s a re r ap id ly s a t u r a t i n g the capac i ty of our 
home-made c o n t r o l l e r . 

3. The need to share r e s u l t s with o ther medical use r s of CAMAC, such as 
the Meson production f a c i l i t y a t Los Alamos, sugges ts a leve l of 
s t anda rd i za t i on which i s independent of the computer used. The 
add i t ion of a second PDP-9 computer has provided i t s own p re s su re 
f o r a p a r a l l e l CAMAC system, both f o r back-up and th rough-put . 

In the absence of f u n d s , CAMAC components were borrowed from the experimental 
inventory a t Fermi National Acce le ra tor Labora tor ies to t e s t s p e c i f i c concepts 
be fo re the CAMAC hardware was r e tu rned to Fermi. We remained in con tac t with 
the severa l nat ional l a b o r a t o r i e s using CAMAC and p a r t i c i p a t e d in the review 
of a Fermi-designed autonomous c r a t e c o n t r o l l e r , which i s comparable in 
p r i c e but promises t o be higher in performance than a f u l l - b l o w n TID-25876 
branch highway CAMAC system. Test r e s u l t s are a n t i c i p a t e d by the end of June. 
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. 3 . Integrated Anger Camera-Stationary S c i n t i l l a t i o n 

We a r e c u r r e n t l y i n v e s t i g a t i n g the u t i l i t y of data c o l l e c t e d from the 
same sub j ec t s imul taneously , by an Anger Camera and s t a t i o n a r y probes . This 
technique wil l be used to c o l l e c t data in s tud ies where the Anger Camera alone 
y i e l d s inadequate data f o r a n a l y s i s . These include l i v e r , lung , and renal 
func t ion s tud ies where the f i e l d of view of the camera i s inadequate to capture 
a l l of the p e r t i n e n t regions of i n t e r e s t . Data presented in the s ec t i on on 
1-131 Hippuran dosimetry demonstrates the po ten t i a l u t i l i t y of the c o l l e c t i o n 
system. In these s t u d i e s , the camera i s capable of monitoring the kidneys 
but f r equen t ly the bladder i s not v i s u a l i z e d . Typ ica l ly , the camera provides 
marginal data on the blood pool c lea rance . The add i t ion of a two probe 
system would y i e l d data on a l l of these regions of i n t e r e s t s imul taneously . 
In our present conf igura t ion the camera data are co l l e c t ed o f f - l i n e in an 
In ter technique c ine - sc in t ig raphy system while the probe data a re c o l l e c t e d 
d i r e c t l y i n to the PDP-9 via CAMAC modules. 

A block diagram of the in t eg ra ted camera/probe data a c q u i s i t i o n system 
i s shown in Figure 1. Figure 2 shows an example of the data obtained from 
the in tegra ted system from a p a t i e n t receiving a renogram a t day 10 pos t -
t r a n s p l a n t a t i o n . 
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b. Software Development 
1. Simulation and Modelling 

We a r e cont inuing t o develop and t e s t new k i n e t i c models in an e f f o r t 
to understand b e t t e r the t o t a l body and organ r e t e n t i o n of medical ly 
administered r a d i o a c t i v e m a t e r i a l s . Solu t ions to these models have been 
sought genera l ly through the use of Berman's SAAM 25 computer program. Our 
e f f o r t s a r e being d i rec ted toward improving model accuracy through the use 
of ex te rna l q u a n t i t a t i v e measurements as supplemental t o r o u t i n e k i n e t i c 
da t a . Models a re c u r r e n t l y being used to analyze data from s tud i e s of i r o n , 
1-131 hippuran, pyrophosphate and iod ine k ine t i c s in a d d i t i o n to a number of 
new radiopharmaceut ica ls . The d e t a i l s of these models and model c a l c u l a t i o n s 
w i l l be d iscussed in the fol lowing sec t ions deal ing with the s p e c i f i c m a t e r i a l . 
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2. Mul t i - ins t rument Executive f o r Data Col lec t ion 

The execut ive f o r opera t ing m u l t i p l e ins t ruments concur ren t ly and 
asynchronously received rou t ine use and was a l so extended in c a p a b i l i t y . 
This i s important to our research s i n c e , f o r i n s t a n c e , r o u t i n e use of the 
low leve l counting f a c i l i t y with the computer, places a r e l a t i v e l y low 
average da ta r a t e burden upon the PDP-9 computer y e t r e q u i r e s r a p i d 
response from the computer to cont ro l t he p o s i t i o n of the scanner w i thou t 
In t roduc ing pos i t i ona l skew due to dead t ime. S imi la r s i t u a t i o n s occur 
with o the r dev ices , whether the data a c q u i s i t i o n and d i s p l a y ins t ruments 
a re i n t e r f a c e d through the AEC standard CAMAC system or through ded ica ted 
pre-CAMAC hardware. 

P r e s e n t l y running under the "Background-Foreground Monitor" ( supp l ied 
by Dig i t a l Equipment Corpora t ion ) , t h i s s u b s t a n t i a l program ( the execu t ive 
i s over 4500 l i n e s of source code, much of t h i s in "macro i n s t r u c t i o n " ) 
permits the simultaneous u t i l i z a t i o n of the fo l lowing d e v i c e s : 

J . The low level whole body count ing f a c i l i t y in a r e c t i l i n e a r scanning 
mode. 

2 . The e l e c t r i c a l s to rage tube video b u f f e r f o r loca l and remote graphic 
and image d i s p l a y . 

3. A mult ichannel analyzer in a frame mode of image a c q u i s i t i o n . 
4 . Via CAMAC: 

a . Pos i t ion encoders f o r two independent and autonomous r e c t i l i n e a r 
scanner s . 

b . Event sensors from remote l o c a t i o n s , such as QRS-complex d i s c r i m i -
na to r or beg inn ing-of -p rocedure i n d i c a t i o n s from t h e Cardiac 
C a t h e t e r i z a t i o n F a c i l i t y . 

c . Mul t ip le s c a l e r / c o u n t e r u n i t s which cap tu re phys io log ica l informa-
t i on from the p a t i e n t under s tudy . 

5 . T rans fe r s of c i n e s c i n t i g r a p h y system t o : 
a . Indus t ry s tandard magnetic tape ( a v a i l a b l e on one PDP-9). 
b . P r o p r i e t a r y DEC tape which i s a v a i l a b l e on both PDP-9s. 
c . D i rec t ly to the second PDP-9. 

The PDP-9 system upon which the execu t ive was f i r s t made o p e r a t i o n a l 
was expanded to inc lude 1 mi l l i on words of head-pe r - t r ack d i s k . S u i t a b l e 
m o d i f i c a t i o n s were made in execu t ive so t h a t t h i s high-speed medium i s now 
t h e primary da ta c o l l e c t i o n b u f f e r , with the slower DEC tapes se rv ing t o 
record the da ta wi thout the p res su re of real - t i ra t i a c q u i s i t i o n . 

The execu t ive program i s very modular in a r c h i t e c t u r e so as to f a c i l i t a t e 
new requi rements . Extensive use i s made of the CAMAC macro i n s t r u c t i o n s t o 
enhance t h e i n i t i a l programming t a s k , t o guard a g a i n s t obso lescence , and 
to promote the shar ing of technology. I t i s a n t i c i p a t e d t h a t a d d i t i o n a l data 
a c q u i s i t i o n and d i sp l ay c a p a b i l i t i e s can be added r e a d i l y . Documentation of 
the execu t ive i s complete and r e p o r t s on these systems w i l l be p resen ted 
annual ly to the Oak Ridge Symposia on the Sharing of Computer Technology i n 
Nuclear Medicine. 
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3. The Sharing of Computer Programs in Nuclear Medicine 

During t h e p a s t year we have received and d i s t r i b u t e d numerous computer 
programs f o r the q u a n t i t a t i o n and ana lys i s of r a d i o i s o t o p i c spec t ra l and 
image da ta . We have continued t o work with Dr. Berman and Mrs. Weiss to help 
d i s t r i b u t e t h e NIH Simulation and Modelling Program package (SAAM) to users with 
3 2 - b i t computers. During the pas t year we have suppl ied copies to two medi-
cal cen te r s (Univers i ty of Wisconsin-Milwaukee and the Orange County Medical 
Center - C a l i f o r n i a ) . We wi l l cont inue to help in t roduce new users t o the 
c a p a b i l i t i e s of the SAAM programs f o r the analyses of k i n e t i c da ta and the c a l -
cu l a t i on of r a d i a t i o n absorbed doses . 

Recently we have received a program ca l l ed CAMIRD (Computer Ass is ted Medical 
In te rna l Radiation Dosimetry) from the Cincinnati General Hosp i t a l . CAMIRD 
computes absorbed doses t o s p e c i f i e d organs i n a s tandard man from i n t e r n a l l y 
administered rad ionuc l ides according to the MIRD schema. We a r e in the 
process of implementing t h i s program on our Sigma-7 computer to aid us in our 
cont inuing dosimetry c a l c u l a t i o n s . 

p a r t of our cont inuing e f f o r t t o promote the shar ing of computers programs 
in nuclear medicine, we co-sponsored the F i f t h Annual Symposium on the 
Sharing of Computer Programs and Technology i n Nuclear Medicine. The symposium 
was held January 15-17, 1975 in S a l t Lake Ci ty , Utah and r e s u l t e d in the forma-
t i on of a number of a number task groups ass igned to i n v e s t i g a t e s i g n i f i c a n t 
problems in the ana lys i s of r a d i o i s o t o p i c da ta . We cont inue t o take an a c t i v e 
p a r t in the s t anda rd iza t ion of computer technology (both hardware and so f tware ) 
in nuclear medicine. 
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c . Cor re la t ion Studies between Calculated and TLD Measurements 
of Radiat ion Dose - Applied to Tc-99m S u l f u r Colloid Liver 
Scanning 

The pos i t i on average dose D to a t a r g e t region due to a source of 
a c t i v i t y A(t) can be ca l cu l a t ed from 

where t-| and tg de f ine the time i n t e r v a l over which the dose i s computed. 
This equat ion i s equ iva len t t o the formalism given in HIRD Pamphlet #1, 
but i s more convenient to use because the q u a n t i t y R i s computed f o r a 
given rad ionuc l ide and s o u r c e - t a r g e t p a i r , whereas absorbed f r a c t i o n s a re 
computed only f o r indiv idual r a d i a t i o n ene rg i e s . The purpose of t h i s pro-
j e c t i s t o measure the dose D and a c t i v i t y A(t) i n p a t i e n t s , and check 
f o r agreement between t h i s measured dose and t h a t c a l c u l a t e d from (1) 
using the value of R computed from the s tandard man model of Snyder, e t . 
a l J Thus we are making an eva lua t ion of our methods of dose and a c t i v i t y 
measurement, as well as t h e a p p l i c a b i l i t y of the s tandard man model f o r 
i n t e r n a l dosimetry c a l c u l a t i o n s . 

For t h i s , we are using male p a t i e n t s who have rece ived Tc-99m s u l f u r 
c o l l o i d l i v e r scans . The source organs a re the l i v e r and sp l een , and the 
t a r g e t region i s a 2" x 2" x 0.035" thick s l a b of LiF on the p a t i e n t ' s 
s k i n , a n t e r i o r to and d i r e c t l y over laying the l i v e r . The dose measure-
ments a re made with LiF TLD's , the a c t i v i t y measurements are made with the 
Vanderbi l t Univers i ty Low-Level Counter, and R has been ca l cu l a t ed by Dr. 
J.W. Poston and h is a s s o c i a t e s a t ORNL. 

In a study of this t ype , i t is very important t h a t the accuracy with 
which D and A can be measured i s known. The p rec i s ion of TLD measurements 
has a l ready been d i s cus sed , so t h i s sec t ion wi l l concen t ra te mainly on the 
accuracy of a c t i v i t y measurements. At the end, sot.'e p a t i e n t da ta wi l l be 
g iven . 

The method of a c t i v i t y determinat ion i n i t i a l l y planned was t h a t r e -
ported by Wat t s . 2 We have previous ly discovered and r e p o r t e d 3 ' 4 t h a t t h i s 
method does not take s e l f - a t t e n u a t i o n by the source i n t o account ; our e f -
f o r t s t h i s pas t year have been in analyzing the e f f e c t s of the x-y d i s -
t r i b u t i o n of p a t i e n t a c t i v i t y (depth = z d i s t r i b u t i o n ) on our a c t i v i t y 
e s t i m a t e s , s ince v a r i a b l e a t t enua t ion e f f e c t s would be p re sen t here a l s o . 
Because the co l l imator f i e l d of view i s l a r g e r than the scan ce l l s i z e , i t 
i s not c l e a r what these e f f e c t s a r e . In Watts ' method, one i s fo rced t o 
assume t h a t these e f f e c t s a re the same f o r both c a l i b r a t i o n scans ( "po in t" 
sources in cons tant th i ckness water phantoms) and p a t i e n t scans ( d i s t r i b u t e d 

(1) 
or 

t 
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sources in the va r i ab l e body t h i c k n e s s ) , which might not be t r u e . In a d d i t i o n , 
the geometric mean (GM) of the top and bottom d e t e c t o r responses i s used to 
c a l c u l a t e the a c t i v i t y e s t ima te , but i t i s not c l e a r whether one should com-
pute a GM po in t -by -po in t and sum these GMs over the scan image t o ge t the 
t o t a l source a c t i v i t y , or f i r s t sum the d e t e c t o r responses over the image and 
compute the GM of these sums. In gene ra l , these two methods of data handling 
wi l l no t give the same r e s u l t s ( i . e . , GM of sums £ sum of GMs). 

The i n v e s t i g a t i o n of these ques t ions has been pr imar i ly mathematical , 
although some experimental eva lua t ion using p a t i e n t data has been done. 
The mathematical d e t a i l s a re given in Appendix I I . In t h i s s e c t i o n , emphasis 
wi l l be given to the assumptions used and conclusions reached reached from 
the contents of Appendix I I . 

In o rde r to s e t up the formalism, imagine the scan f i e l d t o be divided 
up i n t o a l a rge number of r e c t a n g l e s , or c e l l s , as shown in Figure 1. The 
length of each ce l l is equal to the d i s t ance moved by the scanner when counts 
are recorded f o r one data po in t , and the width of each c e l l i s ei.ual t o the 
d i s t ance between scan l i n e s . When the d e t e c t o r s t r a v e r s e the le.ioth of a 
c e l l , t he counts accumulated in t h a t time a re recorded by a computer, thus 
giving a da ta poin t corresponding to t h a t c e l l . 

To c a l i b r a t e the scanner , a "point" source of known a c t i v i t y i s placed 
in a cons t an t th ickness phantom and scanned. We de f ine 

where d i s the phantom thickness and z the height of the source from the bed. 
In order t h a t t h i s be a we l l -de f ined parameter , one must have the c e l l s i z e s 
much smal le r than the area of the co l l ima to r f i e l d of view. Otherwise , the 
p rec i se x-y loca t ion of the "point" source within a given c e l l would be im-
p o r t a n t . 

There would be a c a l i b r a t i o n f a c t o r of the form of (2) f o r each d e t e c t o r . 
To obta in a useful c a l i b r a t i o n f u n c t i o n , one has two cho ices . E i ther sum the 
f a c t o r s f o r each d e t e c t o r over the e n t i r e image and take the geometr ic mean 
of these sums, or e l s e f ind the geometric mean po ih t -by -po in t over the image, 
and add up these geometric means. The former i s p r e f e r r e d , because i t i s 
more near ly independent of 7 than the l a t t e r , e s p e c i a l l y i f the value of z 
i s such t h a t t he co l l ima to r f i e l d s of view of the two d e t e c t o r s have unequal 
a r e a s . (This i s due t o the f a c t t h a t i f e i t h e r top or bottom S-H i s ze ro , 
then the l a t t e r method gives a zero con t r ibu t ion to the c a l i b r a t i o n f u n c t i o n . 
For the fo rmer , both top and bottom S i j must be zero to do t h i s . ) Also, the 
major reason f o r using the geometric mean i s to ge t a c a l i b r a t i o n func t ion 
t h a t i s near ly independent of z . 

counts recorded in data po in t i due to the source in ce l l j 
source a c t i v i t y 

(2) 
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Figure 1. The d i v i s i o n of the scan f i e l d . The s i z e of t h e c e l l s i s g r e a t l y 
exaggerated f o r c l a r i t y . In t h i s c a s e , t h e r e a re 56 c e l l s in the scan f i e l d . 
In the usual ca se , t h e r e a re 4096. 

For a p a t i e n t s can , the p a t i e n t th ickness changes from one ce l l t o 
ano the r , as does the source t h i cknes s . The source th ickness v a r i a t i o n causes 
l i t t l e problem because the source can be viewed, to a good approximation, as 
a s c r i e s of ad jacen t c e l l s each of which conta ins a cons tan t th ickness 
source , which we know how to take i n t o account .^ But the v a r i a b l e p a t i e n t 
th ickness causes s u b s t a n t i a l problems. To begin w i t h , t h e c a l i b r a t i o n scan 
was done in a cons tan t th ickness phantom. So when one t r i e s to w r i t e the 
de t ec to r counts from the p a t i e n t scan in terms of S-jj> i t i s unclear what 
p a t i e n t th ickness value should be used. Next, one 'toust sum over the p a t i e n t 
image before taking the geometric mean of the d e t e c t o r counts in order to be 
able to w r i t e the d e t e c t o r counts in terms of the c a l i b r a t i o n f u n c t i o n . This 
geometric mean i s then divided by the c a l i b r a t i o n geometric mean f o r some 
s o r t of average p a t i e n t t h i c k n e s s , which remains to be determined. Then, 
even i f one ge ts around these o b s t a c l e s , the r e s u l t i n g express ion i s too 
complicated to eva lua te d i r e c t l y , because i t con ta ins products of terms in -
volving the source th ickness and p a t i e n t th ickness f o r each c e l l . Since 
these th icknesses were obtained with d i f f e r e n t ins t ruments (source th ickness 
from u l t r a s o n i c scans and p a t i e n t th ickness from t ransmiss ion s c a n s ) , they 
a re not c o r r e l a t e d , and accura te c o r r e l a t i o n i s d i f f i c u l t to do. An ap-
proximate method of c a l c u l a t i o n i s developed which removes the need f o r t h i s 
c o r r e l a t i o n , but which in t roduces a geometric condi t ion on the r e l a t i o n 
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between the source shape and the p a t i e n t shape. The i n t e r p r e t a t i o n of t h i s 
condi t ion leads to the conclusion t h a t the p a t i e n t geometry must show some 
symmetry (but not too much), which probably would not occur f o r a l l p a t i e n t s , 
and might not even occur f o r any. Despite these problems, i t i s shown in 
Appendix I I t h a t , with a reasonable assumption, t h i s geometric condi t ion i s 
adequately met because the v a l i d i t y of the equat ions i s not very s e n s i t i v e 
to i t . This i s f u r t h e r demonstrated with p a t i e n t d a t a , and appl ied to t h r e e 
cases . Also, a means of checking the s e l f - c o n s i s t e n c y of t f m method i s 
g iven, so t h a t with one simple ( i f a computer i s used) t e s t using the t r a n s -
mission scan data and c a l i b r a t i o n d a t a , one can check the v a l i d i t y of the 
approximate c a l c u l a t i o n . This method has the f u r t h e r advantage of being 
somewhat g e n e r a l , so t h a t i t could be t r i e d f o r i sotopes o the r than Tc-99m. 
If i t were going to f a i l in these c a s e s , the t e s t above would probably show 
t h i s f a i l u r e . Another advantage i s t h a t the equations e x p l i c i t l y show the 
e f f e c t s of v a r i a b l e source and p a t i e n t th icknesses on the a c t i v i t y e s t i m a t e , 
making e r r o r ana lys i s e a s i e r ( r e p e t i t i v e scans are o f t e n imprac t i ca l ) and 
giving a r e sea rche r a s t a r t i n g place from which to a r r i v e a t h i s own t ech -
nique, i f a l l the assumptions here cannot be met. 

The reasonable assumption r e f e r r e d to above deserves comment, because 
i f i t i s no t met , most of the mater ia l in Appendix II i s i r r e l e v a n t . To 
see what t h i s assumption i s , consider a uniform source of varying th ickness 
in a phantom of varying th i cknes s . The counts in data p o i n t i due to the 
a c t i v i t y in c e l l j would be given by 

A. = the a c t i v i t y in ce l l j 
J 

t . = the source th ickness in c e l l j u 
Zj-j = the he ight of the bottom of the source in c e l l j from the bed 

z j 2 = h e i 9 h t o i : t h e t o P of t ' i e source in ce l l j from the bed 

? = the ind ica t ion t h a t the pahntom th ickness^ to be used i s unknown. 

In g e n e r a l , the Cy would depend upon the th icknesses and l oca t i ons of a l l 
the c e l l s in the f i e l d of view, because of s c a t t e r e d photons. The as -
sumption i s t h a t C j j depends only upon dj , the phantom th ickness in ce l l 
j , even i f i \ j . This i s done, and seems reasonab le , because 

1. The e f f e c t s of va r i ab l e phantom th ickness wi l l be l e s s f o r a phantom 
whose th ickness does not vary by too much from one c e l l to the nex t , even 
though c e l l s f a r apa r t may have very d i f f e r e n t t h i cknes se s . For the 
human t runk , the th ickness does change rap id ly along the s i d e s , but much 
l e s s c l o s e r to the mid l ine . L i t t l e or no p a t i e n t a c t i v i t y wi l l be 
loca ted along the s i d e s , so the e f f e c t s of these c e l l s should be smal l . 

(3) 

where 
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2 . Photons of t h r e e types (see Figure 2) wi l l be coun+ed. Type A are 
unsca t t e red photons emit ted v e r t i c a l l y to a d e t e c t o r , and are a t t e n u a t e d 
in the c e l l with th ickness d j . Type B a re smal l -angle s c a t t e r e d photons 
and unsca t t e red ones emitted a t an angle to the v e r t i c a l . Since the 
th ickness in a d j a c e n t c e l l s i s not very d i f f e r e n t , the a t t e n u a t i o n of 
t he se photons wi l l be about the same as f o r type A photons. Type C 
photons are everyth ing e l s e . If they are unsca t t e red photons emit ted a t 
a l a rge angle to the v e r t i c a l , they can be reduced by proper c o l l i m a t i o n . 
I f they are l a r g e - a n g l e s c a t t e r e d photons , they can be reduced by pu l se 
he ight d i s c r i m i n a t i o n , because of t h e i r degraded energy. 
3 . Each pa r t of the source along a scan l i n e i s in the c e n t e r of the 
co l l ima to r f i e l d of view p rec i s e ly once during a scan , so t h a t types A 
and B photons a re counted from a l l pa r t s of the source . 
4 . The form of the c a l i b r a t i o n f u n c t i o n s was observed t o be exponent ia l 
wi th depth. I f only type A photons were counted, t h i s should be the c a s e , 
with )j equal to the published value of the l i n e a r a t t e n u a t i o n c o e f f i c i e n t . 
We observed n to be l e s s than t h i s , i n d i c a t i n g t h a t some type B, and pro-
bably a few type C photons were counted. If many type C photons had been 
counted, the exponential a t t enua t ion would not have been observed. 

The method of a c t i v i t y determinat ion would involve the fo l lowing s t e p s : 
1. Sum each d e t e c t o r counts over the des i red organ image, wi thout 
regard t o the var ious source and phantom t h i c k n e s s e s . 

T O P 

d e t g c t o r 

A C 

" V J 

ft 

fcorro m 

Q E T g C T O g 

Figure 2. Types A, B, and C photons 
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If the re i s more than one source organ in the scan f i e l d , only those 
organs which are resolved can be t r e a t e d s e p a r a t e l y . Organs not r e -
solved must be processed as a s i n g l e source . Na tu ra l l y , one must 
s u b t r a c t background counts from these sums. 
2. Using the t ransmiss ion scan d a t a , compute the average p a t i e n t 
th ickness (d) from 

. - M l * - J- Z 
J 

where the d,- a re the var ious p a t i e n t t h i c k n e s s e s , and m i s the number 
of c e l l s comprising the source . From a knowledge of the number of 
data po in t s in the image and the s i z e of the co l l ima to r f i e l d of view, 
d can be found accura te ly even i f m i s not exac t ly known. Notice t h a t 
d wi l l be somewhat l e s s than the a r i t hme t i c mean of the d j va lues ; 
t h i s i s important and i s d iscussed in Appendix I I . 
3. Using the u l t r a s o n i c d a t a , eva lua te the express ion 

E = 1 r U U t i h ) / I ( M ± \ k ) , j J 
where t j a re the var ious source th icknesses and u i s determined from 
the exponential a t t enua t i on of the c a l i b r a t i o n da t a . 
4 . Ca lcu la te the e s t ima te of the source a c t i v i t y from 

A« ( c t / [SM(«0. E ] 
where 

Cy = the sum of the top de t ec to r counts 

CB = the sum of the bottom de t ec to r counts 

E = the express ion from s tep 3 

GM(d) = the geometric mean of the c a l i b r a t i o n func t ions f o r each 
d e t e c t o r . This i s assumed to be independent of po in t source 
dep th , although i t does depend upon the phantom t h i c k n e s s . 

5. The a c t i v i t y es t imate j u s t found wi l l be , a t wors t , an upper l i m i t 
to the t r u e source a c t i v i t y , provided t h a t a l l the terms in the above 
equation are accura te ly known. There a re th r^e checks which can be 
run t o assume t h a t t h i s upper l i m i t i s only n e g l i g i b l y d i f f e r e n t from 
the t r u e a c t i v i t y . 

a . Check t h e approximations using the method descr ibed in Ap-
pendix I I with the i n f i n i t e s e r i e s . 
b . Since the Tc-99m s u l f u r c o l l o i d should be f i xed in the l i v e r 
and sp l een , check t o see t h a t the a c t i v i t y computed f o r each 
organ decays with a s i x hour half l i f e ( t h i s w i l l not uncover 
sys temat ic e r r o r s ) . 
c . Ex t rapo la te the a c t i v i t y es t imates back t o the time of i n -
j e c t i o n . I f t he value obtained i s somewhat l e s s than the amount 
Withdrawn from the s u l f u r c o l l o i d v i a l f o r the p a t i e n t i n j e c t i o n 
( t h i s number, r a t h e r than the amount i n j e c t e d , i s recorded f o r 
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i nven to ry p u r p o s e s ) , then t h e a c t i v i t y e s t i m a t e i s probably 
c o r r e c t . I f n o t , or i f they a re e q u a l , t he a c t i v i t y e s t i m a t e 
i s probably in e r r o r . 

Even i f a l l t h e s e c o n d i t i o n s a r e met , t h e a c t i v i t y e s t i m a t e may s t i l l 
be in e r r o r due to s y s t e m a t i c e r r o r s . A l so , some random e r r o r might make 
the above t e s t s d i f f i c u l t to i n t e r p r e t . These e r r o r s would i n c l u d e 

1. t h e v a l i d i t y of the assumed t h i c k n e s s dependence on d j only 
2. the accuracy of the assay of t h e c a l i b r a t i o n source 
3. count ing s t a t i s t i c s 
4 . t he accuracy with which the c a l i b r a t i o n functions r e f l e c t ex -
ponen t i a l a t t e n u a t i o n 
5. whether or not t h e a c t i v i t y d i s t r i b u t i o n i s un i fo rm , as has been 
assumed throughout 
6. a p o s s i b l e e r r o r in the way t h e c e l l p a t t e r n i s d e f i n e d . For 
the c a l i b r a t i o n s c a n s , t h e d i s t a n c e from a given c e l l t o ano the r i s 
a c e r t a i n number of c e n t i m e t e r s . For the p a t i e n t s c a n , the d i s t a n c e 
between t he se c e l l s i s the same number of c e n t i m e t e r s , so i f t h e 
p a t i e n t i s not w a t e r - e q u i v a l e n t , t h i s i s a d i f f e r e n t number of mean 
f r e e p a t h s . An e r r o r might r e s u l t , a l though the f a c t t h a t the image 
i s summed over might help minimize i t . This p o s s i b i l i t y needs to be 
checked using a non-symmetric, heterogeneous phantom, bu t the p a t i e n t 
d a t a taken so f a r i n d i c a t e s t h a t t h i s i s no t an impor tan t problem. 

Two of the p a t i e n t s used in t h i s s tudy were of about the same h e i g h t 
and weight as the s t anda rd man model used by Dr. Pos ton , whi le t h e t h i r d 
was t a l l e r and h e a v i e r . For the f i r s t two men, the r a t i o of the dose c a l -
c u l a t e d from equa t ion (1) t o t h a t measured with TLD's was 1 . 7 , whi le f o r 
t h e l a r g e r man, i t was 2 . 6 . This i s a c o n s i d e r a b l e d i f f e r e n c e , a l though 
the c a l c u l a t e d dose i s l a r g e r than t h e measured ( t r u e ? ) dose . All t h r e e 
of t h e checks on t h e a c t i v i t y d e t e r m i n a t i o n we^e made and appeared to be 
adequa te . The r a t e of a c t i v i t y decay implied a h a l f l i f e of s l i g h t l y l e s s 
than s i x hours (> 5 .9 h o u r s ) , t he t e s t on the i n f i n i t e s e r i e s impl ied an 
e r r o r of about 1%, and the a c t i v i t y e x t r a p o l a t e d back t o i n j e c t i o n t ime 
was about 2 . 5 mCi. The a c t i v i t y withdrawn from the s u l f u r c o l l o i d v i a l 
was 3 . 0 mCi in each c a s e ; the d i f f e r e n c e of 0 . 5 mCi may well have been l e f t 
in the s y r i n g e a f t e r i n j e c t i o n ( s p e c i f i c a c t i v i t y of c o l l o i d was a p p r o x i -
mately 10 mCi/ml). This lack of agreement with the doses was d i s a p p o i n t i n g , 
a l though the r e s u l t f o r the h e a v i e r p a t i e n t shows t h a t the t runk s i z e may 
be q u i t e i m p o r t a n t , and could be t h e cause of t h e d i sag reemen t . S t i l l , i t 
was d e s i r e d to make a f u r t h e r check of our methodology, us ing an i r r e g u l a r , 
bu t w e l l - d e f i n e d geometry, i f p r a c t i c a l . In p a r t i c u l a r , t h e photon e n e r g i e s 
seen by the TLD's on t h e p a t i e n t s might not be near enough the same as 
t hose seen on the cube f a c e , and t h e a c t i v i t y e s t i m a t e s might be i n c o r r e c t 
due to a non-uniform d i s t r i b u t i o n , e t c . 

A chance t o do t h i s occured when Dr. Poston informed us t h a t a p h y s i -
cal phantom had been b u i l t which c l o s e l y approximates the mathematical 
phantom desc r ibed in MIRD Pamphlet #5. So we did a s e t of exposures wi th 
t h i s phantom a t ORNL, using the cube problem t o c a l i b r a t e t h e TLD's. In 
a d d i t i o n , a s e p a r a t e exposure was made to account f o r the f a c t t h a t d i f -
f e r e n t TLD's have d i f f e r e n t s e n s i t i v i t i e s , i . e . , each TLD was i n d i v i d u a l l y 
c a l i b r a t e d . Two exposures were made a t ORNL. In one , a group of t h i r t e e n 
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TLD's was exposed to a known a c t i v i t y in the sp leen . In the o t h e r , a 
second group of t h i r t e e n TLD's was exposed to a known a c t i v i t y in the 
l i v e r . With these d a t a , the value of R in (1) could be ca l cu l a t ed and 
compared t o the computer c a l c u l a t i o n , giving the r e s u l t s of Table 2. 

Table 2 

Resul ts of s tandard phantom exposure 

R as computed from TLD read ings ( rads /pho ton) 
Liver 3.445 x 1 0 - 1 4 +11% 
Spleen 2.347 x 10-15 + 13% 
Computer Ca lcu la t ion( rads /pho ton) 
Liver 5.305 x 1 0 ' ] 4 + 12% 
Spleen 4.033 x 1 0 - 1 5 + 26% 
Rat io of R Values(Computer/TLD) 
Liver 5 .305/3.445 = 1 . 5 4 
Spleen 4 . 0 3 3 / 2 . 3 4 7 = 1 . 7 2 

As can be seen , the computer r e s u l t s were l a r g e r than the observed values 
in t h i s case as we l l . The u n c e r t a i n t i e s , which a re due mainly to s t a t i s t i c s 
in the Monte Carlo c a l c u l a t i o n s (cube problem and phantom c a l c u l a t i o n s ) had 
to be extended to two s tandard dev ia t ions be fo re the ranges of values over-
lapped. F u r t h e r , the r a t i o s of R values a re not too d i f f e r e n t from those 
observed with p a t i e n t s , suggest ing a pos s ib l e e r r o r in the computer ca lcu-
l a t i o n s . However,we discovered a p e c u l i a r i t y in TLD readings which looks 
l i k e i t might inc rease the R v a l u e s , when cor rec ted f o r . 

This p e c u l i a r i t y was not iced when the TLD's wi=re given a known dose of 
Cs-137 r a d i a t i o n . The s e n s i t i v i t y of the TLD's in t h i s case was found to 
be 3 counts/mrad, while the cube exposure to Tc-99m gave a s e n s i t i v i t y of 
4 counts/mrad. This should not be the case ; these s e n s i t i v i t i e s should be 
equal . The dose r a t e from the Cs-137 source has been checked by two inde-
pendent methods, and appears to be c o r r e c t . However, the a c t i v i t y of Tc-99m 
put in the cube was measured with a Squibb Model CRC-6A dose c a l i b r a t o r , 
and might be in e r r o r . The readings of the dose c a l i b r a t o r seem to be con-
s i s t e n t (accounting f o r the e a r l i e r ve r i f i c -a t ion of the cube problem), but 
s ince the a c t i v i t y assays a t ORNL were done by ORNL personnel using d i f -
f e r e n t equipment, our assays might be i n c o n s i s t e n t with t h e i r s , a f f e c t i n g 
the value of R ca lcu la t ed from TLD read ings . We plan to do a cross-check 
of assays with ORNL to see i f t h i s i s the case , and make f u r t h e r i n v e s t i g a t i o n 
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with Dr. Poston i f b e t t e r agreement between the TLD measurements and the 
computer c a l c u l a t i o n s cannot be found. In a d d i t i o n , severa l more p a t i e n t 
s t u d i e s w i l l be done t o b e t t e r eva lua te (1 ) . 
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d. Pos i t ron T ime-o f -F l igh t Imaging System - f e a s i b i l i t y s tudy 

We have under taken, in co -ope ra t ion with t h e Nuclear Physics Group of 
Vanderb iH a f e a s i b i l i t y s tudy t o determine of c u r r e n t s t a t e - o f - t h e - a r t 
r a d i a t i o n de t ec t ion systems make t i m e - o f - f l i g h t p o s i t r o n imaging a c l i n i c a l 
p o s i t r o n a n n i h i l a t e they produce 2 a n n i h i l a t i o n quanta of approximate ly 0 .511 
MeV which by the P r i n c i p l e of t h e Conservat ion of Momentum must go in 
d i r e c t i o n s a t an angle of 180° with r e s p e c t t o one a n o t h e r . The re fo re using 
2 d e t e c t o r s and coincidence techniques one can determine t h e l i n e a long which 
t h e a n n i h i l a t i o n occurred un ique ly . This p roper ty has allowed Browne!! and 
severa l o the r groups to develop r a t h e r -.omplicated p o s i t r o n imaging sys tems. 

I f t h e a n n i h i l a t i o n does not occur e q u i d i s t a n t from t h e 2 d e t e c t o r s , then 
t h e photons wi l l have s l i g h t l y d i f f e r e n t a r r i v a l t imes . Light t r a v e l s in a i r 
30 cm i n 10~y sec (1 nano s e c ) . T h e r e f o r e , i f ones d e t e c t i o n system i s capable 
of r e so lv ing time d i f f e r e n t i a l s of a few t en th s of a nano second the s p a c i a l 
r e s o l u t i o n s wi l l be adequate t o do medical imaging of the p o s i t r o n d i s t r i b u t i o n . 
This technique i s r e f e r r e d t o as t i m e - o f - f l i g h t p o s i t r o n imaging. 

We have performed a p re l iminary experiment t o determine how a c c u r a t e l y wy 
could determine the p o s i t r o n d i s t r i b u t i o n f o r va r ious source c o n f i g u r a t i o n s 
using d i f f e r e n t i a l t i m e - o f - f l i g h t t echn iques . The experimental s e t - u p i s 
schemat i ca l ly shown in Figure 1* The incoming quanta a re converted t o s c i n t i l l a 
t i o n photons in the p l a s t i c (NE 111) s c i n t i l l a t o r and then converted t o an 
e l e c t r i c a l pulse by the Pho tomul t ip l i e r tube . The c o n s t a n t f r a c t i o n device then 
r e l a t e s t h e pulse to a t ime measurement and t h e two t imes from the two p a r a l l e l 
systems a r e then compared and converted t o a v o l t a g e in the TAC,. This ca n o e 
d i sp layed on a mult ichannel ana lyze r . Each channel then corresponds to a 
given time d i f f e r e n t i a l between the a r r i v a l of the two quanta a t t he d e t e c t i o n 
system. Signals a re a l s o taken o f f t h e l a s t dynode a f t e r a m p l i f i c a t i o n and 
pu t through a pulse height ana l yze r . By t h i s energy d i s c r i m i n a t i n g one can 
con t ro l the s i z e of accepted pu l ses seen by a c o n s t a n t f r a c t i o n dev ice which may 
then more accu ra t e ly r e s o l v e t h e t iming of t h e even t . One then observes a 
t iming spectrum on t h e MCA whose p o s i t i o n corresponds to the p o s i t i o n of the 
source and of width determined by the t ime broadening caused by the d i f f e r e n t 
components of the d e t e c t i o n system. We f e e l t h a t t he equipment we have 
ga thered f o r t h i s p re l iminary experiment was t r u e s t a t e - o f - t h e - a r t equipment 
a l though we a l so f e e l t h a t due to the p re l imina ry na tu re of what has been done 
thus f a r , we should be ab le t o improve our t iming spectrum ( t iming r e s o l u t i o n ) 
somewhat. 

• 

In o rde r to a s s e s s t h e medical u t i l i t y of t h i s system, we propose t o c a r r y 
ou t a number of r e a l i s t i c phantom s t u d i e s s i m u l a t i n g , in p a r t i c u l a r , l e s i o n s 
of the b r a i n . If t he phantom s t u d i e s prove encouraging, experiments w i l l be 
c a r r i e d ou t in animals with exper imenta l ly c r e a t e d l e s i o n s . 

*The pho tomul t ip l i e r tubes a r e on loan from RCA; much of the e l e c t r o n i c s i s 
t h e p rope r ty of t h e Vanderb i l t Nuclear Physics Group and t h e Oak Rige UNISOR 
Group. 
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Figure 1. Block Diagram of Pos i t ron Time-of -Fl igh t Imaging System 
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2. S p e c i f i c P ro jec t s 
a . Dosimetry of New Tc-99m l abe l l ed Lung Scanning Agents in 

Abnormals 
Resul ts from a p i l o t study on p a t i e n t s rece iv ing Tc-99m macro-aggregated 

albumin f o r lung scans indicated t h a t the b io log ica l r e t e n t i o n of t h i s mate r ia l 
In the lung was much longer than previous ly had been b e l i e v e d . Since t h i s 
t e s t i s a widely used c l i n i c a l procedure we decided to determine the r a d i a t i o n 
dose assoc ia ted with these s tud ies by c o l l e c t i n g q u a n t i t a t i v e data on 
b io log ica l tu rnover . 

During the l a s t year we ca r r i ed out s t u d i e s on 12 normal v o l u n t e e r s . Each 
volunteer was administered 500 nCi (one-quar te r of the recommended dose) of the 
Tc-99m l abe l l ed compounds. Whole body scans and blood samples were taken a t 
1, 3 , 6, and 24 hours pos t i n j e c t i o n . From these data the r a d i a t i o n dose to the 
t o t a l body, lungs and gonads v/ere c a l c u l a t e d . During the next year we propose 
to cont inue these s tud i e s to include a group of approximately 12 abnormal 
sub j ec t s fol lowing the same protocol as was used f o r normal s u b j e c t s . 

Figures 1 and 2 show the averaged b io log i ca l r e t e n t i o n data from the normal 
s t u d i e s . Figure 1 i s f o r the group adminis tered the conmercial ly prepared 
macro-aggregated albumin. The t o t a l body and lung r e t e n t i o n data a r e descr ibed 
by the fol lowing equa t ions : 

_ Q . 6 9 3 * 
Total Body: fltf s / Q Q e ( r s . 0 . 9 7 ; 

. , - S i l i i ? Lungs: L (-6) - V3.8 G v ^ +0.50 Cf- - o . ?6 ) 

Figure 2 i s t he data from the group adminis tered the l a b e l l e d albumin 
microspheres. The macroaggregate data f o r both the t o t a l - b o d y and lung data 
show behavior s i m i l a r to the microsphere da t e : 

Total Body: = / G O e c ^ -

Lungs: = e " " 2 ^ + o . « o O - - - 0 . 9 o ) 

The da ta shown g raph ica l ly in Figures 1 and 2 a r e shown in t a b u l a r form in 
Tables 1 and 2. The e r r o r s were ca l cu l a t ed based on the spread in the obse rva t ions . 
We have made our dosimetry c a l c u l a t i o n s assuming the r a d i o a c t i v e source t o be 
uniformly d i s t r i b u t e d in the lungs obeying the b io log ica l r e t e n t i o n equat ions 
shown above. For the a c t i v i t y not r e s id ing in t he lungs , we have assumed i t to 
be uniformly d i s t r i b u t e d in the t o t a l body and obeying t he fo l lowing equa t ion : 

~ TB(A) = A(t) - L ( t ) , 

where A(t) i s the equation descr ibing the t o t a l body a c t i v i t y ( including lungs) 
and L( t ) i s the lung a c t i v i t y . The cumulative a c t i v i t y A(t) f o r the t o t a l 
body and lungs f o r both radiopharmaceuticals a re shown in Table 3. Table 4 
shows the r e s u l t i n g dose equivalent mCi/day. Tables 5 and 6 show the r e s u l t s 
of the dose es t imates to the t o t a l body, lungs , ovar ies and t e s t e s assuming 
r ad i a t i on sources in the lungs and t o t a l body. 
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Upper l i m i t s on t h e s e l f dose t o the H v e r and sp leen were es t imated 
assuming each organ t o have a 5% uptake ( the approximate mean of t h e observed 
d a t a ) with l o s s due to r a d i o a c t i v e decay on ly . The es t ima ted doses a r e as 
f o l l o w s : 

D^-fver Liver — m r e n , / m C l " adminis te rd 
< 143.8 mrem/mCi admin i s t e r ed . Spleen Spleen — 

The raw data der ived from t h e q u a n t i t a t i v e whole-body scan a r e p resen ted 
in Tables 7 and 8 . 
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Table 1 

HACROAGGREGATED ALBUMIN (GROUP MEAN) 

T i m e Total 
j(iaurs) Bodv Lunqs Liver Soleen Blood 

.25 2 . 3 t 0.6 
1 100 86.5 t 1.3 1.1 ± 0.2 1.6 ± 0.7 5.5 ± 2.6 
3 98.1 t .9 79.6 1 1.8 1.5 i 0.2 2.2 t 0.7 5.2 ± 0.9 
6 87.1 t 2.4 67.5 t 1.4 2.2 ± 1.4 2.8 i 0.8 6.5 ± 1.6 

2 4 7 3 . U ± 14.8 52.3 t 12.2 4.5 ± 1.2 4.8 1 1.0 3.2 ± 1.7 

Table 2 

ALBUMIN MICROSPHERES (GROUP MEAN) 

(hours) Body Lungs Liver Spleen Blood 

.25 * 2.3 ± 0.6 
1 100 82.3 ± 4.6 1.9 i 0.4 1.6 t 0.7 5.5 ± 2.6 
3 98.1 ± 0.9 68.5 + 4.5 2.8 ± 1.0 2.2 1 0.7 . 5.2 ± 0.9 
6 81.4 t 6 .0 54.7 ± 3.7 3.0 ± 1.0 2.8 ± 0 .8 6.5 1 1.6 

2 4 70.4 t 12.0 45.1 i 6.5 6.8 ± 2.9 4.8 £ 1.0 3 .2 t 1.7 

Table 3 
Cumulative Activity 

mC1 Days 
Administered Dose in mCi 

Total Body lungs 

TC-99ITI Albumin Macroaanreaate 0.074 0.248 

Tw-99m Albumin Microspheres 
0.177 

0.169 

Table 4 

., m rem 
net day 

Tc-99m 

^ S o u r c e 
Total Body Lunqs 

Total Body 46.9 48.5 

Lunqs 47.0 12E0.0 

Jvarles 57.2 22.7 

Testes 39.8 .019 
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Table 1 

m rem 
' nCI Administered 

Tc-99m Albumin Macroaggregate 

s^Source 
Total Bodv Lunqs 

Total Body 3.47 12.03 

.unas 3.48 312.48 

)var1es 4.23 5.63 

Testes 
2.95 

.0047 

Table 6 

_ ,w.reir i 
nC1 Administered 

Tc-99m Albumin Microspheres 

Source 
Target Total Body Lunqs 

total Body 8.30 8.20 

Lunqs 8.32 212.94 

}varies 16.12 3.84 

Testes 
7.04 ! 

.0032 
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Table 1 
ALBUMIN MICROSHPERES 

PERCENT OF ADMINISTERED ACTIVITY 

Patient 
(hOUM) 

T. Body Lungs Liver Spleen Blood 

H.S. .25 100 . 10.5 
1 100 84.7 2.0 1.0 16.0 
3 92.9 73.6 3.2 1.5 15.9 
6 80.7 59.2 3.1 1.6 14,3 

24 68.2 48.7 7.1 2.7 7.1 

M.C. ."25 100 _ „ m 8.51 
1 100 86.3 2.5 1.0 12.25 
3 96.3 70.7 4.0 1.7 14.9 
6 73.4 51.3 4.2 1.9 14.9 

24 71.8 45.3 10.7 4.9 7.6 
V.R. .25 100 _ m 9.5 

1 100 76.6 1.7 1.9 12.9 
3 95.0 63.7 2.1 2.9 15.7 
6 87.7 53.2 3.0 3.7 13.8 

24 85.2 50.6 5.5 5.0 8.5 

P.C. .25 100 _ _ m 13.7 
1 200 80.7 1.5 1.7 17.7 
3 91.3 65.8 2.0 2.1 21.5 
6 83.6 55.1 1.8 2.8 19.1 

24 56.3 35.9 4.0 2.6 10.5 

Table 8 

MACROAGGREGATfD ALBUMIN 
PERCENT OF ADMINISTERED ACTIVITY 

Patient Time T, Body Lungs Liver Spleen Blood 
(hours) 

KfT. .25 ioo - - -
1 100 87.6 .09 1.0 4.a 
3 97.0 81.4 1.5 1.5 6.0 
6 8«.8 68.2 2.0 1.8 7.7 

24 82.5 62.4 3.4 3.6 5.6 

B.C .25 100 - - 2.9 
1 100.0 86.0 1.0 V 1.3 4.7 
3 99.0 80.7 1.3 1.8 5.2 
6 86.2 67.4 2.1 2.6 7.1 

24 77.7 53.2 4.5 5.8 3.4 

O.P. .25 100 • • m 1.9 
1 100 88.2 1.2 1.5 3.5 
2 97.8 77.7 1.7 2.6 5.5 
6 86.7 65.7 2.6 3.7 4.7 

24 50.9 34.9 4.0 4.6 1.8 

O.K. .25 100 • _ m 1.7 
1 100 84.2 1.3 2.5 9.2 
3 98.4 78.5 2.5 3.0 4.0 
6 90.5 68.8 2.0 3.2 . 

24 80.7 58.5 6 .1 S.3 2.1 
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b . Fe-59 Dosimetry - Abnormals 

Recognizing t h e need f o r dos imet ry da t a f o r abnormal s u b j e c t s , we a t V a n d e r b i l t 
a r e us ing our fund of abnormal p a t i e n t s combined with c l i n i c a l and r e s e a r c h 
I n s t r u m e n t a t i o n designed to c o l l e c t q u a n t i t a t i v e i n f o r m a t i o n t o o b t a i n organ 
r e t e n t i o n da ta by e x t e r n a l c o u n t i n g . These s t u d i e s a r e ve ry d i f f i c u l t t o 
conduc t , e s p e c i a l l y i n very i l l p a t i e n t s ; however, t h e s e da ta a r e badly needed and 
s i g n i f i c a n t e f f o r t i s devoted t o t h e s e s t u d i e s . 

The MIRD Committee i n t h e United S t a t e s i s c o l l e c t i n g d a t a from l a b o r a t o r i e s 
doing dos imet ry s t u d i e s and analyz ing t h e new da ta a long wi th wel l -documented 
l i t e r a t u r e d a t a . In t h e p a s t v/e have supp l i ed t h e MIRD Committee wi th e x t e n s i v e 
d a t a on a number of r a d i o p h a r m a c e u t i c a l s and a r e con t inu ing our r e l a t i o n s h i p . 
C u r r e n t l y we a r e a member (R. P r i c e ) of t h e t a s k group charged to c o l l e c t da t a 
on Fe-59 and 1-131 i o d o c h o l e s t e r o l . Data c o l l e c t e d at V a n d e r b i l t w i l l be merged 
wi th da ta from t h e U n i v e r s i t y of C a l i f o r n i a (Donner Labora to ry ) t o c r e a t e a 
s i n g l e da t a base . The c u r r e n t p lan of t h e t a sk group i s t o use t h e V a n d e r b i l t 
SAAM-25 Iron k i n e t i c s model f o r t h e c a l c u l a t i o n of t h e cumula t ive organ a c t i v i t y 
f o r t h e compiled d a t a . 

The Var iderbi l t SAAM-25 model was p resen ted in l a s t y e a r s 1 r e p o r t . The f low r a t e s 
and t h e de r ived dose e s t i m a t e s f o r normals and a number of s e l e c t e d abnormals 
were a l s o p r e s e n t e d . A more complete r e p o r t of the k i n e t i c model pa ramete r s a r e 
p r e sen t ed in an IAEA p u b l i c a t i o n which i s inc luded as an appended document. In 
c o o p e r a t i o n wi th Dr. Krantz in t h e Department of Hematology we a r e c o n t i n u i n g to 
s t u d y a v a r i e t y of p a t i e n t s with v a r i o u s hematologic d i s e a s e s . We propose to 
c o n t i n u e t h e s e measurements dur ing t h e next y e a r in o r d e r t h a t a more complete 
sampling of t h e r a d i a t i o n dose d i s t r i b u t i o n may be o b t a i n e d . Dose e s t i m a t e s 
f o r abnormals have shown l a r g e v a r i a t i o n s from t h e normal v a l u e s . 

In our c a l c u l a t i o n s we have inc luded t h e source organs and t a r g e t organs 
shown i n Table 1. We have taken t h e b lood source d i s t r i b u t i o n to be i d e n t i c a l 
t o t h e t o t a l body. In o r d e r t o c a l c u l a t e the blood s e l f - d o s e we have ignored 
t h e e f f e c t s of p e n e t r a t i n g r a d i a t i o n and assumed t h e pr imary dose c o n t r i b u t i o n 
t o be from nonpene t r a t i ng r a d i a t i o n . In t hose s t u d i e s where measurements were 
made f o r p e r i o d s £ 4 5 d a y s , t h e organ e f f e c t i v e h a l f - l i f e v/as taken t o be equal 
t o t h e phys i ca l h a l f - l i f e . 

Table 1 was e x t r a c t e d from ORNL Report No. 5000 e n t i t l e d "A T a b u l a t i o n of 
Dose Equ iva len t per pCi-day f o r Source and Targe t Organs of an Adul t f o r 
Var ious Radionuc l ides by W.S. Snyder , e t , a l . 

Tab le 2 i s a summary of our r e s u l t s f o r a group of abnormals and our ave rage 
normal . The t a b l e i s subdiv ided so t h a t the f r a c t i o n a l dose t o each t a r g e t organ 
f rom each source organ may be found . The t o t a l t a r g e t dose r e s u l t i n g from a l l 
sou rce s i s a l s o r eco rded . 

Table 3 c o n t a i n s t h e l i s t of t h e working d i a g n o s i s of t h e p a t i e n t s p r e s e n t e d 
1n Table 2 . In a d d i t i o n t h e range of t h e s e dose e s t i m a t e s a r e compared t o t h e 
1973 r e p o r t from t h e Free U n i v e r s i t y of B e r l i n . 
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Table 1 

Dose Equivalent /Microcur ie-day 
(rem/pCi-day) 

T A R G E r ^ ^ 
LIVER SPLEEN MARROW TOTAL BODY 

LIVER 8 .13 x 10"3 2. 13 x 10"4 2 .01 x ID"4 4 .25 x 10- 4 

SPLEEN 2.12 x 10"4 5. 77 x 10~2 2 .02 x ID"4 4 .11 x 
- 4 10 * 

R. MARROW 1.97 x 10"4 2. 15 x 10~4 4.74 x ID"3 3 .91 x W 4 

OVARIES 1 .73 x 10"4 1 . 15 x 10"4 5.81 x ID"4 3 .98 x 1 0 ' 4 

TESTES 4 .36 x 10"5 2. 42 x 10"5 6 .68 x ID"5 4 .14 x I D ' 4 

TOTAL BODY 4 .13 x 10"4 4. 12 x 10~4 3.94 x ID"4 3 .66 x i o - 4 

\ 
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Table 2 

Radiation Dose In mrad per pCI of 
Fe-59 Ferrous Citrate Administered I.V. 

SOURCE TARGET A(F1 BfFl C(F1 0(H) E(M) FfM) 6 m ) H(F) 1(F) JfH) K M ) 

Liver Liver . 211.0 106.0 158.0 158.0 132.0 158.0 317.0 370.0 106.0 422.0 53.0 
Spleen K 0.8 1.0 0.6 1.0 0.8 1.0 0.8 0.3 3.0 1.0 0.6 
Harrow » 0.4 0.4 1.0 0.1 0.6 0.9 0.0 0.1 8.0 0.1 1.0 
Bleed m 7.0 8.0 22.0 2.0 11.0 17.0 0.6 1.0 6.0 3.0 22.0 
Total 219.2 115.4 181.6 161.1 144.4 176.9 318.4 3*1.9 I 2 0 ' 426.1 76.6 

Liver Spleen 6.0 3.0 4.0 4.0 3.0 4.0 8.0 10.0 3.0 11.0 1.0 
Spleen M 225.0 299.0 150.0 263.0 225.0 374.0 225.0 225.0 750.0 299.0 150.0 
Marrow » 0.4 0.4 1.0 0.1 0.6 0.9 0.0 0.1 8.0 0.1 1.0 

SBlood « 7.0 8.0 21.0 2.0 11.0 16.0 0.5 1.0 5.0 3.0 21.0 
Total 238.4 310.4 176.0 269.1 239.6 394.9 233.5 • 236.1 "766.0 1313.1 173.0 

Liver Red Harrow 5.0 3.0 4.0 4.0 3.0 4.0 8.0 9.0 3.0 10.0 1.0 
Spleen • * 0.8 1.0 1.0 0.8 1.0 0.8 0.8 3.0 1.0 0.6 
Harrow • « 9.0 10.0 27.0 3.0 14.0 21.0 0.7 2.0 184.0 3.0 27.0 
Blcod • • 6.0 8.0 20.0 2.0 10.0 15.0 0.5 1.0 5.0 3.0 20.0 
Total 20.8 22.0 51.6 10.0 27.8 41.0 10.0 12.8 195.0 17.0 48.6 

Liver Total Body 11.0 5.0 8.0 8.0 7.0 8.0 16.0 19.0 5.0 21.0 3.0 
Spleen • a* 2.0 2.0 1.0 2.0 2.0 3.0 2.0 2.0 5.0 2.0 1.0 
Harrow n • 0.7 0.9 2.0 0.2 1.0 2.0 0.1 0.1 15.0 0.3 2.0 
Blood • • 6.0 7 0 19.0 2.0 10.0 14.0 0.5 1.0 5.0 2.0 19.0 
Total "ITT ' 14.9 30.0 12.2 20.0 27.0 18.6 22.1 30.0 25.3 25.0 

Liver Gonads 4.5 2.2 3.4 0.8 0.7 0.8 1.7 7.9 2.2 2.3 0.3 
Spleen * 0.4 0.6 0.3 0.1 0.1 0.2 0.1 0.4 1.5 0.1 0.1 
Harrow • 1.1 1.3 3.4 0.0 . 0.2 0.3 0.0 0.2 22.6 0.1 0.4 
Blood • 6.5 7.8 20.7 2.7 10.7 16.1 0.5 1.3 5.2 2.7 21.5 
Total "12.5 11.9 27.8 3.1 " h . / 17.4 " 2.3 ' 9.6 31.5 " 5.2 22.1 

Blood* Blood 16.4 19.7 52.6 5.2 26.3 39.4 1.3 3.3 13.1 • 6.6 52.6 

•non-penetrating dose only 



Table 1 

P a t i e n t 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 

Diagnosis 

Pure red c e l l a p l a s i a 
Red c e l l a p l a s i a ( in r emiss ion) 
Red c e l l a p l a s i a ( in r emiss ion) 
Suspected red c e l l a p l a s i a 
Suspected red c e l l a p l a s i a 
Suspected red c e l l a p l a s i a 
Suspected red c e l l a p l a s i a 
Ref rac to ry anemia 
Ref rac to ry anemia-marrow s t o r a g e d i s e a s e 
Ref rac to ry a n e m i a - l i v e r s t o r a g e d i s e a s e 
Normal 

Liver 

Summary (mrad/uCi) 

Red Marrow Gonads Blood Total Body 

Vanderb i l t 77-426 173-395 10-195 2-32 1 - 5 3 12-30 

Ber l in (1973) KO 130 - 27 22 22 

\ 
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c . Dosimetry of 1-131 Hippuran in B i - l a t e r a l and Transplant Renograms 

The 1-131 l a b e l l e d hippuran renogram has been a r o u t i n e l y - u s e d c l i n i c a l 
t e s t t o a s sess renal f u n c t i o n f o r a number of y e a r s . We have been i n v e s t i g a t i n g 
t h e c a l c u l a t i o n of the r a d i a t i o n dose a s s o c i a t e d with t h e s e s t u d i e s f o r p a t i e n t s 
wi th two kidneys ( b i - l a t e r a l ) and t r a n s p l a n t p a t i e n t s . The t r a n s p l a n t p a t i e n t 
p r e s e n t s a p a r t i c u l a r l y i n t e r e s t i n g problem in t h a t r ena l f u n c t i o n may vary 
d r ama t i ca l l y from e s s e n t i a l l y no f u n c t i o n to normal f u n c t i o n w i th in a ma t t e r of 
a few weeks. At Vanderb i l t Medical Center t h e r e i s a very a c t i v e t r a n s p l a n t 
program with an average of 4-6 i n - p a t i e n t s under cons t an t s tudy and obse rva t i on 
a t any t ime. As a p a r t of the pos t ope ra t i ve p rocedures , the t r a n s p l a n t 
p a t i e n t s have 1-131 hippuran renograms performed every o t h e r day u n t i l t h e acu te 
r e j e c t i o n period i s passed and then l e s s f r e q u e n t l y f o r an extended per iod on 
an o u t p a t i e n t s b a s i s . 

In o rde r to ca r ry out t he se s t u d i e s we have employed a mathematical model 
t o f i t the data from the p a t i e n t s t u d i e s and to s i m u l a t e t h e hippuran k i n e t i c s 
In s i t u a t i o n s where the renal f u n c t i o n va r i ed from no f u n c t i o n to complete ly 
normal f u n c t i o n . Using these c a l c u l a t i o n s we a r e con t inu ing t o make dose 
ext imates on s p e c i f i c p a t i e n t s and a r e making dose e s t i m a t e s as a f u n c t i o n of 
renal f u n c t i o n from t h e model s i m u l a t i o n s . 

The model we have chosen was adapted from t h e model suggested by Lindmo, 
e t . a l . and i s shown schemat ica l ly below: 

5: Bladder 

P a t i e n t data were c o l l e c t e d by means of an Anger Camera placed a n t e r i o r l y 
over the kidneys and b l adde r . In a d d i t i o n a s t a t i o n a r y probe i s p laced over 
t h e h e a r t to monitor t h e blood pool a c t i v i t y . A second probe i f needed i s 
p laced over the b ladder c a t h e t e r when one i s p r e s e n t i n o rde r t h a t t he t o t a l 
b ladder a c t i v i t y may be measured. 
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Using t h e f low parameters shown in Table 1 f o r normal r e n a l f u n c t i o n , t h e 
va lues of the rena l up take ( A 3 1 + A41) and e x c r e t i o n ( X 5 4 ) r a t e s a r e s lowly 
v a r i e d and t h e r e s u l t i n g renograms were g e n e r a t e d . 

Two such s imula ted renograms a r e shown in F i g u r e 1 . The upper cu rve i s 
f o r t h e extreme case where the kidney r e t a i n e d a normal e x t r a c t i o n o r up take 
w h i l e t h e e x c r e t i o n c a p a b i l i t y was comple te ly l o s t . The lower curve d i s p l a y s 
a normal f u n c t i o n . The r a d i a t i o n dose de r ived from t h e s e two s i m u l a t i o n s i s 
shown i n Table 2. Although t h e maximum dose of 45 r a d s i s p o s s i b l e , none of 
t h e t r a n s p l a n t p a t i e n t s we have measured have e s t i m a t e s g r e a t e r than 3 r a d s . 

In t h e c l i n i c a l environment t h e t r a n s p l a n t p a t i e n t i s s t u d i e d every o t h e r 
day u n t i l normal or a c l i n i c a l l y adequa te f u n c t i o n i s r e a c h e d . A s e t of 
t y p i c a l t r a n s p l a n t renograms cover ing a two weeks pe r iod i s shown in F igure 2. 
For each p a t i e n t f low parameters a r e computed and t h e r a d i a t i o n dose i s 
c a l c u l a t e d from t h e 30 minute renogram data p lus t h e measured "residual a c t i v i t y 
p r i o r t o each succes ive s t udy . F igure 3 shows t h e comparison of t h e computer 
model c a l c u l a t i o n s t o t h e observed da ta shown in F igu re 2 a t Day 10. As p a r t 
of t h e model c a l c u l a t i o n s , t h e computer u t i l i z e d da ta f o r t h e blood pool 
c l e a r a n c e of the 1-131 hippuran as moni tored by a probe p o s i t i o n e d over t h e 
h e a r t . These da t a a r e shown i n F igu re 4 . 

D?ta f rom each p a t i e n t was summarized as a f u n c t i o n of t ime p o s t t r a n s -
p l a n t a t i o n and t h e average r a d i a t i o n dose t o t h e kidney was c a l c u l a t e d . A 
t y p i c a l p l o t of kidney dose v e r s u s t ime a f t e r t r a n s p l a n t a t i o n i s shown in 
F igure 5 . The upper curve corresponds to a ca se where t h e kidney responded 
very s lowly and consequent ly r e s u l t e d in cont inued l a r g e kidney doses f i n a l l y 
converging t o t h e normal r a d i a t i o n dose of approximate ly 60-80 mrads . The 
lower curve was ob ta ined from a p a t i e n t who resoonded r a t h e r q u i c k l y and 
approached normal f u n c t i o n w i t h i n 12-14 days . D i f f i c u l t y a r o s e t n e s t i m a t i n g 
t h e e x c r e t i o n parameter which corresponded t o washout h a l f - t i m e ' s from 2-8 hours . 
For t h e s e s t u d i e s t h e 30 minute renogram was inadequa te t o de te rmine a non-
zero washout r a t e whi le t h e r a t e s were in f a c t f a s t enough t o b r ing t h e 
r e s i d u a l t o <1% of t h e i n j e c t e d dose when measured a t t h e 48 hour renogram. For 
t h e s e cases we have es t ima ted t h e mean dose t o be : 1 . 0 ± 0 . 6 r a d s 

The range of r a d i a t i o n doses t o t h e kidney dur ing t h e f i r s t 1 - 3 days 
u s u a l l y ranged from 1 - 8 r a d s . A f t e r t h i s t i m e , dose e s t i m a t e s ranged from 
0 . 1 o r about normal to t h e maximum f o r t hose kidneys which f a i l e d t o f u n c t i o n . 
Dose e s t i m a t e s t o t h e gonads and b ladder a r e a l s o be ing c a l c u l a t e d . These 
s t u d i e s w i l l be extended t o an e x t e n s i v e s tudy of p a t i e n t s v iewing b i - l a t e r a l 
renograms i n o rde r t o r e l a t e the absorbed dose t o f u n c t i o n impa i r i ng kidney 
d i s e a s e as well as t o r e n a l o b s t r u c t i o n . 
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Table 1 

TRANSPLANT KIDNEY MOOEL PARAMETERS 

FOR NORMAL FUNCTION 

X l 2 X l 2 0.095/m1n 

0.072 
* 3 i 0.092 
X43 0.388 
Xs4 0.500 

Table 2 

1-131 HIPPURAN REROGRAM 
(50AC1 Dose) 

Dose In rads to the kidney 
formal Function . 0.f)7R 
(0 Excretion 44.9 

u m n « w n 
M t x a n i M 

* J 

W i n «CTi«in 
MCtU rJXCTlM . 

1 

ii i i i u i n i i i M l u i u i i u i u u i n i * 

Figure 1. 
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d. Dosimetry of Tc-99m Labelled Pyrophosphates 

Much i n t e r e s t has been shown r e c e n t l y in Tc-99m Pyrophosphate as both a 
new bone scanning agent and as an agent f o r a s ses s ing myocardial i n f a r c t i o n s . 
I n i t i a l da ta i n d i c a t e t h a t the blood t o bone r a t i o may be improved f o r Tc-
pyrophosphate r e l a t i v e t o t h e more r o u t i n e l y used agent Tc-polyphosphate . 
I n i t i a l da ta on s h o r t term blood c l ea rance and u r i n a r y e x c r e t i o n e x i s t ; however, 
long term b i o l o g i c a l r e t e n t i o n data a re not a v a i l a b l e . We propose t o s tudy 8-10 
vo lun tee r s during the next year according t o the protocol shown in Table 1. 
These vo lun tee r s w i l l be s e l e c t e d from p a t i e n t s r e f e r r e d to the Divis ion of 
Nuclear Medicine f o r r o u t i n e bone scans . A f t e r informed consent has been 
obta ined t h e p a t i e n t wi l l be fol lowed f o r 48 hours pos t i n j e c t i o n using t h e whole 
body coun te r , whole body scanner , blood samples, and s c i n t i l l a t i o n camera 
images. P r e l i m i n a r i l y r e s u l t s from a p i l o t s tudy a re shown in Figures 1 and 2 . 
These data reveal a mult i component blood disappearance curve and a t o t a l body 
curve c o n s i s t i n g of a t l e a s t two components. The s h o r t e s t of t h e two components 
f o r the t o t a l body has a T^ of 3-6 hours while ti ie longer i s >,72 hours . 

Although both of t h e two p re l iminary s t u d i e s showed s i m i l a r behavior a s t o 
the number of exponent ial components or compartments and the s i z e s of t h e 
washout r a t e c o n s t a n t s , the i n i t i a l d i s t r i b u t i o n of the pyrophosphate appears 
t o be d i f f e r e n t . The f r a c t i o n in the rapid compartment was 0 .75 in one s tudy 
whi le i t was found t o be 0 .55 in the o t h e r . S i m i l a r l y the slow compartments 
showed 0 .25 and 0 . 4 5 , r e s p e c t i v e l y . Prel iminary dose e s t ima te s assuming the 
r a d i o a c t i v i t y to be uniformly d i s t r i b u t e d i n t h e t o t a l body dose of 75-90 mrem/mCi 
adminis tered o r 0 .75-0 .90 rem per study with an adminis te red dose of 10/nCi. 

These s t u d i e s a re j u s t beginning and as more data becomes a v a i l a b l e the 
r a d i a t i o n dose to the gonads, s k e l e t o n , b l adde r , red marrow in add i t i on to the 
t o t a l body wi l l be determined. 

TABLE 1 

PYROPHOSPHATE PROTOCOL 

Step 1. Determine plasma volume with 1-125. 

Step 2 . I n j e c t " m Tc-pyrophospha te (15 mCi) and c o l l e c t da ta as per 
protocol below. 

TIME BLMD SAMPLE W.B. SCAN W.B. COUNT PIN-HOLE CAMERA 
THYROID & ANKLE 

,15-20 minutes X X 

2 hours X X 

6 - 8 hours X X X 

24 hours X X X 

48 hours X X X 
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e . Neutron Dosimetry from Fluorescent Thyroid Scanning 

F luorescen t scanning of the thyroid has been performed r o u t i n e l y in our 
department f o r several y e a r s . In t h i s technique the thyro id gland i s i r r a d i a t e d 
po in t -by-po in t by an external source of r a d i a t i o n (Am-241) and the c h a r a c t e r i s t i c 
x - r ays of iodine produced in the thyro id a r e counted by a high r e so lu t i on 
l i t h i u m - d r i f t e d s i l i c o n d e t e c t o r . The r e s u l t i n g image obta ined i s an i n t e n s i t y 
map corresponding to the s t a b l e iodine d i s t r i b u t i o n of the t h y o r i d . One of the 
primary advantages of t h i s system i s the low r a d i a t i o n dose to the p a t i e n t 
(50 m i l l i r a d s to the thyro id and l imi ted to the neck r e g i o n ) . However, i t has 
been pointed out by Robinson, e t . a l . t h a t t he re may a l so be a neutron dose 
a s soc ia t ed with the scanning procedure. This i s due t o the f a c t t h a t the Am-241 
used in such s t u d i e s i s usua l ly encapsulated as a p e l l e t of americium dioxide 
compressed with powdered aluminum as a b inder . Thus the aluminum presen t s a 
t a r g e t f o r the a - p a r t i c l e s emit ted from Am-241 f o r the r e a c t i o n 2 7 A 1 ( a , n ) J 0 P . 
Our f l u o r e s c e n t source c o n s i s t s of 15 disk sources each 0 .75 inches in diameter 
doubly encapsulated in s t a i n l e s s s t e e l . Each source con ta ins 1 Ci of Am-241. 
We were concerned about the p o s s i b i l i t y of a neutron exposure hazard from t h i s 
system and sought to de tec t the presence of a nuetron f l u x and to measure the 
magnitude of the r e s u l t a n t exposure. 

A BF3 propor t ional counter (Deuter Stokes Model RSN-44A) was used f o r the 
de t ec t i on of the neutrons as a Rem counter was not a v a i l a b l e . This counter has 
a thermal neutron s e n s i t i v i t y of 28 coun t s / sec per u n i t thermal f l u x . The 
produced neutrons wi l l possess a spectrum of energ ies up to about 10 MeV. For 
f a s t neut rons , due to the increas ing KERMA with energy and2decreasing q u a l i t y 
f a c t o r , to a good approximation, a f luence of 3 x 104 n/cm i s equ iva len t to a 
dose of 1 mi l l i rem. Therefore a f a s t f l u x of approximately 8n/cm2/sec i s 
equ iva len t to 1 mi l l i rem/hour . 

We observed a miximum count r a t e with with our BF3 d e t e c t o r 20 cps a t 
-17 cm from the Am-241 source (The eyes a re normally about 20-23 cm from the 
source ) . Approximately 5 cm of wax was used to moderate the neut rons . As the 
d e t e c t o r was r a t h e r l a rge (12" a c t i v e l e n g t h , 2 inch diameter) t h e r e a re some 
problems with geometry. However, assuming only 3% of the nuetrons a re the rmal i zed , 
the p a t i e n t dose to the eyes f o r a 20 minute scan i s l e s s than 1 mrem. 

This number i s c o n s i s t e n t with the r e s u l t s of Robinson f o r our d i f f e r e n t 
source conf igura t ion and s t r e n g t h , and i s well wi th in the s a f e region of 
exposures. * 

1 Robinson, E .L . , Hannal, B . 0 . , Bass, W.B., and W i l l s , E.L. Health Physics 
26 (Apr i l ) pp 301-306. 
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f . I n t eg ra t i on of Ultrasound with S c i n t i l l a t i o n Images 

We have previously repor ted an e r r o r due t o s e l f - a t t e n u a t i o n of a depth-
d i s t r i b u t e d source which occurs when one t r i e s to regard the source as being 
equ iva l en t t o ( i . e . , gives the same d e t e c t o r count r a t e as) a po in t source 
of the same a c t i v i t y a t an " e f f e c t i v e " depth wi th in a s c a t t e r i n g medium. 
For an assumed d i s t r i b u t i o n of a c t i v i t y , such as a uniform d i s t r i b u t i o n , t he 
c o r r e c t i o n f o r t h i s e r r o r r equ i res a knowledge of the source t h i cknes s . This 
can be found from emission scan data i f the rad ionuc l ide being counted emits 
a t l e a s t two s t r o n g , we l l - r eso lved photopeaks t h a t a re counted s e p a r a t e l y ; 
however, Tc-99m emits only one. The re fo re , u l t r a s o n i c scans were used t o 
determine the source th ickness f o r t h i s p a r t i c u l a r study (Tc-99m s u l f u r c o l l o i d 
in l i v e r ) . 

The scanner i t s e l f (Unirad Corporat ion) con ta ins both the wave source 
and d e t e c t o r in the same probe. The ul t rasound i s emit ted as pulses which 
e n t e r the body, and those r e f l e c t e d back t o the probe a re analyzed (by the 
scanner e l e c t r o n i c s ) by measuring the elapsed time of the round t r i p f o r a 
p a r t i c u l a r pu l se . From t h i s t ime , the scanner determines the d i s t ance from 
the probe to the r e f l e c t i o n p o i n t , and a l s o records the d i r e c t i o n in which 
the probe i s po in t ing . i3y moving the probe in a plane across a p a t i e n t , 
one gene ra t e s a c r o s s - s e c t i o n a l p i c t u r e of the r e f l e c t i n g s t r u c t u r e s , which 
i s d isplayed on a s to rage tube and photographed f o r l a t e r a n a l y s i s . 

The probe i s mechanically cons t ra ined to f r e e movement in a plane on ly , 
although one can pick whatever plane i s d e s i r e d . For t h i s s tudy , a s e t of 
planes t r ansve r se to the body and i n t e r s e c t i n g the l i v e r were used. Thus 
each p i c t u r e gave a c r o s s - s e c t i o n a l view of a por t ion of the l i v e r (see 
f i g u r e 1 ) , and from the c a l i b r a t e d sca l e on the s t o r a g e tube , an es t ima te 
of the l i v e r th ickness as a f u n c t i o n of pos i t i on was e a s i l y found. 

Locat ion 

Figure 1 . An u l t r a s o n i c scan of t h e l i v e r i s on t h e l e f t , and 
an I n t e r p r e t i v e sketch i s shown on the r i g h t . A 
d i s t a n c e of one cen t imeter on the p i c t u r e cor responds 
t o f o u r cen t imete r s in the p a t i e n t . 
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Since the d i s t ance from the probe to a r e f l e c t i o n po in t i s determined 
from a time measurement, the d i s tance determinat ion depends upon the speed 
of u l t rasound in the r e f l e c t i n g medium. Th is , i n t u r n , wi l l vary from one 
medium to another . Our scanner i s c a l i b r a t ed on the assumption t h a t the 
u l t rasound t r ave led through wa te r , and so would give erroneous r e s u l t s f o r 
media having a d i f f e r e n t propagation speed. To i l l u s t r a t e t h i s , s o l i d 
l u c i t e cubes of d i f f e r e n t th icknesses were scanned, and gave the r e s u l t s 
shown in Table 1. 

True Thickness (cm.) 

2.54 

2 .9 

3 .2 

3 .9 

5 .0 

Table 1. 

Measured Thickness (cm.) 

1.4 

1.7 

1.8 

2.2 

3.0 

True/Measured 

1.8 

1.7 

1.8 

1.8 

1.7 

Average = 1.76 or 1.8 cm. 

Here, the f i r s t column i s the actual cube t h i c k n e s s , the second i s t h a t measured 
from a scan p i c t u r e ; and the t h i r d i s the r a t i o of the f i r s t two, to two 
s i g n i f i c a n t d i g i t s . Since the speed of ul t rasound in l u c i t e i s about 2680 
m/sec . , and only about 1480 m/sec. in water , f o r a r a t i o of 1 .81 , the e r r o r 
above i s mostly due t o t h i s speed d i f f e r e n c e . So, to obta in accura te l i v e r 
t h i c k n e s s e s , one must mul t ip ly the scan-deduced th ickness by the r a t i o of 
t h e speed of ul t rasound in l i v e r (1549 m/sec . ) t o t h a t in w a t e r , a c o r r e c t i o n 
of only 4.8%. 

The generat ion of u l t r a s o n i c p i c t u r e s of s u i t a b l e q u a l i t y caused some 
problem because of the complex r e f l e c t i o n geometry of the body and the a t t enua -
t i o n of pulses as they t r a v e l e d through the body. Ref l ec t ions from the f r o n t 
o f the l i v e r tend to be obscured by t h e many s t rong r e f l e c t i o n s from skin and 
r i b s . Re f l ec t i ons from the back of t h e l i v e r have to cross several acous t i c 
i n t e r f a c e s ( including r i b s and s k i n ) , which makes them both weak and few in 
number. The amplitude of the emit ted pulses can be var ied t o give f a i r l y 
s t rong pulses from deep in the body, but t h i s a l s o increases the i n t e r f e r e n c e 
from r i b r e f l e c t i o n s and m u l t i p l y - r e f l e c t e d p u l s e s , and uoes nothing t o i n -
c r ea se the number of pulses from r e f l e c t i o n s deep in the body. However, t he 
scanner a l so has the a b i l i t y to d i s c r imina t e a g a i n s t pulses on the bas is of 
a r r i v a l t ime, so t h a t i n t e r f e r e n c e from su r face s t r u c t u r e s ( r i b s ) can be 
minimized. This d i sc r imina t ion i s done only on the bas i s of a r r i v a l t imes 
s h o r t e r than a s e t t ime , so m u l t i p l y - r e f l e c t e d pulses can s t i l l be a problem. 
Thus, one must manage between the extremes of ob ta in ing few pulses from 
r e f l e c t i o n s deep in the body, and a "washed out" p i c t u r e from i n t e r n a l r e f l e c -
t i o n in the organ being imaged. The former shows l i t t l e in the way of l i v e r 
shape, as does the l a t t e r . 
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Tr ia l and e r r o r was used to ob ta in p i c t u r e s of s u i t a b l e q u a l i t y . This 
was f a c i l i t a t e d by the ease of genera t ing a p i c t u r e ( $ 30 s e c . ) and lack of 
p a t i e n t d i scomfor t . As more exper ience was gained by the o p e r a t o r , l e s s time 
was requi red to produce acceptable p i c t u r e s . 

To i l l u s t r a t e the e f f e c t of m u l t i p l e r e f l e c t i o n s , a scan of a water 
phantom was made, taking care to keep the probe normal to the bottom of the 
phantom. The r e s u l t i n g image i s shown in Figure 2 , along with an i n t e r p r e -
t i v e drawing. 

^•Phantom 
r - r-z~ Probe Posi t i on 

» / % » 

\ Singly Ref lec ted 

Dnuh1v Ref lec ted 

Tr ip ly Re^lected 

LOCATION 

Figure 2. A "good geometry" u l t r a s o n i c scan of a water phantom, showing 
t h e presence of m u l t i p l y - r e f l e c t e d p u l s e s . 

As can be s e e n , m u l t i p l y - r e f l e c t e d pulses were d e t e c t e d , which due t o t h e i r 
longer a r r i v a l t imes , are displayed f a r t h e r from the probe. The s i ng ly 
r e f l e c t e d pulses are those which made only one round t r i p from the probe t o 
t h e bottom of the phantom and back be fo re being d e t e c t e d . The doubly r e f l e c t e d 
pulses made two round t r ips before d e t e c t i o n , and a re recorded as being from 
a s t r u c t u r e twice as f a r away. S i m i l a r l y , t h e t r i p l y r e f l e c t e d pulses a re 
recorded t h r e e times as f a r away. The m u l t i p l y - r e f l e c t e d pulses could be 
minimized by changing the scanner s e t t i n g s , as shown in Figure 3a. In 
Figure 3b, the same scanner s e t t i n g s were used as in 3a, but the probe was 
r o t a t e d to c rea t e r e f l e c t i o n s from t h e s ides of the phantom. 
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Figure 3. Water phantom scans , showing minimizat ion of mul t ip ly r e f l e c t e d 
pulses (normal incidence) i n ( a ) , and the presence of a r t i f a c t s with non-
normal incidence in (b ) . Both scans were made with the same phantom and 
instrument s e t t i n g s . 

Here, s ing ly r e f l e c t e d pulses were recorded only when the probe was normal 
to the bottom of the phantom, as one might expec t , but severa l a r t i f a c t s 
were produced f o r o the r o r i e n t a t i o n s . Since the a r t i f a c t s a re loca ted be-
yond the phantom, they must be due to complex mul t ip le r e f l e c t i o n s . For 
l i v e r imaging, the ul t rasound must pass through d i f f e r e n t media of i r r e g u l a r 
shape ( s k i n , muscle, r i b s , l i v e r t i s s u e ) , sr a r t i f a c t s due to m u l t i p l e r e -
f l e c t i o n s from r i b s and the a n t e r i o r l i v e r wall might obscure the image of 
the l i v e r boundaries , In judging a p i c t u r e f o r a c c e p t a b i l i t y , t h e n , one 
should be suspic ious of equal ly spaced o r concen t r i c image f e a t u r e s , as well 
as r equ i r ing s u i t a b l e c o n t r a s t . J u s t how much these f a c t o r s a f f e c t the mag-
n i tude of the s e l f - a t t e n u a t i o n co r r ec t i on i s unknown, but the c o r r e c t i o n 
i t s e l f i s expected to be i n the range of 10% to 20%. This corresponds to an 
average l i v e r th ickness of 5" to 8 " , so t h a t u l t r a s o n i c da ta should give a 
reasonable c o r r e c t i o n . 
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g. Solid S t a t e Dosimetry 

The dosimeters used in the Tc-99m s u l f u r c o l l o i d s t u d i e s a re LiF TLD's 
(TLD-100, 1/8" x 1/8" x 0 .035") . Since these a re not ab so lu t e - r ead ing 
dos ime te r s , i t i s necessary to c a l i b r a t e t h e i r l i g h t ou tpu t per u n i t dose 
by empir ical means. The geometry choser, f o r t h i s c a l i b r a t i o n was a uniform 
cube source of Tc-99m, with the dose being computed to a 2" x 2" x 0.035" 
t h i ck s l ab of LiF placed concent r ic to a f a c e of the cube (2" square s l a b 
on 3" square f a c e ) . The dose computation was made with the same Monte 
Carlo technique t h a t was used to c a l c u l a t e p a t i e n t doses , thus al lowing a 
more d i r e c t c a l i b r a t i o n than would be obtained with i o n i z a t i o n chamber 
r ead ings . To check the accuracy of these cube c a l c u l a t i o n s , we compared 
the TLD outpu t /dose f o r the cube problem to t h a t from a "po in t " Tc-99ni 
source and i o n i z a t i o n chamber r ead ings . As repor ted l a s t t ime , t h e s e two 
r e s u l t s were a f a c t o r of th ree a p a r t . 

We consul ted with Dr. J . W. Poston of the Health Physics Division of 
ORNL about t h i s d i sc repancy , and he led i n v e s t i g a t i o n of the accuracy of 
the computer c a l c u l a t i o n s a t ORNL whi le we i n v e s t i g a t e d the accuracy of the 
TLD read ings . As a r e s u l t , the causes of the discrepancy were d iscovered 
and s a t i s f a c t o r y agreement between the cube r e s u l t s and "po in t" source 
r e s u l t s ob ta ined . The d i f f i c u l t i e s were caused by a s u b t l e , but l a r g e , 
e r r o r in the computer c a l c u l a t i o n s , and a s m a l l e r , but s t i l l S i g n i f i c a n t 
e r r o r in t h e TLD read ings . 

B a s i c a l l y , t he computer c a l c u l a t i o n s were in e r r o r due t o a modi f i ca t ion 
designed to reduce the time necessary to ge t good s t a t i s t i c s f o r the t h in 
LiF t a r g e t r eg ion . Monte Carlo methods were used t o f i n d the f l u x ac ross 
the t a r g e t r eg ion , from which the dose was ca l cu l a t ed by a n a l y t i c a l means. 
A f t e r much d i s c u s s i o n , i t was decided to do a c a l c u l a t i o n in exac t ly the 
same manner descr ibed in MIRD Pamphlet #5, i . e . , c a l c u l a t e the dose from 
i n t e r a c t i o n s which occur wi thin the LiF volume. This would se rve as a check 
on the dose c a l c u l a t e d from energy f l u x , and gave the r e s u l t s shown in Table 1. 

Table 1 
-13 

Dose from energy f l u x c a l c u l a t i o n s 1 . 0 5 9 x 10 Rads/photon 

Dose by MIRD #5 method 2.132 x 1 0 - 1 3 Rads/photon 

Dose i n f e r r e d from e a r l i e r "po in t " source -13 TLD readings ' ^ 2 . 8 x 10 Rads/photon 

C l e a r l y , the energy f l u x c a l c u l a t i o n was g r e a t l y in e r r o r , with the d i r e c t 
(MIRD #5) method giving r e s u l t s more in accord with the TLD read ings . The 
reason f o r t h i s e r r o r i s not c l e a r , but in a l l l a t e r c a l c u l a t i o n s , the d i r e c t 
method was used. 

At the same t ime , we discovered an e r r o r in the TLD readings which ac -
counted f o r the remaining d i sc repancy . Our i n v e s t i g a t i o n began with t h e ob-
s e r v a t i o n t h a t whenever a l a rge group of TLD's (> ^50) was read o u t , t he l a s t 
few would read appreciably lower than the f i r s t few by 10-20%. This was t r u e 

44 



r ega rd le s s of the order in which they were r ead , so t h i s decrease was not 
due t o the TLD's themselves. Then a group of ten TLD's was annealed , ex-
posed to 137-Cs y - r a y s , and read o u t , with t h i s cycle repeated twice more. 
The r e s u l t s a re shown in Table 2. 

Oust as intfe i ing as the s teady drop of the TLD-inferred exposures was 
the f a c t t h a t the s tandard dev ia t ion of the TLD readings was \ | T mR f o r 
both the second and t h i r d r eadou t s , suggest ing t h a t the problem was not 
due to the low l i g h t l eve l s r e s u l t i n g from 33mR exposures . The suspected 
cause was the s i l v e r heat ing pan of the r e a d e r , s ince v isua l i n spec t ion 
showed i t t o be d i r t y . This was f i r s t checked by thoroughly c leaning the 
pan, and then inspec t ing i t during personnel badge readout by the Radia t ion 
Safe ty O f f i c e . Af t e r the f i r s t TLD was read , a f a i n t impr in t of exac t ly 
the same s i z e and shape of a TLD could be seen on the pan. The next few 
TLD's were placed over t h i s i m p r i n t , which became s t e a d i l y w h i t e r . By the 
time a l l the personnel badges were read 200) , almost a l l of the pan was 
covered with t h i s white m a t e r i a l . Ev iden t ly , each TLD was chemical ly r e -
ac t ing with the s i l v e r pan, producing a substance (probably AgF) which 
r e f l e c t e d l e s s l i g h t than the shiny s i l v e r . Since some of t h e de t ec t ed 
l i g h t would be r e f l e c t e d o f f the pan, t h i s i nc reas ing d i r t i n e s s would tend 
t o lower TLD readings as more of them were read . 

The r e s u l t s in Table 2 i n d i c a t e t h a t t h i s change i s r a t h e r sma l l , and 
approximately l inear> f o r a group of t en TLD's per r eadou t . So i t was 
decided to c o r r e c t f o r t h i s e f f e c t in the fo l lowing way: 

1. Read out two "s tandard" TLD's (given a known dose) in a c lean pan. 
Then a l l o the r readings would be co r rec ted to t h i s "s tandard" pan. 

2 . Before reading out a group of TLD's, c lean the pan i f necessa ry . 
3 . Read out the f i r s t "s tandard" TLD. 
4 . Read out the group of TLD's. 
5 . Then read out the o the r "s tandard" TLD. 

The reading obtained by #3 would g ive the pan r e f l e c t i v i t y , as compared to 
the "s tandard" pan, before the group was r e a d , whi le #5 would g ive s i m i l a r 
informat ion a f t e r the group was r ead . Then assuming t h a t t he pan r e f l e c t i v -
i t y changed a t a cons tan t r a t e , a c o r r e c t i o n f o r each TLD in t h e group 
could be made, provided t h a t the "s tandard" pan did not g e t apprec iab ly 
d i r t y f o r the second "s tandard" TLD read ing . 

This c o r r e c t i o n method was checked using a group of c a l i b r a t e d TLD's 
exposed to 33 mR. The c o r r e c t i o n implied by #3 above was 4%, and the pan 
r e f l e c t i v i t y was ca l cu la t ed to be decreas ing a t the r a t e of .15% per TLD 
read . The cor rec ted TLD-inferred exposure was 33 .3 mR (1% e r r o r ) , with a 

Table 2 

True Exposure 

F i r s t Readout 580.8 mR 

Exposure from Average of TLD Readings 

580.8 mR ( c a l i b r a t i o n exposure) 

31 mR 

29 mR 

Second Readout 33 mR 

Third Readout 33 mR 
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s tandard devia t ion of 1.7 mR ( -v f ?mR aga in ) . Had the c o r r e c t i o n not been 
made, the TLD-inferred exposure would have been 4% in e r r o r , because of the 
pan c l ean ing . So i t appeared t h a t c leaning the pan and making a c o r r e c t i o n 
based upon #3 i s the most important f a c t o r , e s p e c i a l l y i f c o r r e l a t i o n s be-
tween TLD readings made several days or weeks apa r t a re to be made. 

The cube problem was then run using t h i s c o r r e c t i o n . The dose implied 
by the TLD readings was 2.325 x 1 0 " ' 3 r ads /pho ton , only 9% d i f f e r e n t from 
the computer values found by Dr. Poston, and when the u n c e r t a i n t i e s were 
cons ide red , these r e s u l t s were wi th in a s tandard dev ia t ion of one ano the r . 
This i s f e l t t o be s a t i s f a c t o r y agreement. 

Next i t was decided to make a more d e t a i l e d i n v e s t i g a t i o n of the r e -
p r o d u c i b i l i t y of TLD read ings , because a knowledge of the r e p r o d u c i b i l i t y 
would be very important in the Tc-99m s u l f u r c o l l o i d s tudy . In a d d i t i o n , 
a more d i r e c t check of the assumed l i n e a r r a t e of r e f l e c t i v i t y change would 
be d e s i r a b l e . 

D i f f i c u l t i e s appeared immediately, with unusual ly l a r g e pan co r r ec t i ons 
being made 10% to 30%), al though the co r rec ted TLD readings were usua l ly 
r ep roduc ib le to wi th in ±2%. However, an unexplainable 10% e r r o r was seen 
on occas ion . The e f f e c t s of the exac t pos i t i on of a TLD in the pan were 
i n v e s t i g a t e d ( i t made l i t t l e d i f f e r e n c e ) as well as the c l e a n l i n e s s and 
o p t i c a l c l a r i t y of each TLD (which appeared to account f o r most of the + 2%). 
In f u r t h e r s t u d i e s , the pan appeared t o sometimes ge t more r e f l e c t i v e as 
more TLD's were r ead , r a t h e r than l e s s , making the assumed l i n e a r r a t e of 
r e f l e c t i v i t y change su sp i c ious . 

To check t h i s , t h r e e "s tandard" TLD's were used. The f i v e s t eps shown 
above were fo l lowed, with the t h i r d "s tandard" TLD read a f t e r s t ep 5. From 
t h i s , two values of the r a t e of r e f l e c t i v i t y change could be found and compared. 
These never were the same, and o f t e n one was p o s i t i v e whi le the o the r was 
nega t ive (although both abso lu te values were 4% or l e s s of the c o r r e c t i o n 
found from s t ep 3) . This was s u r p r i s i n g , in view of the cube problem and 
the 33 mR exposure r e s u l t s . 

With t h r e e "s tandard" TLD's, and the assumption of a l i n e a r dependence, 
i t i s not necessary t o assume t h a t the r a t e of r e f l e c t i v i t y change i s smal l -
t h e r e i s enough informat ion to compute the r a t e the "s tandard" pan changed 
and the r a t e the pan changed when reading ou t a group of TLD's, as shown in 
Appendix I . So a group of f i v e TLD's was read out," with the f i r s t , f o u r t h , 
and f i f t h being "s tandard" TLD's. The readings implied t h a t the "s tandard" 
pan had go t ten l e s s r e f l e c t i v e a t a r a t e of 26.9% per TLD read . Consequently, 
the l i n e a r assumption i s wrong ( the co r r ec t ion goes negat ive a f t e r f o u r read-
i n g s ) , but note t ha t the r a t e s f o r these two readouts are near ly the same. 
Apparent ly , t h i s was the usual ca se , giving the ±2% r e p r o d u c i b i l i t y seen 
e a r l i e r . But i f t h i s did not always happen, i t could exp la in the 10% e r r o r s 
sometimes seen. This po in t was not checked, s ince a d i f f e r e n t c o r r e c t i o n 
method was going to be devised anyway. 

Before d i scuss ing the new method, f i r s t cons ider the chain of r e l a t i o n -
sh ips involved which comprise the r e l a t i o n s h i p between a TLD readout and the 
TLD dose. One has the TLD dose •*• l i g h t emit ted by the TLD + l i g h t de tec ted 
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by the PM tube t o t a l charge de l ive red by the PM tube ( the number obtained 
from the readout p rocess ) . In order to have good r e p r o d u c i b i l i t y , one 
c l e a r l y must be able to co r r ec t f o r changes t h a t may occur along t h i s cha in . 
The f i r s t p a r t depends upon the inhe ren t p r o p e r t i e s of each TLD as a phos-
phor, as well as i t s op t i ca l c l a r i t y , c l e a n l i n e s s , and the type of heat ing 
cycle used. The next par t depends upon the pan r e f l e c t i v i t y and the geom-
e t r y of the pan, TLD, and PM tube s e t u p , while the l a s t p a r t depends upon 
the PM tube gain and the performance of the o the r e l e c t r o n i c s of the r eade r . 
With our reader (model TLR-5, Eber l ine Instrument Company), an i n t e r n a l 
l i g h t source i s used to e a s i l y check and c o r r e c t f o r v a r i a t i o n s in t h i s 
l a s t p a r t , so the cor rec t ion method i s p r imar i ly intended t o check the 
o ther p a r t s of the chain . 

To so t h i s , one simply reads out a "s tandard" TLD between each TLD 
of the des i red s e t . For the c a l i b r a t i o n readout , one f i r s t reads the f i r s t 
"s tandard" TLD, then the f i r s t TLD being c a l i b r a t e d , then t h e second "s tand-
ard" TLD, then the second one being c a l i b r a t e d , and so on u n t i l a l l t he 
TLD's of the s e t have been read , followed by the l a s t "s tandard" TLD. To 
determine a dose with these c a l i b r a t e d TLD's, the same readout process i s 
used, wi th the same TLD's being read in exac t ly the same order as b e f o r e . 
Comparison of corresponding "s tandard" readings would give c o r r e c t i o n 
f a c t o r s f o r d i f f e r e n c e s in the chain of r e l a t i o n s h i p s , and the i n t e r p o l a t i o n 
of these co r r ec t ion f a c t o r s would give es t imates f o r c o r r e c t i n g the reading 
of each c a l i b r a t e d TLD. 

In o rder f o r t h i s method t o be e f f e c t i v e , changes in the chain must 
occur in a smooth, continuous f a s h i o n . However, the bui ldup of d i r t on 
the TLD's and b r i e f f l u c t u a t i o n s in l i n e vol tage might not meet t h i s con-
d i t i o n , so spec ia l care was taken to keep the TLD's as c lean as p r a c t i c a l , 
and i f opaque spots were noted on a TLD, i t was always placed with the 
same s ide down aga ins t the pan. The l i n e vol tage was a l so moni tored, and 
observed t o f l u c t u a t e unpredic tab ly between 110 v. and 120 v . , which was 
enough to a f f e c t the heat ing components of the reader and i t s cool ing f a n . 
Since t h i s might a l so a f f e c t t he cha rge -co l l e c t i on and counting e l e c t r o n i c s , 
a v a r i a b l e power t ransformer was used to keep the reader vo l t age between 
119 v. and 120 v . This seemed to be s i g n i f i c a n t , because be fo r e the t r a n s -
former was used, the reader would sometimes cut o f f prematurely (about once 
every 100 r ead ings ) . Since the t r ans former has been used , no premature 
c u t o f f s have occurred (about 300 readings to d a t e ) . 

To t e s t t h i s method, as well as to check f o r the e f f e c t s of the TLD's 
becoming d i r t y , a group of f i v e TLD's was exposed and read repea ted ly (and 
pre-annealed f o r 1 hour a t 400° C each t ime) . The pan was cleaned f o r the 
c a l i b r a t i o n r eadou t s , and the r e s u l t s of the succeeding readouts are shown 
in Table 3. The f i r s t , t h i r d , and f i f t h TLD's were used as the "s tandard" 
TLD's, while the second and f o u r t h were the ones t e s t e d f o r r e p r o d u c i b i l i t y . 
The t a b l e e n t r i e s a re the percen t e r r o r of the TLD-determined dose from the 
ac tua l dose . 
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Table 3. Percent Errors from C a l i b r a t i o n Exposure 

Corrected Readings Uncorrected Readings 

Tr ia l # TLD §2 TLD #4 Dose ( m r a f | ) TLD #2 TLD #4 Cleaned 

1 + .46 + .28 430 - 3 . 5 - 3 . 7 No 
2 + .58 - .91 488 - 1 . 4 - 3 . 0 No 
3 + .39 +2.8 32 +2 .4 +4 .8 No 
4 - 1 . 2 +5.5 523 + . 8 +7 .5 No 
5 - .33 +2.7 412 +4.7 +7.7 Yes 
6 - 2 . 2 + .08 463 +2 .8 +5 .1 No 
7 - 2 . 3 +1.5 522 + . 7 +4 .5 Yes 
8 - .69 + .28 355 +2 .3 +3.3 No 
9 .00 +1.1 507 +5.0 +6 .1 Yes 

10 - .74 +4.0 35 +2.3 +7 .0 No 
Average .89 1 .9 2 . 6 5 .3 

\ 
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On the whole, the correc ted readings were l ess in e r r o r , and the l a r g e s t 
e r r o r s in the correc ted readings tended t o occur when the pan was not c leaned . 
T r i a l s 1 -4 show t h a t the e r r o r ge t s worse as the pan ge t s d i r t i e r , p a r t i c -
u l a r l y f o r TLD #4. Fur the r , note was made of the d i r t i n e s s of each TLD each 
t ime. TLD #2 was r e l a t i v e l y c l e a r , while TLD #4 was n o t . The d i r t s p o t ( s ) 
on TLD #4 var ied in s i z e and co lor (black whi te) from t r i a l t o t r i a l , 
probably because of the e f f e c t s of the 400° C annea l . This i s probably why 
i t had a l a r g e r average e r r o r , whether co r rec ted o r n o t . The s i z e of the 
dose does not appear to make much d i f f e r e n c e , although more t r i a l s i n the 
30 mrad range wi l l be done to check t h i s . For the l a s t t h r e e t r i a l s , the 
TLD's were r insed in acetone before annea l ing , which seemed to improve the 
accuracy of TLD #2 ' s cor rec ted read ings . Inspec t ion of the uncorrected 
r e s u l t s shows a s t r i k i n g e f f e c t - f o r the f i r s t two t r i a l s they read low, 
as expected , but t h e r e a f t e r , read high. I t may be t h a t some s i l v e r - c o n -
t a i n i n g contamination from the pan a l so has thermoluminescent p r o p e r t i e s , 
and t h a t t h i s contamination i s p a r t l y absorbed i n t o a TLD during annea l , 
c r e a t i n g the high response a f t e r a few t r i a l s . In any e v e n t , t h i s e f f e c t 
would occur with a l l TLD's r e a d , so t h a t a c o r r e c t i o n based upon the "s tand-
ard" TLD's would tend to take t h i s i n to account . 

This co r r ec t ion procedure , although g r e a t l y i nc r ea s ing the number of 
TLD's read t o make the dose e s t i m a t e s , and r equ i r ing ind iv idua l l abe l ing 
of the TLD's, gives a means of checking the overa l l performance of the TLD-
reader dosimetry system. I t seems t h a t any r e sea rche r using such a system 
should make t h i s type of s tudy a t l e a s t once, j u s t t o see how reproduc ib le 
h i s r e s u l t s a r e . Then, i f deemed necessa ry , t h i s procedure could be used 
as needed. Based upon Table 3 , even uncorrected readings were never more 
than 10% in e r r o r , and t h i s may be an accep tab le p r e c i s i o n in many a p p l i c a -
t i o n s . Fu r the r , s i l v e r i s more r e a c t i v e ( e s p e c i a l l y with f l u o r i d e s ) than 
some o the r pan ma te r i a l s ( e . g . , P t ) , so o ther r e sea rche r s using d i f f e r e n t 
phosphors and/or pan m a t e r i a l s might not observe t he se e f f e c t s . 

» 
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B. C l i n i c a l A p p l i c a t i o n s of A c t i v a t i o n Ana lys i s 
1 . Measurement of Deuterium and Deuterium Label led Compounds Using 

t h e Oy»n) React ion 
One of t h e more impr t an t t r a c e r s used i n medicine i n v o l v e s t h e i s o t o p e s 

of hydrogen. Although deuter ium i s s t a b l e and s e v e r a l comnercially a v a i l a b l e 
d e t e c t i o n systems a r e c u r r e n t l y i n u s e , t r i t i u m i s o f t e n t h e p r e f e r r e d i s o t o p e 
due t o t h e r e l a t i v e ease of i t s d e t e c t i o n . T r i t i um i s r a d i o a c t i v e , e m i t t i n g 
a low-energy Beta and p o s s e s s i n g a h a l f - l i f e of approx imate ly 12 .5 y e a r s . 

We b e l i e v e t h a t deuter ium would be used more r o u t i n e l y by many more 
I n s t i t u t i o n s i f a conven ien t count ing method were a v a i l a b l e f o r i t s d e t e c t i o n . 

Severa l groups have sugges ted t h e use o f t h e 0(y ,n)H r e a c t i o n a s a p o s s i b l e 
method f o r the d e t e c t i o n of deu te r ium. We in t end t o pursue t h i s idea and 
develop a c l i n i c a l l y u s e f u l system t h a t w i l l al low i t s use in r o u t i n e s t u d i e s 
and s t i m u l a t e f u r t h e r development of Deuterium Tracer K i n e t i c s . This method 
looks l i k e a p a r t i c u l a r l y promis ing photo r e a c t i o n as the t h r e s h o l d energy i s 
very low (2 .23 MeV) and t h e r e f o r e one may e a s i l y produce t h i s r e a c t i o n b e f o r e 
o t h e r photoneut ron r e a c t i o n s t u r n on . Thus,, background neu t rons should no t be 
a problems. 

I f one chooses t o count t h e n e u t r o n s produced , then t h e v a r i a b l e pa rame te r s 
a r e t h e source d e t e c t o r s and geometry. 

We have done some p r e l i m i n a r y i n v e s t i g a t i o n s i n t o t h e s e p a r a m e t e r s . 
A. Sources : 

Severa l sou rce s e x i s t which emit photons of energy g r e a t e r than t h e t h r e s -
hold ene rgy . Table 1 l i s t s t h e s e wi th some p e r t i n e n t c h a r a c t e r i s t i c s . A 
b r e m s s t r a h l i n a source would appear a t f i r s t t o be the n a t u r a l sou rce in a 
h o s p i t a l environment as many l a r g e h o s p i t a l s posses s t h e s e t y p e sou rce s in t h e i r 
Radio therapy C e n t e r . However, s e v e r a l d i s advan tages a r e a p p a r e n t . 

1 . Higher energy l i n a c s a c t i v a t e most e v e r y t h i n g 
2 . The u s e f u l f l u x from lower energy c l i n i c a l l i n a c s i s lower than i s o t c p i c 

s o u r c e s . 
3 . Although p h y s i c a l l y nea rby , t h e y a r e no t always a v a i l a b l e in a busy 

r a d i o t h e r a p y depar tment . 
4 . I t 1s sometimes d i f f i c u l t t o use "borrowed" equipment . 

Na-24 would appear an i d e a l s o u r c e excep t f o r t h e ve ry s h o r t h a l f - l i f e . High 
a c t i v i t y sources a r e very ea sy to produce wi th a r e a c t o r . T h e r e f o r e i t i s 
p o s s i b l e t o c o n s i d e r having a f a c i l i t y i n t h e immediate r e a c t o r v i c i n i t y . This 
has been proposed by o t h e r s and we have done some p r e l i m i n a r y work a long t h e s e 
l i n e s . * 

Ga-72 i s no tab ly more d i f f i c u l t t o o b t a i n than Na-24 and a l s o has a s h o r t 
v 

Th"C" (from a n a t u r a l decay s e r i e s ) would be ve ry expens ive i f not 
Imposs ib l e t o o b t a i n i n t h e q u a n t i t i e s r e q u i r e d . 

CO-56 would a l s o appear un reasonab le a t f i r s t as i t i s no t r e a c t o r produced . 
However, i t may be p o s s i b l e t o produce s i g n i f i c a n t s i z e s o u r c e s caused in the 
( p , n ) r e a c t i o n on i r o n near l a r g e a c c e l e r a t o r s , and LA'JPF i s c o n s i d e r i n g making 
I t a v a i l a b l e . Having a 77 da h a l f - l i f e i t would appea r much more a t t r a c t i v e than 
Na-24 a l though i t emi t s many o t h e r y ' s b e s i d e s the u s e f u l ones . We a r e i n 
c o n t a c t wi th LASL concerning t h e p o s s i b i l i t y of t h e i r p roduc t i ng t h i s t y p e s o u r c e . 

50 



B. Detectors: 
Our requirements on d e t e c t i o n demand high e f f i c i e n c y and low y - s e n s i t i v i t y . 

Several type neutron counters a r e a v a i l a b l e . Regardless of t h e t y p e , a l l high 
e f f i c i e n c y neutron d e t e c t o r s r e q u i r e t h a t the neutrons f i r s t be thermal ized 
(as thermal neutron c r o s s e c t i o n s can be 4-5 orders of magnitude l a r g e r than fast neutron c r o s s e c t i o n s ) . The only reasonable moderator i s a hydrogenous 
•na te r i a l . All o the r moderators would r e q u i r e so much ma te r i a l as to s i g n i f i c a n t l y 
lower the geometric e f f i c i e n c y . Of course , a l l hydrogenous moderators w i l l 
conta in deuterium (0.015% na tura l abundance). Tr.is could lead t o a l a r g e 
background number of neutrons i f t h e moderator i s placed in a l a rge f l u x high 
y-energy f i e l d . Solving t h i s problem should a l s o r e so lve any problem concerning 
Y - s e n s i t i v i t y of d e t e c t o r s . 

We have done some pre l iminary work with indium f o i l s , and al though the 
e f f i c i e n c y of t he se f o i l s i s very l a r g e , due to the inconvenience of having a two 
s t e p process ( a c t i v a t i n g then c o u n t i n g ) , we have f o r t h e moment d i scon t inued 
experimenting with them. 

The two o the r most common neutron d e t e c t o r s a r e BF3 and He p ropor t i ona l 
coun te r s . We f e e l e i t h e r would be a p p r o p r i a t e . Helium counters a r e more 
e f f i c i e n t ; however, they a r e more expensive and more y - n o i s e s u s c e p t i b l e . 
The re fo re , we a re c u r r e n t l y working with BF3 p ropor t iona l c o u n t e r s . . 
C. Current Design Ideas 

We a r e c u r r e n t l y of t h e b e l i e f t h a t t he b e s t way t o o b t a i n a maximum 
s e n s i t i v i t y f a c i l i t y i s t o use as l a r g e a y source as may be s a f e l y produced 
and used with the sample pos i t i oned next to the source . This would a l l be in 
a lead cask of s u f f i c i e n t t h i ckness so as to reduce the y - f l u x to a t o l e r a b l e 
l i m i t . As the produced neu t ron„f lux i s being reduced by l / E ^ and the y - f l u x 
1s being a t t e n u a t e d by both 1JKC and exponen t i a l l y , by us ing severa l c o u n t e r s , 
we should be ab le to overcome any loss i n geometric e f f i c i e n c y . 
D. Pre l iminary Experiment: 

W e have conducted a p re l iminary experiment in c o l l a b o r a t i o n with t h e 
I so topes Technology Divis ion of ORNL. They have modified a lead cask 80 cm in 
diameter so a l a r g e (-200Ci) Na-24 source may be placed in i t s c e n t e r and a test tube may be pos i t ioned next t o i t . A BF3 p ropor t iona l counter 2" d iameter -
12%" Act ive l eng th ) borrowed from t h e Analy t ica l Chemistry group a t ORNL was 
used on t h e o u t s i d e of the cask . A 1 - 3 / 4 " t h i c k block of p a r a f f i n was used as 
moderator . Pos i t ion ing of the deu te ra t ed water samples was the major source of error l eading to u n c e r t a i n t i e s much l a r g e r than s t a t i s t i c s . Hov/ever we were a o l e 
to determine an approximate s e n s i t i v i t y of 70 cpm/mg of D2O. We be l i eve t h a t 
w e can improve t h i s by a f a c t o r g r e a t e r than 20 by opt imizing moderator 
t h i c k n e s s , pulse he igh t d i s c r i m i n a t i o n and using more d e t e c t o r s . Background 
counting r a t e s in a neutron f r e e a rea i s -7 cpm. The re fo r e , we f e e l , t h a t t h e s e 
s e n s i t i v i t i e s wi l l a l low us to conduct several exper iments , 

1 . We in tend to f i r s t a t tempt t o t a l body water d i l u t i o n s t u d i e s on animals 
and then people . We expect samples t o be in the mi l l ig ram of D2O 
range and t h e r e f o r e s t r a i g h t forward t o do. 

2 . Recent papers have suggested t h a t Deuterium can be used in b i l e s a l t 
metabolism in i n f a n t s . We wi l l need ng s e n s i t i v i t y h e r e . 

3 . Poss ib le o the r s t u d i e s inc luding Lipid or f a t t y ac id metabolism s t u d i e s , 
and kidney f u n c t i o n s t u d i e s might be p o s s i b l e . 

Although i t i s envisioned t h a t a l a rge Na-24 source f a c i l i t y could only be 
a v a i l a b l e near a r e a c t o r , thereby not being a v a i l a b l e f o r emergency s t u d i e s , t h i s 
f a c i l i t y would allow r o u t i n e s t u d i e s of va r ious na tu re to be done with l i t t l e 
d i f f i c u l t y and e x c e l l e n t s e n s i t i v i t y . 
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2. Cf-252 Neutron Act iva t ion F a c i l i t y - f e a s i b i l i t y s tudy 

We a r e i n v e s t i g a t i n g two d i f f e r e n t techniques t o measure bone mineral con-
t e n t . The f i r s t , which we now have o p e r a t i o n a l , i s t h e dual i so tope t r a n s -
miss ion scan using 153-Gd. This method allows us t o measure the t o t a l min-
e r a l con ten t (calcium and phosphorous) of the bone. The o the r technique i s 
In -v ivo neutron a c t i v a t i o n a n a l y s i s . Using t h i s method, the calcium conten t 
of bone can be measured by a c t i v a t i n g Ca-48 and then count ing the y - r a y s given 
o f f by Ca-49. We propose to use both methods on the forearm to f i n d the c a l -
c ium- to - to t a l mineral r a t i o . I f a t o t a l body t ransmiss ion scan i s a l s o done, 
t h e t o t a l body calcium content can then be c a l c u l a t e d . 

We a l s o plan to use the a c t i v a t i o n f a c i l i t y f o r i n - v i t r o a c t i v a t i o n and 
neutron radiography. Our p re sen t design of t h i s f a c i l i t y i s shown in Figure 1. 
We plan to use s i x 2 mg. sources of Cf-252. Ca lcu la t ions have shown t h a t in 
o rder to obta in the maximum thermal neutron f l u x a t t h e c e n t e r , the sources 
a r e arranged in a r ing ( rad ius = 2 .5 cm.) and a r e surrounded by a polyethylene 
sphere (4 .5 cm. r ad iu s ) which a c t s as a moderator . This i s then surrounded 
by a 35 cm. rad ius g raph i t e r e f l e c t o r with lead and borated polyethylene s h i e l d -
ing on the ou t s ide . The whole f a c i l i t y wi l l be loca ted beneath the f l o o r to 
provide addi t iona l s h i e l d i n g . 

A co l l ima to r with i t s i n l e t a t the cen te r of t h e r i n g of sources and ax i s 
perpendicu la r to the plane of sources wil l provide a beam of neutrons which 
w i l l be used f o r arm a c t i v a t i o n and neutron radiography. A tube may be i n -
s e r t e d i n t o the co l l imator f o r a c t i v a t i o n of samples i n - v i t r o a t the cen te r 
of t h e sources where the f l u x i s a maximum and uniform. Additional tubes may 
be placed around the o u t s i d e of the r ing of sources f o r long-term sample 
a c t i v a t i o n . 

We have been i n v e s t i g a t i n g t h e poss ib l e use of s t a b l e t r a c e r s to help 
diagnose var ious d i seases and monitor t h e i r p rog re s s ion . In t h i s method a 
s t a b l e i so tope t h a t i s not normally found i n a b io log ica l system i s adminis-
t e r e d and a sample of the b io log ica l system i s ob t a ined . The sample i s then 
a c t i v a t e d and the q u a n t i t y of the t r a c e r in the sample i s measured by count -
ing t h e v- rays given o f f by the sample t h a t a r e c h a r a c t e r i s t i c of the a c t i -
vated t r a c e r . We have performed ca l cu l a t i ons to determine the amounts of 
va r ious i sotopes v/e would be a b l e to d e t e c t on a sample. The r e s u l t s of these 
c a l c u l a t i o n s a re shown in Table 1. 
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TOP VIEW 

SIDE VIEW 

Figure 1 Proposed Cf-252 Neutron I r r a d i a t i o n F a c i l i t y . 
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Table 1 

Mass of Various Elements t h a t may be Measured I n - V i t r o wi th 

Proposed Neutron Ac t iva t ion F a c i l i t y 

ISOTOPE1 

Ne-22 
Na-23 
Mg-26 
Al"27 
S i -30 
S-36 
CI-37 
Ar-40 
K-41 
Ca-48 
Sc-45 
T i - 5 0 
V-51 
Cr-50 
Mn-55 
Fe-58 
Co-59 
Ni-64 
Cu-65 
Zn-70 
Ga-71 
Ge-74 
As-75 
Se-74 
Br-81 
Kr-84 
Rb-87 
Sr -86 
Y-87 
Nb-93 
Mo-100 
Ru-104 
Rh-103 
Pd-108 

MASS (mg)' 

1.0 
0.7 
4.0 
3,0 

1000.0 
5.0 
0.6 
0.2 
4.0 
0.5 
5.0 
0.7 
0.1 
7.0 
0.01 

100.0 
0.1 
0.3 
2.0 

20.0 
0 . 2 
2.0 
0.5 
3.0 
0.8 
1.0 

10.0 
0.1 

80.0 
200.0 

1.0 
2.0 
0.003 
2.0 

ISOTOPE1 

Ag-107 
Cdr-116 
In-115 
Sn-122 
Sb-121 
Te-130 
1-127 
Xe-136 
Cs-133 
Ba-138 
La-139 
Ce-142 
Pr-141 
Nd-148 
Sm-154 
Eu-151 
6d-160 
Tb-159 
Dy-164 
Ho-165 
Er-170 
Tm-169 
Yb-168 
Lu-175 
Hf-178 
Ta-181 
W-186 
Re-187 
Os-189 
I r -193 
P t -198 
Autl97 
Hg-196 

MASS (jng)' 

5.0 
0.3 
0.002 
0.3 
1 . 0 
0.4 
0.1 

10.0 
0.3 
0.7 
0.7 
3.0 
8.0 
0.09 
0.02 
0.002 
0.6 
6.0 
0.003 
0.02 
0.08 

30.0 
0.006 
0.08 
0.8 
3.0 
0.3 
0 . 1 

30.0 
0 . 1 
0.2 
0.05 
0.02 

^I f the n a t u r a l abundance of t h e i s o t o p e i f l e s s than 90%, i t i s 
assumed t h a t i t i s en r iched t o 90%. 

2 
Mass t h a t could be d e t e c t e d when i r r a d i a t e d f o r 1 hour and counted 
f o r 1 hour assuming 10,000 counts c o l l e c t e d with no i n t e r f e r e n c e 
from o t h e r i s o t o p e s . 
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Appendix I . The Linear Pan Correct ion 

The dependence of the observed TLD reading wi l l be assumed to have 
t h e general form 

where 

TL = the observed TLD reading 
D = dose to TLD 
k j « the TLD-dependent cons tan t r e l a t i n g the dose and emit ted l i g h t 
kg = t h e TLD-independent cons tan t which i n d i c a t e s the pan r e f l e c t i v i t y 

a t the s t a r t of a readout 
k3 = a TLD-independent cons tan t which i n d i c a t e s the r a t e a t which the 

r e f l e c t i v i t y i s changing 
n = an in t ege r showing when the TLD was read ( n = 0 f o r the f i r s t one, 

n = 1 f o r the second, e t c . ) 

Thus the term in parentheses in (1-1) desc r ibes the change in pan r e f l e c t i v i t y 
and i s l i n e a r in n. 

When t h r e e "standard" TLD's a r e read in the "s tandard" pan, one has 

R,= T L , / D = - M a 

" a = T L » / D = 4 u ( V - * , ) 

R 3 = T C 3 / 0 - 4 , 3 ( V a J 0 -

These TLD's a re then annealed and dosed again so t h a t a s e t of TLD's to be 
read can each be cor rec ted f o r pan changes. For t h i s r e a d o u t , one has 

(pa r t of des i red TLD s e t ) 
4 

( r e s t of des i red TLD s e t ) « 
• — m 

Equations (1-2) through (1-7) can be solved f o r t h e r a t i o s ^ / k g . E^/ko , 
and kg/kg i n terms of the known readings . 
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From (1-2) and (1 -5 ) , one inrnedtately has 

From (1-3) and (1 -6 ) , one has , using (1 -8) , 

R a = /* , + / (J * *3/-kx.)J { M ) 

and from (1-4) and (1 -7 ) , 

F 3 / k 3 = [ j F , / / ? , * / ( / + a - t y * * ) . { M 0 ) 

Solving (1-9) and (1-10) f o r k 3 / k 2 and k j / kg gives 

-- H i 

where 
ft., = £ //?, , I ^ J fi^/Rj . 

When the experimental values of a . (1 .0151) , a z (1 .0205) , a , (0.99095), 
m(4), and n(5) a re used, one ob ta ins 

J } 9 / 4 a = - O . 3 4 5 , £ * - . ( , . a 3 ) 

* 

To see how to use these values to co r rec t a reading f o r pan changes, note 
t h a t t he reading of a TLD in the des i red s e t would be descr ibed by 

TL = A D( Z3)t (1.14) 

s ince i t was read out between equat ions (1-5) and (1 -7) . This can be r ewr i t t en as 

(1-15) 

so t h a t 1f one d iv ides (1-15) by the term In pa ren theses , t he r e s u l t i n g 
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express ion should be equal t o what t h i s TLD would have read under t h e "s tandard" 
pan condi t ions of the f i r s t "s tandard" TLD. That i s , d iv id ing (1-15) by the 
q u a n t i t y in parentheses g ives t h e r i g h t s i d e t h e same form as (1 -2) . F u r t h e r , 
t h e readings from the "s tandard" TLD's can a l l be co r r ec t ed in the same way. 

The va lues in (1-13) a r e so nega t ive , however, t h a t t h e q u a n t i t y i n 
parentheses 1n (1-15) wi l l be nega t ive whenever U 5 . For smal le r values of 1 , 
I t becomes so small t h a t the co r r ec t ions f o r pan changes a r e unreasonably l a r g e 
a s we l l . Thus, the assumed form of (1-2) i s probably i n c o r r e c t . 
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Appendix I I 

The Method of A c t i v i t y Determina t ion i n P a t i e n t s 

In o r d e r t o s e t up t h e fo rma l i sm, imagine t h e scan f i e l d t o be d iv ided up 
i n t o a l a r g e number of r e c t a n g l e s , or c e l l s , a s shown in Figure 1 . The l eng th 
of each c e l l i s equal to the d i s t a n c e moved by t h e scanner when counts a r e 
recorded f o r one da ta p o i n t , and the width of each c e l l i s equal t o t h e d i s t a n c e 
between scan l i n e s . When t h e d e t e c t o r s t r a v e r s e t h e l eng th of a c e l l , t h e counts 
accumulated in t h a t t ime a r e recorded by a computer , t hus g iv ing a da ta p o i n t 
cor responding t o t h a t c e l l . 

Sourcc (TopViev) 

Figure 1. The d i v i s i o n of t h e scan f i e l d . The s i z e of t h e c e l l s i s g r e a t l y 
exaggera ted f o r c l a r i t y . In t h i s c a s e , t h e r e a r e 56 c e l l s in t h e scan f i e l d . 
In t h e usual c a s e , t h e r e a r e 4096. 

To c a l i b r a t e t h e s c a n n e r , a "po in t " source of known a c t i v i t y i s p laced i n a 
c o n s t a n t - t h i c k n e s s phantom and scanned. We d e f i n e 

e . * \ cauw+s rt .corJi*.^ in point" I jive t b in 

where d i s t h e phantom t h i c k n e s s and z t h e h e i g h t o f t h e source from the bed. 
In o r d e r t h a t t h i s be a w e l l - d e f i n e d pa ramete r , one must have t h e c e l l s i z e s much 
s m a l l e r than the a r ea of t h e c o l l i m a t o r f i e l d of view. O the rwise , t h e p r e c i s e 
x -y location of t h e "po in t " source w i t h i n a g iven c e l l would be i m p o r t a n t . 
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There would be a c a l i b r a t i o n f a c t o r of t h e form of (1) f o r each d e t e c t o r , 
but wherever p o s s i b l e , an e x p l i c i t d i s t i n c t i o n between top and bottom d e t e c t o r 
f u n c t i o n s wi l l not be made, f o r the sake of b r e v i t y . 

The c a l i b r a t i o n func t ion f o r each d e t e c t o r i s 

l U j i ) - € (2) 
I 

and t h e r e i s an f f ( d , z ) f o r the top d e t e c t o r , and f g ( d , z ) f o r the bottom one. 
Exper imental ly , these f u n c t i o n s a r e found by summing the counts over the scan 
image, and d iv id ing by the source a c t i v i t y . These f u n c t i o n s were found t o have 
the form 

•fT U , » ) = a £* a - V = b < T X * (3) 

where a , b , and JJ a re cons t an t s . These r e p r e s e n t exponent ial a t t e n u a t i o n of the 
photons being counted (see f i g u r e 2 ) . 

T C P 

D E T E C T O R 

PVtAwtom 
\ ] 

I I 
B O T T O W\ 

D E T B C T O f t 

Figure 2. The coordina te system used . A po in t source a t he ight z in a 
phantom of th ickness d i s shown. 
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Now consider the case of a uniform source of varying th ickness loca ted in 
a phantom of varying t h i cknes s . This i s assumed t o be the case f o r p a t i e n t s . 
The uniform source i s assumed l a r g e l y because a b e t t e r assumption i s not known, 
but i t should be adequate , e s p e c i a l l y for hea l thy p a t i e n t s . 

The counts in data po in t i due t o the a c t i v i t y A. in c e l l j i s given by 

(4) 

where t . i s the source th ickness in c e l l j , and t h e ? means t h a t the c o r r e c t 
phantom^thickness to use i s unknown. In g e n e r a l , t h i s would depend upon a l l 
the c e l l t h i cknesses , because of Comoton s c a t t e r i n g , but i t i s assumed here t h a t 
d . (phantom th ickness in c e l l j ) i s t h e primary f a c t o r . This should be a good 
approximation because p a t i e n t th ickness does not change much from one c e l l to 
another (except along the s ides of the t r unk , where l i t t l e or no a c t i v i t y i s 
l o c a t e d ) , and the exponential form of (3) implies t h a t no t too much s c a t t e r i s 
being counted anyway. Then (4) becomes 

- (17) I . 
•w 

1 

and the t o t a l counts in data p o i n t i i s 

w , k; \ 

C i = = . (5) 
J J J 

In o rde r t o w r i t e the scan r e s u l t s in terms of the c a l i b r a t i o n f u n c t i o n given 
by ( 2 ) , we must sum (5) over the image of the source : 

6 tn / A ; V r 2 ' ' 1 i 

c = i c i = f ( t £ ) ^ % (6) 
t J ^ J l L 

or 

c - f l ^ ) ^ ^ ) ^ 

where the f a c t t h a t l>n does not mat te r because t h e S y which make t h e 
major con t r ibu t ion to (6) a r e the same S-f,- which appear in ( 2 ) . S u b s t i t u t i n g 
(3) i n t o (7) gives J 

( M M - M i 
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CB= b % H e. c ( A L t . k ) m 

f o r t he top and bottom d e t e c t o r s , r e s p e c t i v e l y . The apparent a c t i v i t y A*is 
given by 

y a Yx 

where z 0 i s a dummy va r i ab le ( the denominator of (10) i s independent of i t with 
the func t ions in (3) ) , and d i s some s o r t of average phantom th ickness to be . 
s p e c i f i e d . Using (8 ) , ( 9 ) , and ( 3 ) , (10) becomes fy 

A = L i J mi ^ 
- x ^ / a . 

£ 

This equation i s hard to eva lua t e , because the t . and d- are uncorre la ted 
(they are measured with d i f f e r e n t ins t ruments ) , and because t h e z.-j a r e d i f f i c u l t 
to f i n d even with an u l t r a s o n i c scan. However, t h i s equation can Be reduced with 
the Schwarz Inequa l i ty : 

f p i ( f ^ X." f j * ^ ''S \»Jttf<«ie»T o f j ( 1 2 a ) 

j j ' 

With the d e f i n i t i o n s 

e ' 
* f ' 

A-

A* 

c ( f t - / * ) 

C ^ i / a J 

(12b) 

61 



(11) and (12) g i v e , . + . / . V . . . J t „ , x . 

* e T <1 j . x in «*<(«*£ o-t j (13a) 

> £ 2L ^ t ^ / a ) j © T f c e r w i . s e . (13b) 

This can be w r i t t e n in terms of the t o t a l source a c t i v i t y , s i n c e the source i s 
uniform: 

which implies t h a t 

A/A = e f € J I T T . ) j _ > i \ » I f the same r a t i o i s (14a) 
j ( M t \ U ) ) independent of j 

o the rwi se . (14b) 

Unfo r tuna te ly , (14a) i s a l so hard t o e v a l u a t e , again because t h e d. and t . a r e 
not c o r r e l a t e d . However, d remains t o be picked as w e l l , and we wi l l s e e J t h a t 
t h e proper choice of d w i l l lead to an accura te approximation t o (14a) . To 
see what t h i s choice i s , cons ider t h e spec ia l case in which a l l the t j a r e the 
same. For t h a t , (14a) would be 

m = e U f e ) (Mt/z) j 

which w i l l reduce to the s e l f - a t t e n u a t i o n c o r r e c t i o n ( the l a s t term) i f d i s 
chosen so t h a t 

= £ m 

J 
This express ion f o r d wi l l be used f o r the source of varying th i ckness as w e l l . 

To obta in a s u i t a b l e approximate express ion from (14a) , t he exponen t i a l s 
a r e combined and expanded in a power s e r i e s : 
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• w t f b . f - ( 4 ) ' i " " 

0 i 
The f i r s t term i s e a s i l y eva lua ted with u l t r a s o n i c d a t a , but the o the r terms 
s t i l l r e q u i r e co r r e l a t ed u l t r a s o n i c and t ransmiss ion scan d a t a . The approximation, 
t h e n , i s to ignore these o the r t e rms , and rep lace t h e e n t i r e s e r i e s by t h e f i r s t 
term only. To see i f t h i s i s v a l i d , f i r s t note t h a t a l l t h e values of 
s1nh ( p t . / 2 ) ( p t , - / 2 ) wi l l be in range from 1.0 - 1 .3 f o r the values of p t t o be 
encountered here , so to wi th in an o rde r of magnitude, and maybe even b e t t e r , t h i s 
s e r i e s becomes 

where s inh ( p t / 2 ) / ( p t / 2 ) i s an average of the ind iv idua l ya lues of t h i s f u n c t i o n , 
Each of t h e terms in brackets was computed f o r each p a t i e n t study done thus f a r , 
and gave r e s u l t s s i m i l a r to those in Table 1 . 

Table 1 . 

Computer c a l c u l a t i o n s of the terms in (14) from t ransmiss ion 

scan data of p a t i e n t s . 

d = 9.83" ^ ^ 

F i r s t Sum = 0.015 = f ( - ^ T ^ l ) I J 

Second Sum = 0.025 = Tn 

Third Sum = 0.00114 = f ( - y ~ l ) 

Fourth Sum = 0.00161 = Z 
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For t h i s value of d , pd = 3 , so t h a t (17) becomes 

I ^ P [ I - + 

( . w h j ) - . . r ] 

"A/A -U V ^ L A V I ) f . _ 

— L « - . o a » i - .ooocti • , o o < m o O 

~ A / A ~ - . 0 0 0 3 0 , - . Q . 

Evident ly , t h i s i s a very good approximation, because the term a f t e r t he 1 i s 
about two orders of magnitude l e s s . This was s u r p r i s i n g , s ince the s tandard 
devia t ion of these d j values i s about 15.4% of t h e i r average. To check t h i s , 
another ca l cu l a t i on was done with the same d a t a , only 

__ m 
d = (1/m) I d j J 

was used in place of d. This gave 

C 1 - 0 * i ( . 0 5 3 7 ) - % [ , 0 0 0 0 5 s ) ( . o o m ) . 

p ^ H 0 f M L 1 ~ • « x » 0 ' a 7 + . o o o 3 i c - . . T ) j 

i nd i ca t i ng a somewhat l a r g e r , but s t i l l acceptable e r r o r in t runca t ing the s e r i e s . 
More impor tan t ly , the value of d given by (15) has the advantage of being somewhat 
l e s s than d , so t h a t the f i r s t two sums in (17) tend to cancel each o t h e r . With 
d the f i r s t sum i s zero , so t h . s does not happen. Thus, d picked by (15) i s a 
b e t t e r value to use than d , Decause of t h i s cance l l a t i on e f f e c t . 

There fore , i f (14a) i s v a l i d , i t can be evaluated to a good approximation 
by the express ion. 
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where d i s picked from (15). But i f (14a) i s not v a l i d , the value of A computed 
in t h i s way wil l be an upper l i m i t to the t r ue a c t i v i t y , as can be seen from (14b). 
Consequently, we tu rn our a t t e n t i o n to the v a l i d i t y of (14a) . 

T h e condi t ion which must be met i s 

where R i s independent of j . This i s equiva lent t o the condi t ion 

•r (18) 

l a ) . * . 

T o i n t e r p r e t t h i s equation phys i ca l l y , imagine t h a t the c e l l s a re so small 
t h a t d j , Z j j , and z - 2

 c a n be expressed as f u n c t i o n s of the pos i t ion va r i ab l e s 
x and y , i . e . , the c e l l s a re i n f i n i t e s i m a l . Then d,- = d ( x , y ) , and s i m i l a r l y f o r 
Z j j and z ^ , so t h a t (18) has the form 

- ( C*iY) + ) « • 

Defining z 0 (x ,y ) as the average of z1 and z 2 , t h i s equation can be w r i t t e n in the 
d i f f e r e n t i a l form 

A C A M ] - a 4 O o f o y ) ] = o j 

where d C 3 means the d i f f e r e n t i a l of the q u a n t i t y in b racke t s . Using t he 
chain r u l e , t h i s becomes 

3 J L + ^ f o v ) J . _ 2 J v -7 H ^ M J 
— — T y - 91 ^ X * * " d s 

( 3 Afov) 0 \ j , / * A fay) S> \ 
[ - T * a M * + ( " a y 2 - 5 y — 

2 ( A M - a v w ) • -
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where ^ i s t he g r a d i e n t o p e r a t o r , and d r = d^?* + This l a s t equa t ion 
s t a t e s t h a t the d i r e c t i o n a l d e r i v a t i v e of t h e phantom t h i c k n e s s must equal twice 
t h a t of the source midpoin t , f o r a given d i r e c t i o n in t h e x-y p lane and given s e t 
of (x ,y ) va lues . F u r t h e r , t h i s must be t r u e over t h e e n t i r e e x t e n t of the s o u r c e . 
This condi t ion i s probably not e x a c t l y t r u e f o r p a t i e n t s , a l though l a r g u organs 
(such as the l i v e r ) may tend to fo l low the general body shape. So i t i s impor tan t 
t o s ee how s e n s i t i v e (14a) i s t o t h i s condi t ion being met . 

This has been i n v e s t i g a t e d as w e l l . The method of i n v e s t i g a t i o n i s t o 
f i r s t examine t h e Schwarz I n e q u a l i t y in a general way, and then make a s p e c i f i c 
examination with the f u n c t i o n s i n (11) and (12) . The f i r s t examination i s f a i r l y 
s imp le , and w i l l be shown h e r e , whi le t h e o the r i s more invo lved , so only an 
o u t l i n e of i t w i l l be g iven . 

F i r s t , suppose t h a t t he cond i t ion f o r e q u a l i t y i s v i o l a t e d by only a small 
amount. That i s , 

where c i s a c o n s t a n t , and e^ r e p r e s e n t s the v i o l a t i o n of each term. Then 

? t - } t « 

| V ; | y / - , 

2 
where t h e l a s t s t e p fo l lows because e . w i l l be n e g l i g i b l e . This r e p r e s e n t s t h e 
l e f t s i d e of e i t h e r (12a) o r (12b) . The r i g h t s i d e i s simply 

= c * 

m v* *» 

0 J « 
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Comparing the l a s t s t ep of (19) to t h a t of (20) shows them t o be equal . So to 
f i r s t order in e , , the Schwarz Inequa l i ty i s s t i l l an e q u a l i t y . This i s an 
important r e s u l t , because i t means t h a t even i f the condi t ion f o r (14a) i s not 
exac t ly met, (14a) i s s t i l l v a l i d , i . e . , t he Schwarz Inequal i ty i s not very 
s e n s i t i v e to t h i s condi t ion . This g ives hope t h a t (14a) may be adequate f o r 
p a t i e n t es t imates . 

I f one does not neglect the e - 2 terms of (19) and (20) , t he re r e s u l t s the 
condi t ion 

h 1 2 
m ( 2 l ) 

where the equa l i ty holds i f (14a) i s t r u e , and the > holds otherwise . For the 
func t ions in (11) , 

i e t e ( « ± M 

Y i = * J e e ( ^ r j i ) j 

from which = X; - C Vj can be found, and hence e^ 2 . Subs t i t u t ing these 
expressions in to (21) f i n a l l y r e s u l t s in 

j f o U t j i z ) } ( ^ - j i d j Mjiti/2 ^ j i i i i 

X 

( ? a . -mK/i -Mu ) ( \ A* ; 
( % \ t e (jAMl) J \ ? Aj * 

S**\(Mt]k) \ / f X. -Jtdih U-tl/x) ) * 

(u tw "" J - * i 4 e j • 

e e (22) 

At t h i s p o i n t , use i s made of (18) , giving i t the form 

- A * i i - " t j = -A + 

where s_. i s the v i o l a t i o n corresponding to e . . Solving t h i s f o r Zj^ and 
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s u b s t i t u t i n g i n t o (22) f i n a l l y gives 

/ £ A- * ) ( < a. 
\ f A j ft £ M j J c e 

5 l » U U t j f r ) \ > / < X. / a M i / * ) ^ * 

i - v f ^ e K i w 1 -

By using t h e d e f i n i t i o n s of the s inh and cosh f u n c t i o n s , t h e ( / t f j / a ) 
and e * p ( - > i f j / a ) can be e l iminated t o g ive 

This i s s t i l l not in the des i red form. Each term on the l e f t s i d e of (23) 
can be reduced by applying t h e Schwarz I n e q u a l i t y : 

Because t h e l e f t s i d e of (23) i s a d i f f e r e n c e of two t e rms , s u b s t i t u t i n g these 
express ions i n t o i t would lead to ambigui ty , in g e n e r a l . However, we wi l l make 
these s u b s t i t u t i o n s anyway, and then show t h a t t h i s procedure i s a c t u a l l y 
c o r r e c t . 
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Making t h i s s u b s t i t u t i o n gives 

f A- T f I - 1 

I f s k - f w ^ w \ x C Z 4 1 

J 

where the ? ind ica tes the ambiguity. 
The quan t i t y in brackets i s j u s t equal t o m, the number of terms in the sum, be-
cause of a well-known i d e n t i t y of the cosh and sinh f u n c t i o n s . So, d iv iding 
both s ides of (24) by m2 gives 

For s i m p l i c i t y , make the d e f i n i t i o n 

C . = X. - v ^ i / a 
J " J ; 

so t h a t (25) i s 

± | B J S f I (26) 

Regarding the E- values as a s t a t i s t i c a l s e t of numbers, the var iance of t h i s 
s e t would be given by 

and i s a p o s i t i v e d e f i n i t e q u a n t i t y . Thus, in (26) , the l e f t s ide i s t r u l y 
g r e a t e r than the r i g h t , so t h a t the ? can be removed. Continuing on back, i t can 
a l s o be removed from (25) and (24) , showing t h a t the s u b s t i t u t i o n made in to (23) 
I s a c t u a l l y c o r r e c t ; the re i s no ambiguity. 

Equation (25), without the ? , I s the equation t o be analyzed f u r t h e r . 
Removing A,- in favor of A, as was done with (13a) , mul t ip ly ing both s ides by e y d 

and taking the square roo t gives 
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j_ k i < - A W * W > j . . j f c l . ( * 
« A f ( l i fc W / J " * A f It: 4 F3SJ~ J ) , J 

f f e e J J - - ! s e B ^ r 

The r i g h t s ide of t h i s expression 1s j u s t the r i g h t s i d e of (14a) , which, as 
was shown 1n (17), can be evaluated accura te ly by replac ing the exponent ia ls by 
1 . This wi l l a l so be t r u e of the l e f t s i d e , s i nce i t has p r a c t i c a l l y the same 
form. So, the same p a t i e n t data as be fore can be used t o t e s t the i r e q u a l i t y 
above, In exac t ly the same way t h a t (17) was used to t e s t the approximation of 
(14a) . One has , t o wi th in an order of magnitude (poss ib ly b e t t e r ) : 

( J - . 0 4 S O + . 0 S U - j o o i a w n - .000* C o ] * >. 

m k M f a ) £ i - + — ,00044/ + .00034cQ ^ 

or * y 

( j . 0 ) 1 * - . 0 0 0 * o ) 4 £ M . 0 0 ^ - . 0 0 0 BO I 

^ 1.0106' Z LooS 3 j 

and these two numbers a r e p r a c t i c a l l y equal . Th is , and equation (27) a r e 
extremely important r e s u l t s , because they mean t h a t when one i s checking the 
approximate method of evaluat ion of (14a) , he i s a l s o checking on the v a l i d i t y 
of (14a) as compared to the v a l i d i t y of (11). I f the approximate method of 
evaluat ing (14a) i s seen to be adequate , then (14a) 1s a good approximation t o 
(11) . If t he approximate method gives a poor r e s u l t , then (14a) i s about an 
equal ly poor approximation t o (11) , and one must decide upon other methods to 
eva lua te (11) , or use a d i f f e r e n t method of a c t i v i t y de terminat ion . 

% 
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