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INTRODUCTION 

The subject of these lectures will be special purpose processors 
implemented in hardware. The subject matter is difficult to treat in a general 
way since due to their specialisation it is only practical to present specific 
examples of processors. At best one can hope to distinguish some classes of 
processors, where the classes correspond in general to the.application area, 
rather than to the architecture or design philosophy. Different pattern 
recognition and picture processing machines have points in common and Fast 
Fourier Transform processors bear a ressemblance to each other. Indeed when 
one takes a closer look at the different special purpose machines proposed or 
built, one is struck by the very close relation between the hardware and the 
algorithm the machine has been built to execute. This could possibly be 
transposed at least for the purpose of the present lectures into a definition: 
a special purpose processor is a piece of hardware designed to fit as closely 
as possible the algorithm it is built to execute. 

The point is that the hardware has been designed for the algorithm _fj 
and that no programming has been done to implement it on a machine which can be 
reprogrammed. A close relation exists between the algorithm and its implementation 
in special purpose hardware. 

The incapacity of being programmed in the usual sense of the word 
does not necessarily mean that special hardware is completely rigid and 
unadaptable. Of course, it would be unthinkable to adapt a Fast Fourier Transform 
processor for use in, say, a numerical control application. But the FFT processor 
can be used for many tasks (transform, convolution, correlation, digital 
filtering). Often the change from one task to another can be made at the flick 
of a switch. The definition would exclude special purpose systems which are 
based on a single microprocessor (computer on a chip, or rather a handful of 
chips) or a minicomputer, microprogrammable or not. Neither are larger special 
systems, implemented around a general purpose machine a subject for these 
lectures. Parts of such a system could well fit our definition (e.g. I/O 
channels, or the special processor for filtering slice scan data in the Erasme 
system (_8_ ) . 

In agreement with the -rather restrictive- definition of special 
processors given above, the present lectures will try first to develop some 
general points on the applications and motivations of hardware processors. More 
specific points will be discussed in the examples which will be covered in some 
detail : Fast Fourier Transform Processors and hardware for track recognition in 
high-energy physics experiments. The emphasis will be on processors for wire 
chamber data, but a rapid survey will be made of special hardware for filtering 
of digitized coordinates from bubble chamber film. 
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Why and When Special 'Purpose Processors? 

Let us try to answer the question "why special purpose processors?" 
The answer is already contained to some extent in what was said before: for 
some problems programming a general purpose computer is not necessarily the 
optimum solution. Special hardware can be more cost-effective than the running 
of a programme on a general purpose machine or - if it is not - it can overcome 
a real-time constraint. The FFT hardware provides an example for both_ motivations : 
it was soon realized that FFT processor would be very cost-effective _2_ and that 
they would allow real-time analysis of Doppler Radar returns _3_, (_*_ or of 
human speech _5_. Picture processing (image restoration, image enhancement, 
difference detection) and pattern recognition in photographic images also provide 
strong motivations for studying special hardware solutions. The reason, of course, 
is that the large number of picture cells to be handled, combined with grey-
level and colour information make the processing task formidable and time-
consuming on a sequential machine. The tendency in this field is to think in 
terms of highly parallel structures (cellular automata). References |_6_ to _.(_ , 
far from being exhaustive give some examples. An exception to this cellular 
approach seems to be the Control Data picture processing machine _._ . 

Both motivations also exist in high-energy physics. Many analysis 
programs spend a large fraction of time in a few inner loops. The calculations 
in these loops are often very simple and it can be cost-effective to perform them 
outside the large computer. The data presented for further analysis have then 
already been filtered elsewhere. The real-time constraint can be present when a 
selection of events has to be made at an early stage (i.e. before recording on 
magnetic tape, or before triggering the flash lights of a rapid cycling bubble 
chamber J57J ). 

Some of thé answers to the next question: "what kind of problems are 
good candidates for implementation in special hardware?" have become apparent 
already. 

i) Obviously the first condition is that there be a sufficiently 
continuous stream of data to analyse, in order to give a reasonable 
life-span to the processor. In other words: no special hardware 
for a one-off problem. 

ii) Secondly the algorithm should be to a large extent iterative 
or repetitive, which implies that some kind of a loop-structure 
should be present. Nested loops are ideal, because a large part 
of the overheads normally present in the loop control can be 
eliminated. 

iii) The simpler the arithmetic or logical operations to be performed 
repetitively, the more suitable the algorithm is for hardware 
implementation. 

iv) The required precision should be rather small, so that 12 or 16-bit 
fixed point arithmetic may be used. Floating point operations on 
longer words are not excluded, but the cost of the hardware would 
increase sharply. 
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v) A simple control structure will result in simple hardware. A 
straightforward algorithm, where no special cases have to be 
considered, would be ideal. This point should not be exaggerated 
though. We will see later that IF-statements, conditional jumps and 
the like can be implemented, often more easily and more efficiently 
than in a program. The question of control is also closely linked 
to the problem of flexibility, to which we will come back. 

vi) Finally, a last asset for hardware implementation of an algorithm 
is that it consists of independent parts. When different 
calculations are independent of each other,.they can be performed 
in parallel. Another possibility is that calculations can be 
performed in a pipeline. This is the case when later steps in the 
algorithm do not make use of hardware necessary for the execution 
of earlier steps. A continuous stream of "events" can then be 
maintained, the different events in the pipeline residing in 
different sections of hardware and being in different stages of 
progress. 

Influence of Technology 

It is commonplace to say that the extremely fast development of the 
integrated circuit technology over the last ten years has brought about a 
revolution in digital design. I apologise for repeating it, but it is worthwhile 
to point out that the present variety, availability and price of integrated 
circuits has brought it within the possibilities of individuals in a laboratory 
to do things they would not have dreamt of five years ago. This is particularly 
true since MSI and LSI circuits are readily available. This has really brought 
it within the reach of many an electronic designer to build special purpose 
systems. Until recently his designs were often limited to data acquisition and 
interfacing problems, without arithmetic capabilities. To open the way to the 
design of special purpose processors, it is sufficient to become aware of the 
possibilities offered by including arithmetic. By studying carefully the 
algorithm he is to implement he will be able to find elegant solutions which 
speed up execution or reduce the amount of hardware. The chances are that the 
average designer will find original solutions, if he works towards the closest 
fit between the hardware and the algorithm. If not, and if he remembers too 
much von Neumann, the result will probably be another item on the already 
long list of microprogrammed or microprogrammable minicomputers. 

It is probably worth mentioning that the full impact of the integrated 
circuit revolution on the computer industry is still not felt. There are some 
signs of it coming [Ï2] . Significant are the laments that computer architects are 
not sufficiently aware of the present hardware possibilities. These laments are 
accompanied by recommendations to stimulate hardware research in American 
Universities [TÍ] . This prospect of entrusting more and more system tasks 
(processes) to hardware processors in the framework of general purpose computers 
constitutes in fact the bridge between the present.lectures and the other 
lectures on computer architecture. Conceptually, very little would change for 
the systems architect if, for instance, a loader would be implemented in hardware 
or in software. The position taken in the present lectures contrasts however 
with the general trend in systems programming on one point: binding. Whereas 
the systems programmer delays binding to the ultimate moment, this is not the 
case - yet - in special purpose hardware. There every datum is fixed to its 
place right from the beginning. 
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This early binding and the fact that the hardware is made to fit 
the algorithm as a glove relieves us from many of the problems encountered in 
general purpose systems: e.g. fast operand fetching, adaption of programs to 
multiprocessor systems, optimum use of arithmetic and other resources. Early 
binding should not be confused with lack of flexibility! We will come back on 
the presumed inflexibility of hardware in the examples we will treat in detail 

FAST FOURIER TRANSFORM PROCESSORS 

A vast amount of literature exists on the FFT (see ref. fj] for an 
extensive list of earlier references). We will therefore not dwell upon 
details, limitations, pitfalls, etc., but limit ourselves to one specific example 
of a hardware implementation [3] which illustrates best the points we want to 
make. 

The Algorithm 

The discrete version of the Fourier transform, applicable to time 
samples of a continuous function x(t) is: 

K i ) - ^ 1 ! « . " 1 , 2 ^ (1) 
j-o 

with its inverse: 

x(k) = X(j)e l-2"M« (2) 
j-o 

both for j = 0,1 N-l and k = 0,1, ,N-1 

Both the spectrum X(j) and the time series x(k) are, in general, 
complex series. Replacing ¿Z^i/N by W, we can write the essential part of (1) 
or (2) as: 

N-l 
X(j) = z A(k)W J K (3) 

k=0 

For the sake of clarity we will limit ourselves to the case N=8. 
We will then write j and k as binary numbers : j=j 9.4 + j,.2 + j and 
k=k 2.4 +' ̂ . 2 + k Q . 

Eq. (3) then becomes: 

1 1 1 (j .4+j .2+j )(k .4+k .2+k ) 
X C j^ j L . j J = S Z I A(k v , k )W 

U k Q = 0 k 1 =o k2=o 

g Splitting up the exponent into three partial products and remembering 
that W =1 we obtain: 

1 1 1 J 0
k 2 ' 4 ( V 2 + j 0 ) k r 2 (i 4-H 2-H )k 

X ( j 2 , j r j n ) = E Ï 2 A(k k k ) W ° 2 W 1 W ( V 4 + V 2 + V k 0 
L 1 u kQ=o kt=o k2=o 
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This can be calculated in three steps: 

A l ^ O ' W 

W W 

A 3 ( V W 

with final transposition: 

E A(k k ,k )W 
k 2 = 0 

k 0 =o 

J 0 2 

( J 2
4 + V + V k o 

(4) 

X ( J 2 , J 1 » J 0 ) = A 3 ( j 0 , j 1 > j 2 ) (7) 
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Figure 1 - FTT Data Flow for N=8 

Note.that each step calculates 8 new terms from the old ones. Only 
the results of step m are needed in step (m+1) and the older results can be 
discarded. The importance of the FFT lie s in the fact that the N complex 
operations (one multiplication and one addition) to calculate (3) are replaced 
by N l o g r j N operations. By noting that W = -w^ + N/2) w e s e e t h a t w e have to 
perform only —log^N times the following calculations: 

x = x. + y. .W 
out in in 

y = x. - y. .W 
out in in 

(8) 

(9) 

(or, in the previous notation, for instance: 

A 2(5) = A L(5) + A X(7)W 2 

A 2(7) = A 1(5) - A X(7)W ) 

The process, still for N=8 is illustrated in Figure 1 (from §.4]). 
Obviously the general algorithm ¡15] is not limited to N=8, nor even to N = 2 m , 
although most hardware implementations have the last restriction. For earlier 
hardware implementations see Bergland (_6J . 

(5) 

(6) 
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Hardware Implementation 

Figure 2 - Arithmetic Element for FFT 

The heart of a FFT processor is the arithmetic module to perform 
the complex calculations (8) and (9). In terms of real numbers, this 
"butterfly" can be implemented as shown in Figure 2. It is important to realize 
that this implementation constitutes a big advantage over the general purpose 
approach where - generally speaking - only a single, arithmetic operation would 
be in progress at any instant in time. Note that a further speed-up could be 
obtained by organising the butterfly in a pipeline : a new multiplication could 
start as soon as the past one is ready and before the results of the additions 
and substractions are known. This would lead, however, to complications in 
addressing the data. Other, cheaper designs of the butterfly are possible, 
requiring less multipliers and adders _.7| , but they are slower, due to their 
sequential operation. 

Bergland ¡14] distinguishes four organisations of the FFT processor: 

i) Sequential. A single arithmetic module (butterfly) performs all 
• • - • • " S l " [5], |8], III operations sequentially in a total time T.—log^N. 

ii) Cascade. There is one butterfly for each iteration. 

24 
This requires log N 

It will still butterflies, each performing N/2 operations sequentially 
take T.—log^N before the spectrum of a data set is available, but the 
throughput is increased by a factor log^N, since log^N data sets can be 
simultaneously in the pipeline _2_, _3J . 

iii) 

iv) 

Parallel iterative. Here the parallelism is in the horizontal direction 
in Figure 1. So there are N/2 processing elements and the execution 
time is Tlog 2N. _t_| , _!2_ . 

Array. Parallelism is extended in both directions, 
are needed, the throughput is one data set every T seconds 

^Nlog„N butterflies 
2 [23] -

It is clear that the last two organisations are rather unrealistic for 
data sets of 1024 or more samples. In what follows we will therefore give as an 
example a cascade (or pipeline) implementation, which is the one built by 
Groginsky and Works QJ. 
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Let us first have a look at Figure 3, which is another drawing of the 
flow of data in the FFT algorithm. We can then note the following: 

i) each iteration needs only the results of the preceding stage. 

ii) the first iteration uses data samples separated by a distance N/2, 
the second by N/4, etc. 

iii) the stages are independent in the sense that one stage can be working 
on data from one source, while another stage treats data from another 
source (storage must be provided between stages). 

iv) the rotation vector required at each stage has the same periodicity as 
the displacement between data samples. 

These considerations lead to the implementation of stage m which is 
shown in Figure 4. The delay line (actually a shift register) can contain 2 
samples (total delay time A=2 . 6 when 6=sampling time interval). The 
arithmetic unit performs calculations (8) and (9). The switches are controlled 
as follows: first 2 data samples are stored in the delay line and when it is 
füll a rotation vector W is obtained and the switches are thrown. So the 
arithmetic module now starts working, receiving one input (x. ) per sampling 
interval 6 from the delay line, the other input (y. ) directly from the data 
source. One output (x ) is passed on immediately to the next^stage, to be 
stored in the delay line there (the latter can contain only 2 samples). The 
other output is fed back into the local delay line, so that it will become 
available to the next stage after 2 sampling intervals. This is just what is 
needed (see Figure 3 ) . In stage m the delay line is thus alternatively filled 
with fresh da|a and with results, in blocks of 2 . The next stage, working on 
blocks of 2 data needs to throw switches twice as often as stage m. The 
control of the switches can therefore be performed with the help of a binary 
counter! The total organisation then becomes as in Figure 5. 

The rotation vectors are stored in a (read-only) memory in the 
order required for the last iteration. The binary counter provides the addresses 
for this memory. The stages upstream, which need a lower periodicity for the 
rotation vectors, strobe the correct value into an internal register at the 
moment its switches are thrown. 

There is still another trick present in this implementation. As can 
be seen from Figure 3, when two independent data streams are interleaved (even 
and odd samples belong to different data sets) then the spectral components 
of both sets are available at the intermediate output of stage 1, interleaved 
also. In general, for 2 interleaved sets, the interleaved spectral components 
(in the same channel order) are available at the output of module k. So one 
can easily choose between a single stream of 1024 samples, or 4 streams of 
256 samples each, etc. 

This processor has in fact been built and it processes eight range 
channels of a Doppler radar, taking 512 complex samples per channel. The 
throughput rate achieved is 128K samples per second. The processor uses 12-bit 
fixed point arithmetic. 

As with most other processors, the spectral components within a 
channel are produced in scrambled (bit-reversed) order, which is inherent to 



- 231 -

the Cooley-Tukey algorithm (see Figure 3 and equation 7). 

This example illustrates very well the point made before: by 
looking closely at the algorithm an elegant and fast processor has been 
produced. 

SPECIAL PROCESSORS FOR HIGH-ENERGY PHYSICS 

Bubble Chambers 

Apart from the one already mentioned |_7J , other proposals p25 - 35] 
have been made to perform track-element search by special hardware and a number 
of projects [_7 - 30 - 32 - 35¡ have been launched in the past to replace by 
hardware at least a major part of the track-following programs for data from 
flying spot digitizers. Most of these hardware approaches (LER, [25 - 26] , 
BRUSH, [27 - 29] , PANGL0SS, ¡34] ) are based on histogramming technique. A 

£ 3 

TO SUMMING AMPLIFIERS 

Figure 6 - Pattern for Line Element Search 

histogramming technique which does ,not use arithmetic, but only logic. The hits 
of the flying spot on track images are not represented numerically as the value of 
the coordinate, across the film, but rather as bits in a shift register. The 
bit pattern in the shift register is a representation of the analogue signal 
produced by the photo-detector. A number of scans is represented in an array of 
registers. The shift register array (which is shorter than corresponds to a 
complete scan-line, scan-lines being shifted through it) contains pre-wired 
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patterns, approximating straight-line segments under different angles (see 
Figure 6). At every shift a hit count is established for each direction. 
A maximum must be sought in successive hit counts (always for each of the fixed 
directions) and a decision taken on the possible presence or absence of a line-
element. The shift register array contains only a limited number of scan-lines 
(slice). Next the line-elements found in successive slices must be linked into 
tracks, which is another non-trivial problem. BRUSH ¡28] has in fact been 
implemented, and is undergoing extensive tests. 

COCCINELLE ¡32 - 33] followed another approach, purely analogue. 
A very strict synchronisation between line sweeps is imposed. A line element 
under a given angle is then characterized by the recurrence of a fixed time 
delay between successive signals. A set of delay lines is used to detect 
recurrent pulses. Output pulses are fed back into the same delay line, after 
being added to the input signal present at this particular instant in time. 
Pulses separated by the delay time build up to large amplitudes, dominating 
a sea of small pulses. 

SATR [30 - 3Í] adapted a three-dimensional approach. It needs 
precise knowledge of the fiducial positions before processing can start. Every 
hit on the four stereo-views is transformed into a light ray in space. Small 
regions of space are then searched for close crossings of light rays. A track 
element detected is followed in three dimensions. 

It is not known to the author if SATR reached a full scale 
implementation. 

A less ambituous approach was taken at the Zeeman Laboratory in 
Amsterdam, where special hardware was built to follow beam tracks only [35] . 
A histogramming technique is followed, but using the numerical coordinate 
values. The hardware is thus a close replica of the kernel of a track-following 
program. Moreover, approximate position, incident angle and curvature are 
known for beam tracks. This approach seems to be successful and capable of 
following beam-tracks and detecting their disappearance at an interaction 
vertex. Finally, one should mention a special purpose processor under development 
for ERAMSE at CERN ¡36] . Here the aim is to speed up the analysis, decentralising 
still further the different tasks jfii] . The analysis of a slice scan to find 
the parameters of a track segment will thus be done in specialised hardware, 
which has taken the form of a micro-programmed processor with a specialised 
instruction set. 

Wire Chambers 

For the treatment of wire chamber data a number of special processors 
have been built or proposed. The first to be mentioned (although chronologically 
one of the last) is MEDEA ¡37] , a special processor to separate a continuous 
stream of coordinates into different sets, each set originating from a different 
wire plane. In addition, clusters of "sparks" are detected and transformed 
into a coordinate corresponding to the center of the cluster. The wire planes 
can have an arbitrary number of wires. Note that this processor could have been 
avoided with another design of the read-out system. 

Three groups (not counting the detailed example to be given later) 
tackled the problem of detecting straight particle tracks in wire chamber set-ups. 
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The first one §¿] uses a purely arithmetic method to detect if in a single 
particle event the points in 3 detectors lie on a straight line. If these 
detectors are indicated by A, B and D respectively, then the relation checked 
is : 

l X A - V V C x l < E ( 1 0 ) 

and similarly for the Y-coordinates. and C are constants. Three adders 
and a comparator are used to check (10) for one coordinate. When (10) is 
satisfied for both X and Y, the event is rejected, since the experiment is 
intended to study elastic scattering and the chambers A and B are in front of 
the target and chamber D behind it. This hardware has been effectively used 
in an experiment. 

The second approach |_9, 4o] is very similar to a number of the 
bubble chamber approaches (BRUSH, LER): the "sparks" for each detector are 
stored as bits in shift registers, the position of the bit being an image 
of the position of the spark. Instead of using pre-wired patterns to search 
for coincidences, the different angles are scanned by first off-setting the 
shift registers by the amount required for the search angle. The complete 
shift register array is then shifted along a single coincidence unit. By 
ORing successive bits in this coincidence unit, the resolution can be varied. 
The method is not very fast: for four 128-wire proportional chambers, 1024 
4-bit wide searches must be made, taking a time of 100 ys. Adding 1/0 time and 
the time for high-resolution searches one arrives at ^600 ys per view. This 
time only depends linearly on the number of tracks. 

The third processor is more sophisticated [4l| . First it finds in a 
set-up of 4 parallel wire chambers all combinations of 3 points on a straight 
line. This is done in the "intelligent Memory", for a maximum of 16 particles. 
The IM has 256 locations where first all possible values of c ^ £ X < + C 3 ] c

X j c 

are stored for i=l,...,16 and k=l,...,16. These values are 
then compared with the values of C .X. (for j=l,...,16). When a match is 
found, the three points X.,X. and X? In chamber 1, 2 and 3 lie on a straight 
line. A bit is then stored In another memory C, at an address which is directly 
related to the address in the Intelligent Memory where the match was found. This 
address is in fact a pointer to the combination of points on the line. The 
process is repeated for chambers 1, 2 and 4, then for 1, 3 and 4 and finally for 
2, 3 and 4. A cleaning-up process is then performed to combine for each 
particle the four lines through 3 points into a single one through 4 points. 
The approach seems neat and able to deal easily with inefficiencies. 

Lastly, and before we leave this survey to treat in detail a 
hardware processor which is able to deal with curved tracks as well, it is 
worth mentioning the polynomial generator of McPherson and Wilde ¡42] . 
This processor can evaluate other formulae as well, and its application is 
not limited to high-energy physics. A block diagram is shown in Figure 7. 
The structure reveals a nice implementation of Horner's rule for the evaluation 
of a polynomial: 

P (x)=c +c x+c„x + n 0 1 2 
n 

+ c x = n 
((...(c x+c ..)x+c )X+ )x+c 

n n-l n—¿ l 
(11) 
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Figure 7 - McPherson-Wilde Polynomial Evaluator 

The processor is flexible due to its micro-programmability. It 
probably will not beat a large computer in speed, but it can be very useful 
as an extension to a minicomputer without hardware multiplier. 

SPECIAL HARDWARE PROCESSORS FOR A SPECTROMETER SET-UP 

We will now describe in more detail a number of processors which have 
been designed (and some built) for track-recognition in a spectrometer set-up 
using proportional wire chambers. We will describe the processors, investigate 
why they are faster than programs running on a Control Data 7600, describe 
how further improvements can be obtained and how the operation of different 
processors can be co-ordinated to perform the overall task. 

Lay-Out of the Experiment 

9m 

Figure 8 - Schematic of Experimental Lay-out 
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M A G N E T 

63115 

I 

Figure 9 - Same as Figure 8, without tracks 

The spectrometer set-up is shown - schematically - in Figure 8. In 
this set-up one wants to study the secondary particles produced in head-on 
collisions of two protons. The particles are produced in a relatively small 
region (y 20 x 4 x 2 cm ) , indicated at the left. Note that the vertical 
scale in Figure 8 is much larger than the horizontal. The secondary particles 
traverse a number of detectors, where the X and Y coordinates of the traversal 
point are measured. One of the detectors is placed in a - more or less 
uniform - magnetic field. Inside the magnetic field the particle trajectories 
are curved and the amount of curvature is in fact a measure of the momentum. 
Figure 8 shows a complicated event, where a larger number of positively and 
negatively charged particles are produced and traverse simultaneously (i.e. 
within the resolution time^0.1 us of the electronics) the set of detectors. 
The problem we are faced with is: how do we distinguish tracks in this set up? 
In figure 8 the complete trajectories are drawn in, but the only information 
we obtain from the experiment are a set of (X,Y)-pairs in each detector. So, 
it looks in fact as in figure 9 which represents the same event as figure 81 
We want to obtain from this, for every particle in the event,, a list of five 
(X,Y)-pairs, representing five points along its trajectory and thus describing 
this trajectory entirely. This then will allow us to determine the three 
components of the momentum, make kinematic calculations and analyse the event 
to extract the physics information of interest. 

The problem is slightly more complicated than this, for we do not 
directly measure (X,Y) coordinate pairs to start off with! The detectors 
used are multi-wire chambers, consisting of several wire planes. A large 
number of thin wires are strung parallel to each other in a plane and kept 
at a positive potential with respect to the outer planes, parallel to the wire-
plane and at a distance ^1 cm. When an ionising particle passes through such 
a chamber, electron multiplication takes place in the strong electric field 
around the wire and the wire nearest to the traversal of the particle will 
produce an electrical signal which can be detected. Since the number of the 
wire which gave the signal is known, we have measured one coordinate (say X) 
on the trajectory of the particle. With the help of another chamber, with 
the wires strung in a direction perpendicular to the first, we can measure 
the Y coordinate. For a single particle event we thus measure the (X,Y) pair 
but in a multiparticle event we obtain a set of X-coordinates independently 
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Possible combinations i X, ,Yj with Xj ,Yi 

O R : X 1 ( ¥ , wfth Xj.Yj 

vi 

Figure 10 - Ambiguities in Wire Chambers; Use of U,V. 

of the Y-coordinates which have to be combined into (X,Y) pairs. This pairing 
gives rise to ambiguities. To solve the ambiguities that occur in pairing 
the X's with the Y's (see Figure 10 for the simple case of 2 particles), more 
wire planes are added and sandwiched together with the X and Y planes in a 
single module. The added planes have the wires strung under an angle with 
the X-axis. A typical module is schematized in the inset of figure 8. The 
wires here are strung at ± 45 and they will measure what we will call the U 
and V coordinates. 

To summarize: the electronic read-out system will give us sets of 
X, Y, U and V coordinates, all independent of each other, for all five 
detector modules and for a number n particles (a total of 5x4xn coordinates). 
From this we must find first (X,Y) pairs in each module (a total of 5n (X,Y) 
pairs). After this point-finding we must sort the points into tracks (to get 
n tracks). 

The Pattern Recognition Process 

i) Point-finding. When we apply a simple coordinate transformation from 
the X-Y-system into the U-V system we see immediately that the four 
coordinates measured for a particle must satisfy the following relations 

U = ^x/2+^Y/2 (12) 
V = -^x/2+^Y/2 (13) 

In the particular case we are considering the distance between the X 
and Y wires is 2 mm, but the U and V wires are spaced by 2/2 mm. The 
result of this is that we get rid of the /2 in (12) and (13), when we 
express the coordinates in wire-number, instead of millimeters. The 
relations (12) and (13) are only satisfied for a particle whose trajee 
is•perpendicular to the planes. When this is not the case, then due to 
the finite thickness of a module, (12) and (13) can only be satisfied 
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approximately. So, the four coordinates of a particle must satisfy 
the following constraints: 

|X+Y-2U| <_ e1 

|-X+Y-2V| < e 2 

(14) 

(15) 

Thus, the problem is to find all combinations of an X, a Y, a U and a 
V, satisfying (14) and (15) simulteneously. This involves a nest of 
loops, as in figure 11-i. Matters get somewhat more complicated if w e 
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Figure 11 - Loop Structure for Point-Finding 

realize that the efficiency of a detector plane is not exactly 100%. 
In other words, one can expect to find particles for which, say, the 
U coordinate is missing, because the particle did not produce an 
electrical signal on a wire. In that case (15) is the only constraint 
that can be satisfied. Similarly for a missing V only equation (14) 
can be satisfied. In order to find also particles for which the X or 
the Y coordinate is missing, we must use the inverse relationships: 

U+V-Y < e. 

U-V-X < e, 

(16) 

(17) 

For this purpose we must also perform a search with the loop-structure 
figure 11-iii, after executing the loops of figure 11-i. 

In real life we must also deal with spurious signals, without any 
relation with an incident particle. Since all the constraints are to 
be satisfied within a finite valué e (e is normally 5 or 6) there is 
non-negligable probability of finding spurious solutions. These so 
called ghosts consist of combinations of X, Y, U and V, which satisfy 
the constraints by pure chance. Since at the level of a chamber modul 
there is no way of distinguishing a ghost from a true solution, the 
ghost solutions must be carried through into the track-finding. They 
increase the number of points participating in the track-recognition 
process. The number of ghost solutions increases with the square of 
the total number of signals per wire plane (particle+spurious signals) 
and the problem can become serious when there are many "noisy" wires . 
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Track-finding. We now turn our attention to the track-finding 
process. The method of principal components &3 - 45] offers an 
elegant method of treating the problem [46 - 47] . Recall figure 9 
to realize that the problem is not trivial! 

x 2 

Xi 

Figure 1 2 - Principal Components in 2-Dimensions 

Instead of presenting immediately a formal mathematical description 
of the method we will first give an example in two dimensional space. 
Suppose we measure two quantities x^ and x to determine the value of 
a parameter p describing a particle trajectory. We suppose we only 
want to determine one parameter and therefore the measurement of two 
variables is redundant. In other words, a constraint equation relates 
the value of x^ to the value of K ^ . See figure 1 2 for a representation. 
The curve represents the constraint, and the parameter p takes on 
different values along the curve. A measurement of an x^ and X 2 which 
does not correspond to a point on the curve (or near to it) must be 
rejected as non-physical. When the curve is sufficiently close to a 
straight line (or rather when the probability distribution is well 
allongated), the test to check if a (x^, x^) pair represents a physical 
situation or not can be simplified by applying a coordinate transform­
ation from the (x^, system into the (£^, system (see figure 1 2 ) . 
The test critérium then simply becomes: ¡C^l < e where e is small. The 
value of is a direct measure of the parameter p. 

In the case we are considering of particle trajectories in 3-dimensional 
space we can apply the same method, but we must increase the dimensions 
of the space we are working in. In fact, a particle trajectory has 
5 degrees of freedom, when a magnetic field is present. Or, to put it 
differently, a trajectory is entirely determined by 5 parameters: 
p , p , p (the 3 components of the momentum) and (X,Y) at some plane 
Z=cons'tanf. But we measure 1 0 values (5 coordinate pairs) along the 
trajectory in the set-up of figure 8. Thus there must be 5 constraint 
equations between the measured values x^,..., x-,g- Each trajectory 
can be represented by a point ( X ^ , . . . , X ^ Q ) in 10-dimensional space. 
It now turns out that, for a wide range of experimental conditions 
[45 - 47] the points plotted this way for a large number of tracks, lie 
close to a 5-dimensional hyperplane. (Compare with figure 1 2 where the 
2 dimensional plot is close to a 1-dimensional "hyperplane"). This, of 
course, simply means that the constraint equations are linear. Or, in 
other words, it means that we can define a coordinate transformation 
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-» • - > - V 
Ç = W.x (18) 

which transforms from the system x ,.... ,x. Q into the system £ ^ E , ^ 
in such a way that the ,Ç axes subtend the hyperplane and that 
the axes are perpendicular to it. This then means that 
for a given trajectory and thus a point ( X ^ , . . . , X ^ Q ) in the 10-
dimensional space 

_ 2 _ 2 _ 2 „ 2 , . 2 
h *h + Ç 8 + Ç 9 + Ç 1 0 

is the distance of the point to the hyperplane. This quantity is small 
for a possible trajectory and can take any value for an arbitrary 
point in the 10-dimensional space. 

m m 

1000 

• with errors 

• without errors 

Figure 13 - Range of values for £ to £ 

The range of values taken by £ to for a set of 1000 tracks is 
illustrated in figure 13. For each value of the index i is plotted 
the largest value of found amongst the sample of 1000 tracks. 
The dotted line interconnects the points obtained when the original 
x-coordinates are known without error. This line is a measure of 
the "flatness" of the hyperplane. When measurement errors are 
introduced the smaller values of Ç., occurring for the larger indices i, 
are drowned in the errors. The solid line in figure 13 shows this 
effect. 
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This now leads to the algorithm to recognize tracks. We first 
rename our coordinates: (X,Y) in the first chamber module becomes 
x ^ j X ^ , in the second module x^,x^, etc. We then calculate for every 
possible combination of one point in the first module, and one in 
the second, one in the third, etc... 

10 
I . = S W. .X. for i=6 10. (19) 

1 j=l L J J 

When each Ç. is small: 

1*11 ± £ i for i=6....,10. (20) 

and/or when 
10 
Z Í. < A 

i=6 1 -
(21) 

we accept the chosen combination of points as one defining a possible 
trajectory. If the conditions (20) and (21) are not satisfied we 
reject the combination. 

To apply the method we must of course know the matrix W. This 
knowledge can be obtained with any precision required from a Monte-Carlo sample 
of events. W is nothing more than the set of eigen vectors of the covariance 
matrix of the sample [44], |46¡ . 

A very important thing to know is how well the method does discriminate 
against wrong combinations. Figure 14 illustrates the quality of the 
discrimination attained [46] . The peak at the left contains all the correct 
tracks and the large hill at the right all the wrong combinations. Note that 
the horizontal scale is linear from 0 to 1 and then becomes logarithmic. 
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Figure 14 - Separation of Good Tracks 



- 241 -

The number of combinations that, can be formed with n points in each 
of the five detectors is n and they should in principle all be tested. 
Obviously this becomes a big and time consuming task for larger n. The CPU 
time it takes - in Fortran - on a CDC 7600 is shown in figure 15 (curve marked 

10* 

103 

102 

10 

1 
1 2 3 4 5 6 7 8 9 10 
Number Of Tracks/Event 

Figure 15 - Timing on CDC 7600 

"brute force"). It is therefore essential to reduce the number of combinations 
to be tested and fortunately this is possible in most practical cases: when the 
magnetic field is reasonably uniform and the particles have a high momentum, 
the tracks are close to straight lines in one projection (say Y ) . A check to 
see if x^, x^, x , Xg and x^^ l^e approximately on a straight line can be done 
in a time proportional to n (instead of n as with "brute force"). Only 
for those combinations which pass this straight line test does one then need to 
calculate (19). Figure 15 shows the gain obtained. 

From the point of view of a hardware implementation, this track 
recognition algorithm is ideal: a straightforward, simple calculation which 
can be performed in a nested loop structure, followed by simple tests. It should 
be pointed out, however, that the method has its limitations: 

i) the detector planes must be parallel. 

ii) the transformation W is only valid for tracks crossing all five 
detectors. 

For other combinations of detectors (thé first three, for instance) another 
transformation must be applied. 

Time Event 
( Milliseconds) 
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Figure 16 - Block Diagram of Point Finder 

The block diagram of a hardware implementation of the point-finding 
process is shown in Figure 16. This processor works on data from one single 
4-plane module at a time. The X, Y, U and V coordinates are stored in 
independent scratch-pad memories, in the order given by the read-out system, 
i.e. in increasing order. The scratch-pad memories can store 16 or 32 words of 
16 bits. They have their individual address register (AR), word count register 
(WCR) and number of active coordinates register (ACR). The word count register 
furnishes in fact a pointer to the last address in memory containing useful data. 
When a memory is loaded, all three registers are incremented until the last coor­
dinate from the wire plane has been stored and a switch-over is made to the next 
wire-plane and the next memory. To perform a loop over the data contained in a 
memory three control signals are enough: set address register to zero (ZAR), 
increment address register (IAR) and "last address reached" (LA). The last is 
a signal delivered by the memory module when the contents of AR equal the contents 
of WCR. It indicates that incrementing of AR must be stopped because the 
following locations in memory contain rubbish. 

Nested loops can be easily implemented in the following way: first all 
address registers are zeroed. Then AR1 is incremented until the signal LAI is 
produced. The presence of LAI causes the following two actions: ZAR1 and IAR2. 
This is repeated until LA2 and LAI are present, causing ZAR1, ZAR2 and IAR3, etc 

Note that the relation (14) and (15) are independent of each other and 
can be tested simultaneously if the necessary arithmetic elements are available. 
A sufficient number of adders and comparators have been implemented to make this 
possible. The loop structure then becomes as in Figure 11-ii. One loops 
simultaneously over the U and the V coordinates, until a "hit" is found. When 
this hit is for instance on a U coordinate (which means that (14) is satisfied), 
one stops incrementing the address of U, but the search over the V coordinates 
is continued. Two things can happen: either a hit on V is found, or the last 
address of V is reached without finding a hit. In the first case a 4-plane 
solution has been found, in the second a 3-plane solution with V missing. The 
latter has, by the way, a fair chance of being spurious. 
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The adders and comparators at the right hand side of Figure 16 are a 
kind of a luxury. They allow us to check relations (16) and (17) simultaneously 
and thus detect some of the 3-plane solutions with either X or Y missing at an 
early stage. This proved to be unrealistic and now these elements are only 
used when a specific search for these 3-plane solutions is made with the loop 
structure of Figure 11-iii. 

Whenever an acceptable solution has been found, the coordinates 
participating in this solution are tagged by writing a "1" into an unused bit 
position (11 or 12 bits are sufficient for a coordinate). In addition the 
solution is written into four scratch pad memories which serve as output buffer. 
On subsequent passes through the data in a particular memory a tagged coordinate 
can be treated in two ways: 

i) The tag can be simply ignored. This will yield all possible solutions, 
which in the presence of noisy wires can easily amount tó 20, 40 or 
more solutions, with 3 or 4 true particles hidden amongst them. 

ii) One can skip rapidly over a tagged coordinate without performing all the 
arithmetic. A tagged coordinate is thus eliminated and only a limited 
number of solutions is obtained in which a coordinate appears once and 
only once. Unfortunately these solutions are not necessarily all 
correct'. 

To deal with chambers with noisy wires the following procedure has been 
adapted: tagged coordinates are ignored. The processor makes four passes through 
all the data. During pass 1 and 2 only 4-plane hits are accepted. Pass 1 is 
performed with e=2 and pass 2 with e=6. Pass 3, with e=6 accepts only 3-plane 
hits where U or V are missing and finally pass 4, also with e=6, finds the 
3-plane hits where X or Y are missing. Since the probability of finding a 
spurious 3-plane tjit is proportional to e and for a spurious 4-plane hit 
proportional to e , this strategy reduces the chances of accepting spurious 
and wrong solutions. (The trouble is not so much the presence of a wrong 
solution, but the 3 or 4 correct solutions you may miss when tagged coordinates 
are ignored.) 

Another, better, strategy is to suppress pass 1 and to ignore the 
presence of a tag during pass 2, but not during pass 3 and 4. All possible 
4-plane solutions are then accepted and the search for 3-plane hits is performed 
amongst the residue of unused coordinates. 

We realize by now that the box "CONTROL" in Figure 16 has become 
rather complicated. It has to do all the necessary things to nest the loops, 
to deviate from normal procedure when a hit on, for instance, U has been found, 
to organize different passes and different loop structures. By far the optimum 
way of implementing this control is by the use of a Programmable Logic Array 
(PLA). A schematic of a PLA is shown in Figure 17. The left hand side, marked 
CAM, contains AND-gates, one gate per line. The condition signals are the 
inputs to the AND-gates. In the case of an implementation with AND-gates, 
ea.ch condition C. should be presented in the straight (C.) and negated form 
( C ) . This allows the use of either one as input to the 1AND-gate or neither of 
the two, which represents a "no care" condition. An AND-gate which is satisfied 
activates an address line which in the part ROM produces the required action 
signals. The columns in ROM form OR-gates, with a selection from the address 
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Figure 17 - Programmable Logic Array 

lines as inputs. It is important to realize that all the combinations of 
conditions which have been programmed in the PLA are checked simultaneously 
and the action signals produced immediately. A stored program computer would 
have to perform a long series of conditional branches (IF-statements) to do 
what a PLA does in some 50 ns. Note that a PLA can be programmed to perform 
certain steps in sequence. It is sufficient that an action signal sets a 
flip-flop and that the output of this, flip-flop is fed-back as a condition 
signal. In this way the different passes of the point-finding processor have 
been programmed. While the processor is executing pass 3, the program for 
pass 3 is enabled while the other three programs are disabled. 

Finally, the similarity between a PLA and a decision table ¡48, 49] 
should be pointed out (see Figure 17). 
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Performance of the Point-Finding Processor 

Figure 18 - Photograph of Point-Finder 

A photograph of the complete ponint-finding processor as designed 
and built by A. Fucci, is shown in Figure 18, with all logic circuitry pulled 
out of the cabinet. The processor is implemented in normal TTL logic and it 
contains some 540 IC's, distributed over 44 circuit boards. The component cost 
(including cabinet, switches, etc.) is ^14.000 SFr., labour for as s embly 
represents V5.000 SFr. 

•y....v....|......;.,..,fr..........J 

Figure 19 - Long and Short Cycles in Point-Finder 

A complete cycle - from the issue of an increment address signal to the next 
issue of an IAR - is <300 ns when a non-tagged coordinate is read and the 
complete arithmetic is performed. This reduces to i,130 ns when a skip cycle on 
a tagged coordinate is performed and it extends to ^600 ns when a hit is made 
and a solution must be stored. Figure 19 shows a part of the execution on an 
extended time scale, beginning at the start of pass 2. 

The PLA has been implemented as a diode matrix (see Figure 18) and 
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this implementation accounts mostly for the fact that the cycle time is some 
50% longer than intended. The program contained in the PLA has about the 
complexity of the flow-diagram of Figure 20 (this flow-diagram is not claimed 
to be correct, it is only included for comparison). The PIA uses 20 input 
signals and produces 18 output signals; 33 sets of conditions are programmed. 
The program has been translated back into FORTRAN, resulting in a listing 
of over 2\ pages, compiling into 397 locations on the CDC 7600. 

£ ) try to f i n d f u r t h e r . 
3 - p l a n e s o l u t i o n s 
w i t h X or Y m i s s i n g 
(by inver t ing r o l e s of X , V a n d U,V) 

t o g * X m e a n s : 1) wr i t e a tog bit into XfAX) 
2 ) a n d decrement NX-. N X . N X - l 

Figure 20 - Flow Chart of Point Finding Program 

The execution time for the point-finding process is found to be 
proportional to the third power of the number of signals per plane, as expected. 
An event with 6 particles is handled in 74 us (not counting I/O time). This is 25 times faster than the Fortran program on the 7600, compiled with the latest 
version of the compiler (FTN 4.1 + 69) using full optimization. (For an 
earlier version of FTN the 7600 performed the algorithm 40 times slower [50 - 52J . ) 
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The reasons for this increase in speed can be easily identified: 

i) parallelism. The use of several scratch-pad memories avoids sequential 
access to data. 

ii) fast access. The memories have an access time of 35 ns, which is 
increased to ^50 ns because the AR must be incremented. Also the 
arithmetic is fast: ^35 ns per addition. 

iii) duplication. In order to check two relations at a time, the arithmetic 
has been duplicated. In fact every addition uses a different adder, 
which saves gating delays at inputs and outputs of adders. 

iv) use of PLA. This gives without doubt the most important contribution 
to the speed-up factor. 

Hardware Design for Track Finding 
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1 w h a n 
s u c c e s f u l solution 
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Figure 21 - Block Diagram of Track Finder 

The algorithm of equations (19), (20) and (21) is easily implemented 
in a fast hardware processor represented in Figure 21. The trick consists in 
performing all the multiplications required by (19) beforehand, outside the 
nested loop. Suppose we want to check only Ç^, Çg, Ç and Ç^Q and not Ç^. 
Suppose also that we limit ourselves to a maximum of 8 points. We will 
then store in, for instance, the 3 r d scratch-pad memory in Figure 21 the 
following data: at address 0,1, etc.: W ? 3 X (1), W ? 3 X 3 ( 2 ) , W ? 3 X 3 ( 3 ) , etc. 

At addresses 8, 9, etc.: W g 3 X 3 ( 1 ) , W g 3 X 3 ( 2 ) , W g 3 X 3 ( 3 ) , etc. 

At addresses 16, 17, etc.: W g 3 X 3 ( 1 ) , W g 3 X 3 ( 2 ) , etc. 

and finally at addresses 24, 25, etc. W 1 0 , 3 X 3 ( 1 ) ' W 1 0 , 3 X 3 ( 2 ) ' e t C " 

The subscript refers to the i and j in (19), while the index is the 
ordinal number of the point (X^(2) is the x coordinate of the second point 
found in module 2 ) . The point-finding process has established already the 
linkage between the X and Y coordaintes of each point. We will therefore use 
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all possible combinations of points by performing over the data a series of loops, 
nested 5 deep (and not 10 deep as Figure 21 might suggest). Moreover, we loop 
only over the first 8 locations (or less if there are less points) of each 
memory. 

For every combination of points we form in the course of executing 
the loops, will be calculated by the adder tree. When it turns out that 

< S we have a possible track candidate. Çg, Ç and £ are then rapidly 
calculated by increasing all memory addresses by 8. We nave still some 
liberty to choose the sélection criteria for accepting a track: require (20) 
to be satisfied for all i=7, 10, or require that only 3 relations out of 
4 need to be satisfied. These criteria are illustrated in Figure 21. One can 
also require that (21) be satisfied (using for instance a look-up table to find 
the square of a small number), or replace the sum of squares by the sum of 
absolute values. Each coordinate must be multiplied in the beginning by 4 
constants. These 4 multiplications can be performed in a micro-second. Thus 
when the processor is loaded from a minicomputer, no time is lost in the 
multiplications. The loading of the processor with, for instance, 4 points 
per chamber module can be performed in 2x4x5= 40 us. Outputting the final 
track data can algo be done in 40 ys or less. ^The loops can be executed in a 
maximum time of n .x and an average time of Vn . T . For n=4 particles and a 
cycle time T=500 ns we obtain an average time of -^xl024x0,5 ys = 256 ys. This 
neglects the few microseconds required to check £„, E,^ and E,^ once E, has been 
accepted. This design can obviously be modified for another number of detectors, 
another maximum number of points, etc. It suffers however from a few shortcomings: 

i) the n^ dependence of the execution time. For 8 points per module the 
execution time increases to 8 msl 

ii) the processor is capable of finding only those tracks which have given 
rise to a point in every chamber module. 

This is not necessarily the case for all tracks, either because of inefficiencies 
or because a track has been bent too much in the magnetic field and it misses 
the last two detectors. To find these special tracks requires another loop 
structure (which is not difficult as we have seen), but it also necessitates 
going back to the beginning and multiplying the coordinates by another matrix W. 
This is rather awkward in this structure. 

More Sophisticated Track-Finding Processor 

The remedy to both shortcomings is to perform first a straight-line 
search on the Y-coordinates alone. This, of course, will give a good pre­
selection of track candidates only when the magnetic field is sufficiently 
uniform so that vertical focussing or defocussing effects are small e n o u g h . 

The search for a straight line can be made in a time proportional to n , where 
n is as always the number of points per detector. Particularly for large 
events a considerable speed-up can be expected. When a straight line has been 
found, it must be confirmed that this is indeed a track by performing the 
3-dimensional principal components algorithm (19) on the points. Since the 
selection critérium for finding a straight line will be quite loose, formula 
(19) will have to be evaluated more often than corresponds to the number of 
tracks. This drawback is however largely offset by the overall gain in 
execution time. The special cases of tracks not making the full traversal 
of all detectors or suffering from inefficiencies can be treated at the level 
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of the straight-line search. 

When such a "special" straight line has been found, the combination 
K of detgctors in which it was revealed will then determine immediately the 
matrix W which must be applied in (19) to confirm the existence of a track. 
The elements of all the possible matrices W can be stored inside the track-
confirmation processor. The physicist should however exert some self-discipline 
in this respect. If in a set up of 8 chambers one wants to detect the tracks 
which traverse 8, 7, 6, 3 chambers in all possible combinations one needs 

•8 X ,8. ,8 X ,8 N ,8* 1 + (7) + (6) + (5) + (4) + (3) 219 different matrices, varying in size from 

16x11 down to 6x1, making a total of 8352 coefficients! A careful choice must 
therefore be made of the limited number of combinations of detectors to be 
considered. 

OL OF 

I — l - ^ - l ^ ^ 

T T 
CMPj 

CMPj 

Figure 22 - Diagram of Line Finder 

A design for a straight line finder is shown in Figure 22. The 
algorithm is the following: choose a Y-coordinate in the "first" chamber and 
one in the "last". Connect the two by a straight line and predict the Y 
coordinate for the three "intermediate" chambers, using: 

Y , . — Y . + ß. (Y, - Y _ ) (22) pred,i first 1 last first 

The predicted values are then compared with the measured coordinates 
in the inner chambers. T h e inner loop over the data for the three intermediate 
chambers can be performed in parallel. Also the three predictions can be 
calculated in parallel. In the present design this is done sequentially, to 
avoid the need for 3 expensive, fast multipliers ( 2000 SFrs. each). For fast 
and parallel access the coordinates are stored in scratch-pad memories, one for 
each detector. So Y,.. and Y, (OF and OL in Figure 22) are subtracted and 

first last 
multiplied by three ß's which are read sequentially from a central memory (CM). 
The resulting predictions are stored in three of the five registers LR to LR_. 
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Figure 23 - Selection of First and Last Chamber 

The inner loop is then performed by presenting all Y's for the intermediate 
chambers (20Y, 30Y and 40Y). Figure 22 shows that the choice of the "first" 
and the "last" chamber is arbitrary. For each choice another set of e's and 
3's must be addressed in CM and the control logic must choose the correct 
combination of LR's and CMP's to be used. (The latter choice can even be 
avoided by using always 5 values of 3, two of which are 3=0 and 3=1. All 
5 LR's and all 5 CMP's will then be used, always.) Figure 23 shows how the 
choice of first, last and intermediate chambers is made: one of the signals 
ENF and one of the ENL's are active. Note that the data for the inherloop 
are available without additional gate delays. Figure 23 shows also the storage 
for the X-coordinates and the gates necessary to sequentially read out 10 
coordinates for track-confirmation. 

Figure 24 - Indirect Addressing Scheme 



- 251 -

In order to deal with the different combinations of Ü out of m 
detectors, several passes are performed through the data. A pass counter 
(see Figure 24) forms the basis for an indirect addressing scheme to retrieve 
the correct e's, 3's and W..'s from CM. An undisturbed copy of the starting 
addresses is kept in CM its elf. From here addresses can be transferred into 
IAL at the beginning of a new pass, if necessary after some manipulation. In 
IAL the addresses can be freely incremented to perform sequential accesses. 
The pass counter is not the only variable entering into the addressing scheme. 
Other factors are the kind of variable that must be retrieved: e, 3 or W... 
In addition there is an entry "arm". The whole processor is in fact designed 
for a two-arm spectrometer. Using the fact that one is treating arm 0 or arm 1 
as a parameter allows the access of entirely different constants for the two 
arms. In other words: the two arms can have different configurations. It 
is obvious from Figure 22 and 23 that the design of the straight line finder 
can be easily adapted to any number of detectors. Also a slight modification 
in the gating in Figure 23 would adapt the processor to find straight lines 
in X as well as in Y. The line-finder is therefore a processor in itself which 
could find application in experiments where the principal component approach 
is not needed. 

A preliminary version of this line-finder has been built and it has 
been tested on Monte-Carlo data. At present it is being tested on real data 
from an experiment, recorded on magnetic tape. The aim is to compare its 
performance with the results obtained by software. 

I 

1 _ J 
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J I 
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:LSi«l REG 2 UtS 

Figure 25 - Diagram of Track Confirmation 

The track-confirmation part of the track-finding processor, shown 
in Figure 25, is simple. The coordinates are obtained sequentially (that is in 
the order of X ^ J X ^ J X ^ , • • . , X ^ ^ ) from the scratch-pad memories. At the same 
time the appropriate W..'s are obtained - also sequentially - from CM. After 
multiplication the terms are accumulated in REGI. A first comparator compares 
the £. obtained with an e. retrieved from CM. An adder adds or substracts £. 
depenàing on its sign from the sum accumulated in REG2. REG2 will thus contain 
the sum of absolute values Z | £ . | , which at the end is compared with another e 
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It is evident that the same processor can be used for track 
confirmation in an arbitrary number of detectors. It is thus very general. 

The results from the track-confirmation are written back into CM, 
from where they can be transferred to the control computer for recording on 
magnetic tape. In order to avoid detecting in later passes segments of a track 
already found in an earlier pass, coordinates which lie on a track are tagged. 
The tagged coordinates are ignored in later passes where the number of detectors 
considered-is smaller. 

The track-finding processor is controlled by PLA's. Instead of one 
very large PLA controlling everything, the control has been split up. There is 
one PLA for overall control and a number of others controlling sub-units. 
The design of the track-finding processor is mainly due to W. Vree. 

POSSIBLE IMPROVEMENTS 

Use of Content Addressable Memories 

Both in the point-finder and line-finder the inner loop consists of 
the comparison of a predicted with a measured value. This is done by looping 
over all measured values V , subtracting them from the prediction V and 
comparing the absolute value |v - V | with a small and positive e . ^ When 
there are n measured values thil takes a time n T . With the use of a Content 
Addressable Memory (CAM),this time can be reduced and thus the operation of the 
processor speeded-up.. 

A CAM is orthogonal to a random access memory (RAM). To the latter 
one presents an address and it produces as output the contents of the location 
addressed. To a CAM a value is presented and, if this value is stored in a 
location in the CAM, the output produced will be the address of that location. 
A CAM will therefore indicate if there is an exact match between a predicted 
value and a measured value, stored together with all other measured values in 
the CAM. This comparison of the predicted .value with all measured values is done 
in one single memory cycle. An additional facility of a CAM is that certain 
bit positions can be masked out, so that they do not take part in the comparison. 
In our case we are not interested really in exact matches, but only in approximate 
ones, within ± e. This complicates the use of CAMS. 

A first idea that comes to mind is to mask out the least significant 
bits when a comparison is made. This does not work nicely however. Suppose 
that the predicted value is 162g. Masking out the 3 least significant bits 
will then reveal matches falling in the range 160-167, that is between the 
asymmetric limits +5 and -2. But things can be even wors'e: suppose that V is 
177Q . T O find then a match within a range o f e = +5 for instance, a complelely 
different pattern (200g) must be presented. Sumner has proposed a scheme ¡53] 
where two comparisons at most are required, followed by a final precise check using 
a subtractor and a comparator. Suppose e <_ 4. At first a comparison is made 
with V , masking out the 3 least significant bits. The 3 least significant bits 
of V Ire inspected and a second comparison is made either with V - e when the 
3 least significant bits form a number >̂  4. In both cases the 3 least significant 
bits are masked out. When a match is found, the final check is made, comparing 
|v -V I with E in full precision. Due to the possibility of finding multiple 
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matches, the control logic becomes quite complicated. 

Fucci has proposed another scheme, which is a priori slower, but 
simpler to implement and where multiple matches present no problem at all. 
Hi's scheme leads to a new and really splendid design of the point-finder; 
shown in Figure 26. As in the old design, two programs are executed, one with 
the outer loops over X and Y, the other with the outer loops over U and V. 
During execution of the first program any combination of X and Y is handled 
by the arithmetic to form X+Y and Y-X. These two values are loaded into 
registers/counters, shown in the top right hand corner. The search for 
matching U and V values now starts. If a match is found immediately, fine. 
If not, the register containing Y+X is incremented by one and a new comparison 
made with the U values. It goes without saying that the search for V procedes 
in parallel. This is repeated until the value Y+X+E is reached. Multiple 
matches within this range will be found in sequence and so present no problem. 
In reality the register containing Y+X is doubled: one is incremented until 
Y+X+e, the other decremented until Y+X-e c 

Register'counter 
control logic 

Buffer memories 

1 2 
IV — X I Y » X | 

4 2 
I U - V I U * V I 

1 i t 
_Y_ _ X U V _Y_ _ 

I programs '. 1 . Scorch tor < and 3 plan* h i t s (U or V miss ing ) 
2 . Search for 3 planes hits (X or Y miss ing) 

Oo not care for 4 p l a n e s . 

Timing . search lime Sf 8 0 n s per presentation 
read out time &60ns per hit 

Figure 26 - Point Finder Using CAMs 

The design provides for overlapping of the search and increment/ 
decrement operations : while Y+X+ something is presented to the CAM, Y+X-something 
is decremented and vice-versa. At first sight the gain seems minimal: n 
comparisons have been replaced by 2e+l searches. But the cycle times must be 
taken into account as well: 320 n ns total time for the inner loop for one, 
against (2e+l).80 ns for the other. The method using CAM's is therefore faster 
whenever e < (4n-l)/2 or e < 2 n. 

The second program is executed by looping normally over the U, V 
memories and performing the search in the X, Y memories. This design still 
holds another surprise: the two programs can be executed simultaneously'. For 
this it is sufficient to alternate increment/calculate with search, but in both 
halves of the processor at the same time. 
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Another use of CAM's should be mentioned, where exact matches are in 
fact required. This to eliminate a posteriori point or track solutions which 
have been found already before. If for instance a 3-plane solution is found 
which is already contained in a 4-plane solution, a search in a CAM containing 
all solutions would reveal this. The missing coordinate must of course be 
masked out. It is more economical to work with pointers than with coordinates 
(less bits). 

A sombre note on which to end is that CAM's are expensive and 
difficult to obtain. 

Pipelines 

Pipeline structures have been invented to improve the throughput 
of arithmetic units [55] and of complete CPU (instruction pipeline of MU5, 
[56] ). We are rather interested in pipelining macro-operations to improve 
throughput. This can often be achieved at the price of increasing the 
storage capacity inside the processor. 
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L-LOAD DATA FROM SOURCE P-POINT FIND 
5-STORE DATA TO DESTINATION T • TRACK FIND 

M • MOMENTUM CALCULATE 

Figure 27 - Overlap of Processing and I/O 



- 255 -

A first example is the overlapping of Input/Output and processing. 
This requires that the memories for the coordinates be doubled, so that input 
can proceed into memory I, while processing is done on the contents of memory 
II. This is illustrated in Figure 27. It is clear from Figure 27 that the 
effectiveness of pipelining depends on the duration of the different parts. 
If the time for (P+T+M) would largely exceed (L+S) it might pay off to 
pipeline point and track-finding. Intermediate storage between the two is 
then required. 

Other examples where something can be gained can be found in the 
track-finder: when 10 registers are added to store one set of X ,...,X ^ Q , 
track-confirmation and straight line finding can be overlapped. If it 
pays off depends on the ratio: time to confirm a track/time between finding 
a line and the next. This ratio is 

„ 50x400 ns 
T ~ 18 ys 

for 6 points per detector, giving rise to 4 tracks in one single pass. In 
this,particular case, it would pay off, but matters are complicated because 
r °° Vn . 

Another example is in the calculation of £.: the multiplication and 
the addition can be pipelined. But as long as both can be performed sequentially 
within one CM cycle, there is no point in doing it. 

Every possibility for pipelining must be judged on its merits, which 
in general can only be done when the design is already well advanced. 

Cooperation Between Processor's 

The total pattern recognition process for the spectrometer set-up 
of Figure 8 can be organized in a number of ways. A single point-finder can 
handle the five chamber modules one after the other, or five point-finders 
can be used, operating on the five chambers simultaneously. The choice will 
depend on a trade-off between the throughput required and the money available. 
Whatever the choice, track-finding cannot start before all points in all 
chambers have been found. This asks for some degree of cooperation between thé 
different processors. The cooperation must extend over two fields: overall 
control and the communication of necessary data. The first can in general be 
solved by the implementation of an overall control program, using a PLA. 
The PLA produces start and stop signals, interrupt requests, and it can emit 
enable and disable signals to other, more local PLA's. It can thus control 
the processing on the basis of availability of input data, busy or ready 
states (including the minicomputer), etc. 

The communication of data presents other kinds of problems. In our 
particular case the U and V coordinates were essential for point finding, but 
they are redundant for track recognition. Should they be discarded when no 
longer needed? Probably not, because their information content is not 
negligible and they can contribute to the precision of the final momentum 
calculation (performed almost certainly on a large scale computer). So they 
must be stored somewhere. If we continue to use scratch-pad memories for 
this purpose, we will end up by using really large numbers of them, also at 
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places where the fast access and control facilities are of no use. If in 
addition we think of overlapping point and track finding these intermediate 
storage requirements are doubled. 

It therefore seems best to communicate data from a processor to 
the next via a Central Memory, which must be rather big (1K-2K of 16-bit words), 
but need not have very fast access. A cycle time of 300 ns seems adequate 
and can be easily obtained with present semiconductor memories. We get a 
lay-out for the CM more or less as in Figure 28. The general data area can 

GENERAL DATA 
POINTS+UNUSED SPARKS 

FOR CHAMBER A 

SAME FOR 8 

POINTS FOR 
CONFIRMED TRACKS 

64 - b i t s 

m 1 6 • 16 16 16 

x 1 Y 1 U 1 V 1 
POINT FORMAT 

POINTERS 

QUALITY 1 A j B 1 C j D 1 EJ 1 
16 16 16 16 

TRACK FORMAT 

Figure 28 - Memory Layout 

have an arbitrary length. It contains general event data, like date, time, 
scaler read-outs, magnet currents, etc. They are completely useless for the 
processor, but it is convenient to treat them the same as the other event 
data. The bulk of the event data consists in fact of "spark" coordinates, 
which are stored in separate areas. From here they are transferred area after 
area into the scratch pads of the point-finder. The point-finder writes the 
results back in the area, overwriting in fact the raw data. Possibly the 



- 257 -

"unused" data (the spurious signals, not attributable to a point) will be 
appended. When all points have been found the necessary coordinates are 
transferred to the straight-line finder and the track confirmation processor, 
which writes pointers to coordinates back into the last area of CM. 

Since access to CM is mostly required for four words at a time, the 
bandwidth can be improved by making the memory 64 bits wide. The way points 
and confirmed tracks can be stored is indicated in Figure 28. 

USE IN THE EXPERIMENT 

Comparison of the input/output times (assuming 1 us/word DMA 
transfers without overheads) and inspection of Figure 27 make it clear that 
maximum throughput can be obtained only when the special processor is placed 
between the data source (CAMAC) and the data acquisition computer. This 
however presents some difficulties, not the least important being the necessity 
that the experimenter has full confidence in the processor. There are others 
as well: the processor must be loaded with constants and the final values 
of these constants can only be found by carefully analysing a sample of 
events. It remains to be investigated how precisely the constants must be 
known to perform track recognition without any pretention to calculate momenta. 

For this reason and for the time being special purpose processors will 
probably be connected as a peripheral to the minicomputer. Data will therefore 
pass a number of times through the core memory of this mini. In the "experiment 
for which the point and track finder are being constructed the raw data will 
in à first stage be written onto a digital video tape. The processors will 
only intervene during play-back of the video tape. The results from the 
processors will then be used to select events presenting a desired topology. 
The selected events will be further analysed, the other discarded (the raw 
data of the discarded events is however kept on the video tape). 

Another point of consideration in the use of processors is the format 
of the input and more importantly, of the output. There is little or no point 
in producing the final output in such a cryptic form, that to unpack it a 
large fraction of the original processing gain is lost. Efficiency of the 
processor required however that one should store pointers, rather than 
coordinates at some places. A post-processor in the output data path is the 
solution. This post-processor would perform with great ease the unpacking 
and retrieving tasks which are often stumbling blocks in later processing. 

In the same way a pre-processor will often be needed. A very good 
reason for having it is that all our formulae - and therefore the processors -
supposed that all coordinates are measured in one unique system. This is not 
the case and a simple transformation must therefore be applied to every 
coordinate : 

X' = K ± X. (23) 

This puts the origin at the right place and it can correct for a read-out 
which runs the wrong way round! 

There may be other reasons why a pre-processor is needed. MEDEA [37! 
in fact can be considered as a kind of pre-processor. 
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CONCLUSIONS 

An important question remains to be answered: "How much processing 
on the 7600 do we really gain by having special processors?". At present we 
can only extrapolate to arrive at a guess. The factor 25 in execution between 
a processor and Fortran on the 7600 is only applicable to a fraction of the 
total analysis. Figures from a previous experiment using a similar spectrometer 
indicate that some 20% of the total time was spent in point and track finding. 
This increases to ^30% when no histogramming is done. In this^experiment an 
average of 1¡¡ particle per chamber was found. Assuming the n dépendance 
we extrapolate that for an event with 4-5 points per chamber some 80% of the 
analysis time will be spent on point and track finding. This fraction of the 
time will be eliminated by the use of a hardware processor. 

Being pessimistic we can thus expect a gain of a factor 2 to 3 in 
the computer time needed for analysis. 

This is valid for the events which are analysed. But much bigger 
gains can be expected when an event selection can be made on the basis of the 
topology which is known after track recognition. 

The objection which is most often voiced against hardware is its 
supposed inflexibility. Obviously hardware is "harder" to change than software. 
(This is not only a disadvantage, it is also "harder" to make a mistake in 
hardware since there will be a tendency to check carefully before implementing.) 
We hope to have shown that none of the processors is really dependent on the 
details of the experimental layout and that they can all be extended or modified 
to another number of detectors, other relative positions, etc. Also the use 
of PLA's make it possible to drastically change the logic of a processor in 
a matter of hours. 

All in all, we hope to have shown that special purpose hardware can be 
designed, and that it can be constructed with todays easily available 
techniques without having recourse to advanced technologies which are outside 
the possibilities of a non-specialized laboratory. Moreover we believe that 
the use of special hardware can save considerable amounts of computer time. 
But one cannot construct a processor without thinking well beforehand! 
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