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A propagation of high-frequency eclectromagnetic waves in
a weakly inhomogensous magnetised plasms is investigated. We
suppose the density zradient to be perpendicular to an exter-
nal magnetic field and the waves to be incident obliquely
upon the plasma from vacuum. We find that the trensmission
coefficient of the urdinary wave through the plasma resonance
is approximately equal to one in a fairly wide renge °f angles
of incidence { near the ulm&smm Df,/{“)“% The
transaitted ordinary wave is, at great densities, completely
transformed into an extraordinary wave. Then it propagates
back to the region of smaller demszity and is completely trans-
formed into the Bernstein modes in the place of the hybrid re-
sonance. Complications connected with the evanescent layer
which arise when the higb-frequency energy is transmitted
into the plasma in the form of the extraordinary wave can
thus be removed by using the ordinary wave with the angle
of incidence chosen appropriately.



INTRODUCTION

The basic problemconpected with the high-frequency
plasma heating is the efficiency of the hiy:-fremm
fer from vacuve to a plasas. A number of papers has been de-
voted to The linear theory of this problem most of them being
quoted in the survey paper by Golant and Pilia (1971). Barlier
papars concerning mostly save propagation in a cold plasma
are compiled in the monographs by Budden (1961) and by Ginzburg
(1960). Most detailed studies have been devoted to the incidence
of waves upon a plassa without a magnetic field. In these cir-
cumstances the most interesting situation arises if an eleo-
tromagnetic wave is incidemt obliquely upon a plasma and if
its vector of an electric field lies in the plane of incidence.
Then this wave is partly transformed into a Langmuir wave in

the region of the plasma resonance (Pilia 1966).

Two main problemas have always attracted the attention
of those who studied the wave propegation in the magnetised
Plasma, First, the linear transformation of waves near the
hybrid resonance was investigated (Stix 1965; Pilia, Yedorov
1969), Seconily, the transmission of elsctromagnetic waves
from vacuum to the plasma through the evanescent layer was
svudieds The latter probles was mostly solved only for the
case when the density gradient of the plassa is perpendioculay
to a homogeneous magnetic field. If an ordinary wave is ineci-
dert perpendicularly upon such a plasas it is reflected at the
plasma resonance. At a normal incidence iln extreordinary wa~
ve is partly reflected and pertly transformed in the hybrid



resonance to the Bernmstein modes. But the transformation
coefficient is approximately equal to one only for the wave
the wavelength of which is comparable yith the dimensions of
the plasma (Kuehl 1967). The propagation of electromagnetic
waves incident obliguely upon a cold slowly-varying, magno-
tized plasma was studied by Booker (1938, 1949), His papers
show that the conditions for the transformation of the ex-
traordinary wave get worse at an obligue incidence because
the width of the evanescent layer between the place of ref-
lection and the place of the hybrid resonance becomes bigger.
If the ordinary wave is incident upon a slowly varying plas-
ms at a certain angle the evanescent layer in the region of
the plasma resonance disappears. This fact was pointed out
by MitJjakov in 1959. One point of the matter, however, has not
been clear so fary How effective is the transmission of enerw
gy of the ordinary wave through this region? Let us take,

for instance, the component of the wave vector in the direc-
tion of the density gradient, In the WKB approximation it
approaches gzero 1n the place of plasma resonance, whioh is
usually accompanied with wave reflection,

In our paper we deal with this problem i.e, we study a
propagation of the ordinary wave of a small amplitude incie
dent obliguely upon a collisionless magnetised plasma with
the density gradient perpendicular to the magnetic field.
We confine ourselves to the waves with frequencies [
bigger than the electron cyslotron frequency k)p and we
assuae that the vaouum wavelength is essentially smaller
than the characteristic leugth of the inhomogeneity of den~
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esty o 7 ( % = A n M/d:;) i. e. we solve the problem
using the WKB method, The penetration of the ordinary wa=-
ve into the dense plasma can be investigated in the appro-
ximation of a cold plasma. In the last chapter we study the
model of a hot plasma in connection with the transforsation
of electromagnetic vaves into the electrostatic Bermstein
modes in the region of the hybrid resonances

STARTING BQUATIONS

We shall study the propagation of electromagnetic wa-
ves ih & planme~stratified magnetited plasma. The coordinate
system will be chosen in such a wpy that the grediemt of
plasma density and the extermal homogeneous magnetic field
are parallel tc the y- and s3- axis respectively. We suppose
that the electromagnetic wave of the form

@ FoF wpf-vot ik il 8y

is incident from vacuua upon the plasms; hz is the
z=-component of the wave voc__tor and the lengta of the vacuum
wave vector IZ”,- —3— o Eo is to be chosen in acordance
with the condition dW"E = 0 . The eleotric field within
the plasma can then be supposed to have the form

—»

2) E'Ek, J(y) 2 {- Lot +ik,z}
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Using the Maxwell equations and the linearized equations
of the cold magnetohydrodynamics we obtain for _t.ho PFourier
component of the vector of the electric field £ & (y)
the following set of equations

‘f
(3a) E (L €, - £)+L 1"? =)
(3b) i % k +L£ Ev-% £( -k:>=0
oo AL pogr, i Lot -0

dg 11"'" y

whore ) luf( ) wy (4)
—Eli’ &.* s oy Y AT WY

‘*30 is tho plasss frequency. In the set (3) the contribu~
tione fro= ion motion are neglected, which is Justifiable
in the high-frequency region. To make the notation simpler
we.have_onttted the imdices k’g and (O 1in the com~
ponents of the electric field.

In the following discussion it is convenient to eli-
minate the components Ey and Ez froa the set (3).
The resulting equation for the component L, is of the
fourth o:l.'dor and has the :ronovu\g forms

e, En- £ (eel 2e 1)4-5 lZ& e,-ky (€, +¢,)-
) -k:,?'l] "'E,‘ {Zt,[&,(exf.a'ﬂg) (k' &L~ Ll)]
e k- kg *Exffk%-i.‘)-/zig J-0.
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In the latter equation we naglected the terms proportional
to the second derivative of density and the terms propor-
tional to the square of the first derivative of deusity ia
the coefficients which appear at E x” and E X .
These terms could play some role only near the plasma re-
sonance where &£, = C + In a plassa without a magnetic
field the terms ¢f a similar charecter caused a singularity
of the electric field of the electromagnetic waves incident
obliquely on the plasse (Budden; Ginsburg). But near the
point given by the condition £, = U eq. (4) has four li-
nearly independent analytical solutions. This can be shown
(e.g. for the linear profile of density in the vicinity of
the plasma resonance) by expanding the coefficients of

eq. (4) (supplemented with the terms proportiomal to the
square of the first derivative of density) into the series
and by solving the resulting equation in terms of a power
series. The exact form of the coefficients will not be
needed for further considerations and therefore we confine
ourselves to the investigation of the equation for the
electric field of waves in the fora (4).

ANALYSIS OF WAVE PROPAGATION BASED ON THE
WKB APPROXIMATION

We solve eq. (4) only for waves whose vacuum wavelength
is much smaller than the characteristic length of an inbo~-
mogeneity of plasma density, i.e. we suppose the inequality
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2 /k_<¢{to bold. Then the WEB spproximation can be used
aud a solution can be supposed tc have the foram

¢
o Exe Clpap fifbly)ayf

The amplitude of a wave C (tj) and the component of the
wave vector k? (11) are assumed to be slowly varying
functions of t&, « Jor these two quantities we get froa
eq. (&) the following expression

4 1 i 1
k;4.1 i E {— k:‘rﬁz"' (k"‘ €L~ ky )(EJ- &, )2

(6)

: VEk:-E-L' h'; )(C¢+En) - L-:- ?q : I'E.LEa 1)-—(&:5.1 'k: ) EL:—? z] })

» (’)gv_i(lmse. 1)

T Ty [y - ke Je,
where [} = ) b,:" h:' a)"/a):(k:_'- k:)l. After introducing dimen-
sionless quantities F -w,‘/o:, s D/Uu and Nz -k,/k,,.,
c@routon (6) tor k\, may be rewritten as follows:

e : { 2y P["/*‘— Ny (26 1)- 1]+

& kv T« (a*-1-p)

» 2 (2 )(1-Ng )2 p V- NE P42 (P“-—J} :

2
The dependence of the E o on the plasma density for
o« 15 and for various velues of N;' 18 plotted in
Prig. 1.

From oqs. (5) to (7) we can see thltmmm
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provides four independent solutions two of which, with
index 1, oorrupond to the ordinary wave and two reaaining,
with inavx 2, correspond to the extreordinary wave. Condi-
tions for the WKB approximation fail in the points where

k e 0, ba‘-_ = 0o or kw -kz,_. The interection between
waves (reflection or transformation) can occur only in
these points. Moreover, in places where the wave vector
approaches infinity eq. (3) cannot be used as it is. It
nust be supplemented with the terms connected with the ther-

mal motion of electrons,

Let us first shortly analyse the situaiion occuing
if the wave ()) enters the plasms. We suppose that both
density and its first derivative are continuwous on the
plasaa-vacuum boundary so that the wave reflection in this
region can be neglected. Near the bonnda.ry where the plasma
density is small, the ordinary wave L has gpprox:l.uteb
the same wavelength as the oxtmrdmry wave [{ lem'vk
~ Jkt - k: ), but their polarisstions are different. From
the set of oquations (3) the following expressions for
retios of the components of eleotric vectors of the two
waves are obtained:

ky
(9) E 4,2. 341 ) EJ"}’-.-W £!4,1 )
where T

: A
(10) 73’,, « 714 (/-M‘}Ufﬁrf’_)

On entering the plassa the incident wave of the type (1)
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is generally split into an ordinary and an extreordinary
wave whose amplitudes are given by

0 I
(L) Ew,z =+ (—Pm Eog 'Eax) =

PR

An appropriate choice of polarisation of the incident wave

thus enables us to vary arbitrarily the ratio of energy

flow in the ordinary wave to the energy flow in the extre-
ordinary wave. If a linearly polarised wave is incident

upon the plasms this ratio is greatest for the wave with

the electric vector in the plane of incidenmce (/&) ’/lft"ézdé'
tor o5 ad M, =04 ) and emaliest tor the wave

with the electric vector perpendicular to the plane of

incidence.

the
In what follows we study wave propagation in a plasma

with a monotonically ircreasing density in the positive
direction of the y-axis. Within the plasma, the extraor-
dinary wave can propagate without obstacles from the bown~
dary up to the place where 47,_ e (0 . The respective den~
sity is given by

(12) p= o (x-1)(41-N)

A qualicative analysis shows that in this place the wave is
mostly reflected back to the plasma boundary snd it leaves
the plamma, A very small part of the wave energy is trans-
nitted through the evareiscent layer, bounded by the point
(12) and the point of hybrid resonance (P’- {21 ).
The wave vector of the extreordinary wave is infinite in
the place of hybrid resonance., Considering the effect of



thermal motion of particles we can show that the wave is
transformed into the Bernstein modes here (Stix).

2
For small angles of incidence, i.e. for Nz <1/(2au4).
there exists still one point in the plasma in which b’Z" =0y

(13) pe o (s )(4-N).
It the angle of incidence 1is so big that N > 1 /(2x+1)

there exists no other sero of the wave vector of the extra-
ordinary wave but in the point 31. given by the comdition

(1- M) d® Ny
as) P ((j'r,) = 2

4 Ny
the extreordinary and ordinary wave branches intersect
( ha" = b.y,_ ). In such a point, transformsation of
waves can occur (Zaslavskii et al., 1964). In the following
chapter we shall more fully investigate the solution of the
equation (4) near the point (14) and deduce the transfor-
sadion coefficient of the extraordinary wave into an ordi-
nary one and vice versa.

J

The point (14) is the intersection point of brerches
also in the case of mmall angles of incidence but the wave
Yector components haq'g_ are purely imaginary in this case.
It followe from the qualitative analysis that as long as
the conditions for the WKB approximstion are satisfied
a possible transformation of the éxtreordinary wave into

the ordinary wave is very small and hence the «itraordi-
DAry wave is practically completely reflected in the
point (13) back to the lower densities. At small sngles of
ineidence the oxdinary wave propagates from the plasma
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boundary up to the point of plasma resousance
(15) p= *
where it is also almost completely reflected.

Por bigger angles of incidence when N: > 1/ (Zo(r 1)
the situation is more favourable for the penstration of
the ordinary wave into a denser plasma. In this case there
are two points where ky,' =) . The corresponding plasma
frequencios are detersined by the following conditions

pemin{«?, «(xe)A- M},
P:mx{a(", a((o(+‘l)(_4— N;’)} .

The evanescent layer for the ordinary wave is situated
between the points (16). The width of the layer depends on
the value of N;‘ » In the following chapter we determine
the reflection and transmission coefficlients of the ordi-
nary wave incident upon this layer and the dependence of
these coefficients on N: .

(16)
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REFLECTION, TRANSMISSION AND TRANSFORMATION COEBFFICIENTE
OF THE ORDINARY WAVE

We shall study the behaviour of the solution of the
equation (4) near the points (14) and (16), assuming that
[\/z" > 1 / (2,(4. 1) . Pirst we shall deduce the reflection
and transaission coefficients of the ordinary wave incident
upon the layer which is situated between the points given
by (16). The y-component of the wave vector of the ordinary
wave is smail ( ky p £L bv..) within this plasma region and
we can thus neglect, in eq. (4), the terms proportional
to the third and fourth derivative of the electric field,
Moreover, we shall suppose that the plasma density near the
points given by (16) has a linear profile:

(17) pooct(1+%y).

For simplicity we havoﬁﬁ‘ origin of the coordinate system
into the point of plasma resonance. On the basis of the sdove
assumption we obtain from eq. (4) the following equation

for the x~component of the electric field of the oxrdinary

as § dfx }"(} ~a) b Ey -0
a 5‘&‘1‘ (&'ﬁ'Nn 1.N'E*(“")N’] § -yt

Eqe (18) gan be used only for the following values ottho
paxemneters a,,z@— and the variable i s
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0 Sty <], lad, lp-al<fE
Bolution of eq. (18) cannot generally be expressed in terms
of known functions. We shall thus confine ourselves only to
an analysis of the asymptotic solutions for | f | >> 1
which are of the form

, {
@ £, o fe (T 41 §

' When the thickness of the evanescent layer equals sero
eq. (18) has exact solutions

(21) Eu‘ﬂf’{zi%fz}.

Keeping in the mind the restrictions (19) we camnot

use the soluticn (20) or (21) near the points }‘z 0 »
~ O « In order to obtain a connection formula for the

solutions in front of and behind the evanescent layer we
must continue the solutions to the ‘f - complex plaas.
(Heading 1962). In the following analysis we confine sursel-
ves only to the case when A > D . We look for a solution
representin~ in the region }' > A/ & wave transterring
energy to the region of a denser plasma i.¢. the wave
given by

o £, HTE -t fIpray]
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It should be noted that a sign of the y-component of the
group velocity of the ordinary wave is changed after trans-
mission through the evanesceant layer. The cuts and the
Stokes lines in the } -complen plane related to the
solution (20) are depicted in Pig. 2, Comtinuing the solu-
tion (22) into the lower complex plane we get the following
combination of incident and reflected ordinarr wave for F<()

Ex«“‘”% {‘“P[szmdj'] +

¢
+R wﬁiffr!Wﬂ’f’]} -

The absolute value of the Stokes constant R corresponding
to the line A/ is determinsd by the conservation law of the
energy flow. This law has the form .
« dF *
@ [ 4E_p A5
X d'f X d!
D is a constant independent on f o From (22) to (28)

we then get the following relation for { R '
a

@ - IRI"ap -1\ drgl]

This nethod does Dot make it possible $o find the phase of
the constent R and therefore the phase of Sbe reflected
wave cannot be determined either. The amplitude of the re-
flection coetficient 1s equal v |R | . Prom eq. (25) we
obtain this expression for .

(23)
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| B
(26) = V - _TiEe
IR| =11 eep | 5 )

The amplitude of the transmission coefficient l T, is

'1 ‘ »
In an aralogous way we obtain expression of the same fora for
the reflection and transmission coefficients also in the case
when 4 < . It follows from (26) and (27) that the ordi-

nary wave is fully transmitted through the place of plasma
resonsnce if A = () (R"ol ITI"/ ).

(27)

The solutions (22) and (23) can be matched with the

WKB solution in the region lfl >>7. Then the coefficient
in the amplitude of the incident wave can be found. Using
(6)y, (7), (11) and (17) we get

28) H < F° 'i/_(i-[l\é")/s‘ (1+ )
* Vhatela T8 - 1) -

After passing through the evanescent layer the ordinary
wave propagates further into a denser plasme up to the place
where the plasma density satisfy condition (13). In the
vicinity of this point we must analyse the solution of eq. (4)

in more detail., For this purpose let us expand the plassa
density near the point ?T into the Taylor seriess

(29) p-p(yr)}:/l+§(y-7r-)+...]
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Using (29) we get the following approximate expressions for
the y-componente of the wave vectors (6) and amplitudes (7)

b?""’- i ky UJT) £ 52(37’?))

(30) C ] 7('-1_:/'?5} 71 / 1 ’
12 | 4 k;el, . .‘t')gqr_ 4)
where J 7T

K - ki p7 N
k2t 1-p) Ty yr

The general WEKB aolution (5) can then be written for 7 <yr
ae A vk, (4 )(y-yr) L QTR )R
Ex:"yr-y {e‘v 4r)y-y [B+€3 QT %

G, 2 nE BT i VE( %
! +B l%tQE(b‘r'H) ]""C b%:’“”%[g’&s‘@a(ﬂr 3') +

2

. 3

B ) ]
In order to get a solution for !a, >yr we must continue the
solution round the point 0 in the co:plq: plane of (3'5'7‘)'
A part of the solution proportionsl toﬂp(i,k,(g-g.r)md a part
proportional to.ap(-ik’(,ﬂao not affect each other (Moissev
1966; Zaslavskij et al.). If we go with the solution round
the origin of the coordinate system coumter-clockwise the
Stokes constants are equal to the imagingry wit 7 . The
following relations between the wave amplitudes are obtained
under the assumption that the solution for y» 91. is finite

+ ot -
(32) ,B" ‘-L.B'-I B" -‘!«B,.



¥We can see that in the place of transformation yr the
backward ordinary wave is transformed fully into the forward
extreordinary wave. This wave travels then back to lower den-
sities and has the amplitude

AYEMR
(33) E - o [[T1+n3 (1'”2)&
The extra ordinary wave propagates without obstacles up to
the region of hybrid resonance where the approximation of
cold plasma fails.

THE EFFECT OF ELECTRON TEMEERATURE ON THE PROPAGATION
OF WAVES

An equatior for the electric field of waves in a hot
inhomogeneous plasma can be derived in the linea: approxi-
mtion from the kinetic theory under the assumption that the
moan larmor redius of electrons 59 (f’ =v""/‘oc = ﬁrr-/;:/ is
much smaller than the charscteristic length of inhomogeneity
( 3P <<f ). The thermal corrections in egs. (3) are
important only for the extreordinary wave in the vicinity of
the hybrid resonance. Using the genersl expression for the
electric ourrent in an inhomogenwous plasms with the Maxwell
distribution function of electrons (Michailovskij 1967) we
obtain eq. (3b) in the following form
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1

. dE, , . 2 t 7
dlj‘ h; +1'Ex Apg 'Ez (b'r&.l--‘!) =

2

. dnds 2 g 2t |
 2(wmet ) (w0t hot) dy @) dy J°
When deriving this equation we have retained only terms
proportional to the small paremeter L;' 571' at the component
Ey + Other thermal corrections in eqs. (3)are wmimportant
for our problem, Further, in all equations we meglected the
termms connected with collisionless damping thus supposing

[w0- i |>>ll, 5]«

(38)

From eqs. (3a), (3c) and 34) we can derive for Ex
a differential equation of the sixth order in the fora

e, AE" (e, AYEx veg, £ Deye
5 - ell (L:eu +k1:7'1) Ex” =0

where 1 2
A=3vzw, (g)/z (ww? ) 4ul) .

In eq. (35) we neglected the terms proportional to [, anmd
E; ' because they represemnt, near the kybrid resonsnce,
small corrections to the electric field of the vxtreordinary
wave.The thermal terms neglected in egs. (3a), (3¢) and (33)
would give rise, in q¢.(35), to small thermal corrsotions of
the coefficients at the fourth and the lower derivatives of

Ex.
To clarify the physical mesning of the terms eonnected
with them sl motion.of electrons let us Zirst analyse the

YKB solution of the equation (35)7 Ve get following sxpression
for the wave vectors
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(36) kzl-s'"(ﬁ efer 4a (ke ,,;75,-).

If the waves are in the neighbourhood of the hyb-il resonan-
ce and the temperature of the plasma is not too high (i.e¢

1 L
“L.,,A[<<£4 << 1 ) the ktj-z,,a can be rewritten
in a simple form:

1
) k;,_ >y (bee, + by »9%)

E
(38) kzp = f

It in clear now that the expression (37) represeuts a square
of the weve vector of tLe extraordinary wave nsar the hybrid
resonance, The expression (38) represents a square of the
wave vector of the Bernstein mode the frequency of which
1ies within the interval (0913100) (Kopecky et al. 1969)¢
The amplitude of the excraordinary wave is proportiomal to
VE_L in accordance with the limit é_L—’a aade in eq. (7)
for 02(‘1) + Yor the WKB amplitude of the x~component of the
electric field of the Bernstein modes we get

?‘( )
(39) U
The WKB approximation cennot be used near the intersection
of the branches ( 228, ) 1.0, in the region where
|E_Llﬁ-’(h,p_ﬂ" ¢ To determing” the amplitude of
the Bernstéin modes (5] we must analyse bebaviour of the o~

§
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lution in this region more closely.

In the following account we replace the E x = CONMDO=
nent by the E3 =component using the approximate relation
valid near the hybrid resonance

] L]t
(40) E x = 12,9 E y -
We make s0, because the waves are electrostatic in this re=
gloa and the electric field is practically parallel to the
y-axis (lf‘;ldlfy])d We further suppose that the density
has the linear profile in the vicinity of the point of hy-

brid resonance

1) € =2 (Yyu) Y-y, )=4.

Using (35), (40) and (41) we get the following equation of
the fourth order for E

(a2) %+K(4%+Z%+EE?)'D
where
T ACSS T R ) W (kg +b)
3v7 sy, % ()

In the above equation we omitted the terms proportiomal to

d-"E, [d.4® as their effect on the form of the solution is

is negligible. If we express E 4 in eg. (#2) by means

of the potentisl qS givea by the relstion £ =- £

and if we integrate the resulting equation with respect to
A  we obtaia



(33) ;(:9:1«1(( j¢ ¢ +Dp)=0.

The equation (43), only with another constant D
was studied by Kopecky et al, The results of that mper
can be therefore applied to our problems. We consider, for
example, the phylical situation in which the extreordinary

wovs ( E { fb’ d%} ) propagates from a
denserplasma into the region of the hybrid resonance, Sup-
posing further that &) < 24, o 1eos K LD ,ama

that the amplitude .-f the wave is decreasing for 3 < léH
we obtain the following asymptotic expression for E

( Ex'v f¢ A ) in the region y >Y 4
EK=E{—————0-§DA u/,[z b"']
(a4)

If we join the solutiom {44) to the WKB solution we can

£ind that the incoming extraordinsry wave is fully trans-
formed into the Bernstein aode(f ~ Cy ng{-ifh, dg} )
transfering energy back to a denser plasma. From the joining
conditions we can determine the amplitude of the waves 5
in the region of transformation and the amplitude G of
the Bernstein modes

25) lEl-lTE:,lv,’; i x\"";gn__.'fs" -




2 le™~4] > |[2fen
lGI lTEu’ (3 (18 —1

Similarly, we could also use other results of the paper
by Kopeeky et al. and obtain a solution for the case U>214.,.
The results of this paper concerniag the collisionless Dop-
pler damping of the Bernstein modes c-u be used as well?d

(a6)

CONCLUSION

The foregoing analysis shows how the hign~frequemcy
electromagnetic wave can penefreate into & slewly-varyiag
magnetizsed plasma at an oblique incidemce, O entering the
Plamma the incident wave is split into an ordimary aad an
extraordinary wave. The latter is mostly reflested back to
the boundary of a plassa independemntly of the angle of inci-
dence. The reflection poimt is given by the comditiom (12)9
As for the ordinary wave, we may distinguish three cases
according to the megnitude of the an=le of incidemce. If
this angle is small, so that N;ﬁ 1/(2“*1) o the
situation is the seme as that at a normal incidence amd the
ordinary wave is reflected in the point of the plasss resow
ssnce. At great angles of incidence ( N: >°-Z- ) the
wave s reflected in the point determined by the first oon-
aitiom from (16),
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The ordinary wave, however, can penetrate through an
evanescent layer into a denser plasma provided that its
angle of incidence lies in the vicinity of the value
fo = ANC M == o The thickness of ths evanescent layer
is given by the conditions (16) and depends strongly on
It N; = 4/(0( +1) (i.es é(. =#o ) the laye. disap-
pears and the wave is fully transmitted through the region
of the plasma resonance. The transeission of the ordinary
wave through the evanescent layer is sufficiently intensive
in the following interval of angles of incidence

LEE
(a7) A=, |7

If the angle of incidence fulfils the given condition then
the transmission coefficient of the wave T is greater
than /g . Jor instance, the interval (37) is approximate-
1y equal to 27° for the parameters of = f'S' ’ A‘v/]t - 40

After the tranmmission of the evanescent layer the or-
dinary wave propagates up to the point 7.’_ given by the conﬁk
tion (14) where it is fully transformed into an extreaording-
ry waves It travels then back into the region of a lower den~
sitys In the n_ ighbourhood of the hybrid resonance this ex-
traordinary wave is fully transformed into the Bernstein mo-
*e0d = It is thus evident that in the case of oblique im=
cidence there exists, at least for some angle of incidence,

& possibility of full transformation of electromagnetic wa= .
ves to Bernstein modes, |
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The transverse wavelength of the Termstein medes is
comparable with the electron larmor redius and thus its
Doppler damping is much greater than the dup:l‘.ns of the inci-
dent waves. This fact can be important for the plasme heating,
The damping of the Bernstein modes increases particularly
intensively if their frequency lies near the harmonics of the
electron cyclotrom frequeancy.

The amplitude of the electric field of waves becomes
greater in the region of transformation. From eqs. (36), (44)
and (45) we can deduce the following expression for this
amplitude

o\ Y
(48) lElNlEof('ﬁ)
Such an essential increase of the amplitude of electric field

can lead to a further increase of the wave damping in the
place of the hybrid resonance due to nonlinear mechanisas.
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Mg.1l. Square of the dimensionless wmve vecstor coapomnt pa-
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Fig. 2, The ? ~COmplex plane with cuts (wavy line) and
Stokes line (full line) of the solution (20)4



