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A propagation of high-frequency electromagnetic аатеа in 
a weakly inhoaogeneous magnetised plaama ia investigated. We 
suppose the density gradient to be perpendicular to an exter­
nal magnetic field and tha аатеа to be incident obliquely 
upon tha plaaaa from racuum. We find that tha trenamieaion 
coefficient of the ordinary wave through tha plaaaa reaonance 
is approximately equal to one in a fairly «Ida range °- anglea 
of incidence jf near the гл1аа foe dXCUn/ №&/& +*& ••• 
tranamitted ordinary «are iaf at great densitiaa, completely 
transformed into an extraordinary wave» Then it propagates 
back to the region of smaller density and ia completely trans­
formed into the Bernstein nodee in the place of the hybrid re­
sonance. Complications connected with the evanescent layer 
which arise when the high-frequency energy is transmitted 
into the plasma in the form of the extraordinary ware can 
thus be removed by using the ordinary ware with the angle 
of incidence chosen appropriately. 
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DřTHODOCTICsT 

The baaio problesAeonneoted with the high-frequency 
energy 

plasma heating ia the efficiency of the high-frequency trans­
fer froa vacuum to a plasma* A number of papers has been de-
roted to She linear theory of this problem most of then being 
quoted in the surrey paper by Golant and Pilia (1971). Earlier 
papers concerning mostly аате propagation in a cold plasám 
are compiled In the monographs by Budden (1961) and by Ginzburg 

(I960). Most detailed studies have been devoted to the incidence 

of wares upon a plasma without a magnetic field* In these cir­

cumstances the most interesting situation arises if an eleo-

troaagnetie ware is incident obliquely upon a plasma and if 

its vector of an electric field lies in the plane of incidence. 

Than this ware is partly transformed into a Tanganlr wave in 

the region of the рЛаата resonance (Pilia 1966)* 
Van main problems have always attracted the attention 

of those who studied the wave propagation in the magnetised 
plasma, first» the linear transformation of waves near the 
hybrid resonance was investigated (Stir 1965; Pilia, Fedorov 
1969)* 8econllyf the transmission of electromagnetic waves 
froa vacuum to the plasma through the evanescent layer was 
studied* She latter problem was mostly solved only for the 
ease wham the density gradient of the plasma is perpendicular 
to a homogeneous magnetic field* If an ordinary wave is inci­
dent perpendicularly upon such a plasma it is reflected at the 
plasma resonance. At a normal incidence the extraordinary wa­
ve is partly reflected and partly transformed in the hybrid 
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reeonance to the Bernstein modes. Bat the transformation 
coefficient is approximately equal to one only for the wave 
the wavelength of which is comparable with the dimensions of 
the plasma (Kuehl 1967)* The propagation of electromagnetic 
waves incident obliquely upon a cold slowly-varying, magne­
tised plasma was studied by Booker (1938, 19*9)• His papers 
show that the conditions for the transformation of the ex­
traordinary wave get worse at an oblique incidence because 
the width of the evanescent layer between the place of ref­
lection and the place of the hybrid resonance becomes bigger. 
If the ordinary wave is incident upon a slowly varying plas­
ma at a certain angle tne evanescent layer in the region of 
the plasma resonance disappears. This fact was pointed oat 
by Hit jako v in 1959* One point of the matter, however, has not 
been clear so far*' How effective is the transmission of ener­
gy of the ordinary wave through this region? Let us take, 
for instance, the component of the wave vector in the direc­
tion of the density gradient* In the K B approximation It 
approaches «его in the place of plasma resonance, which is 
usually accompanied with wave reflection» 

In our paper we deal with this problem i.e. we study a 
propagation of the ordinary wave of a small amplitude inci­
dent obliquely upon a eolllslonless magnetised plasma with 
the density gradient perpendicular to the magnetic field* 
We confine ourselves to the waves with frequencies CO 

bigger than the electron cyclotron frequency CO. and we 
assume that the Yacuum wavelength is essentially smaller 
than the characteristic length of the inhonogeneity of Acs» 
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eity Зб"̂  [it *d&*• ^/d^L) U •• w solve tne problem 
using the 1KB method. The penetration of the ordinary wa­
ve into the dense plasma can be investigated in the appro­
ximation of a cold plasma. In the last chapter we study the 
model of a hot plasma in connection with the transformation 
of electromagnetic waves into the electrostatic Bernstein 
modes in the region of the hybrid resonance* 

STABTIHG BQUATIONS 

We shall study the propagation of electromagnetic wa­
ves in a plane-stratified magnetised plasma. The coordinate 
system will be chosen in such a way that the gradient of 
plasma density and the external homogeneous magnetic field 
are parallel to the y- and s- axle respectively. We suppose 
that the electromagnetic wave of the form 

is incident from vacuum upon the plasma i fcg is the 
z-component of the wave vector and the length of the vacuum 
wave vector fc • •* • £p is to be chosen in acordance 

with the condition МАГЕ т 0 • *he electric field within 
the plasma can then be supposed to have the fox» 

(2) í'Ek (y)juf>{-i»t*ií**\ 
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Using tbe Maxwell equations and the linearised equations 

of the cold magnetohydiodynamlcs we obtain for the Fourier 

component of the rector of the electric field EL fatj 

the following set of equations 

CJe) 

d4 

where c-i-tiM, t.i-SM „.*<*)% 
6J D is the plaeaa frequency. In the set (3) the contribu­

tions from ion motion are neglected, which is justifiable 

in the high-frequency region. To make the notation simpler 

we hawa-oaitted the imdioes *£ and (O in the com­

ponents of the electric field. 

In the following discussion it is convenient to eli­

minate the components Ец and L ^ from the set (3). 
The resulting equation for the component LLK ie of the 
fourth order and has the following formi 
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In the letter equation we neglected the terns proportional 

to the second derivative of density and the terns propor­

tional to the square of the first derivative of density in 

the coefficients which appear at £„ and £*x • 

These teras could play some role only near the plasaa re­

sonance where £ * 0 . In a plasma without a magnetic 

field the terms of a similar character caused a singularity 

of the electric field of the electromagnetic waves incident 

obliquely on the plasma (Budden; Ginsborg). But near the 

point given by the condition £„- 0 eq. (4) has four 11-

nearly independent analytical eolations. This can be shown 

(e.g. for the linear profile of density in the vicinity of 

the plasma resonance) by expanding the coefficients of 

eq. (4) (supplemented with the terms proportional to the 

square of the first derivative of density) into the series 

and by solving the resulting equation in terms of a power 

series. The exact form of the coefficients will not be 

needed for further considerations and therefore we confine 

ourselves to the investigation of the equation for the 

electric field of waves in the form (4). 

ABAETSIS 01 WAV! PROPAGATION BASED OB TBI 

1KB АРРБЮИМАТ10Н 

We solve eq. (4) only for waves whose vmcuum wavelength 
is much smaller than the characteristic length of an inho-
mogeneity of plasma density, i.e. we suppose the Inequality 
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я/к 4<1to hold. Then tho 1KB approximation can bo aeod 
ai*d a eolation can bo supposed to hare the form 

The amplitude of a war* С ( u ) and tho component of tho 
оато Tootor k^ Ы) **e assumed to bo slowly varying 
functions of u, • Юг these too quantities wo got from 
oq. (*) tho following expression 

wnere /S r 4 l £ bj «>%£{4£- ií)*"» After introducing dimen-
eionloee quantities P*toffiOl} očmtíjtí^ and /У £»^/4у. , 
expression (6) for «,. nay be rewritten as follows} 

The dependence of the fe „ on tne plasmo density for 
oC* 1,o and for various values of Njf U plotted In 

fig. 1. 

Iron oqe. (5) to (7) we can see that tne ИВ method 
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proridea four independent eolations two of which, with 

index 1, correspond to the ordinary ware and two remaining, 

with ina«x 2, correspond to the extraordinary vare. Condi­

tions for the 1KB approximation fail in the pointa where 

few. e 0, B.M-Í - ***> °r 

The interaction between 

wares (reflection or transformation) лап occur only in 
these points. moreorer, in places where the wave rector 
approaches infinity eq. (4) cannot be used as it is. It 
must be supplemented with the terns connected with the ther­
mal motion of electrons. 

Let us first shortly analyse the situation occui-xng 
if the ware (1) enters the plasma. We suppose that both 
density and its first deriratire are continuous on the 
plasma-racuum boundary ao that the ware reflection in this 
region can be neglected. Hear the boundary, where the plasma 
density is small, the ordinary ware /~ has approximately 
the same warelength as the extraordinary ware L£ ku a Kupí 

- №v-- _^F), but their polarisations are different. From 
the set of equations (3) the following expressions for 
ratios of the components of electric rectors of the two 
wares are obtained! 

where 

(10) 

F S~P F F * Г 

7> -*>-•> ^ 
* Á Ц-ышЧН±1м) ' 

On entering the plasma the incident warm of the type (1) 
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is generally split into an ordinary and an extraordinary 
wave whoза amplitudes are given by 

An appropriate choice of polarisation of the incident ware 
thus eiablea us to тагу arbitrarily the ratio of energy 
flow in the ordinary wave to the energy flow in the extra­
ordinary wave. If a linearly polarised wave ia incident 
upon the plasma this ratio is greatest for the ware with 
tbe electric vector in the plane of incidence 
tor oC'i/S" and Л^ B0,lf ) and smallest for the ware 
with the electric vector perpendicular to the plane of 
Incidence. 

the In what follows we study wave propagation in a plasma 
with a monotonically increasing density in the positive 
direction of the y-axis. Within the plasma, the extraor­
dinary wave can propagate without obstaclea from the bourn* 
dary up to the place where «y a * 0 • The respective den­
sity is given by 

(12) p* «C«-l)L4-NŠ) 
A qualitative analysis shows that in this place the ware la 

mostly reflected back to the plasma boundary and It leaves 

the plasma, A very amall part of the wave energy la t rens-

mltted through the evaceacant layer, bounded by the point 

(12) and the point of hybrid resonance ( h1 »e{ 2- 1 )• 

fhe wave vector of the extraordinary wave la infinite la 

the plaoe of hybrid resonance* Considering the effect of 
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thermal motion of particles «• can shov that ta» wave is 
transformed into the Bernstein modes дата (Stix). 

For small anglea of incidence, i.e. for Д/ ^ /ftcC-M)» 
there exLata atill one point In the plasma in which к н г

 в Ox 

(13) p « * (at + i)(ji'- / V / ) . 
If the angle of inoidance is so big that N£ > 1 / ( 2 « + i ) 
there exists no other sero of the ware rector of the extra­

ordinary «are bat in the point Ч-j- given by the condition 

о* Жт)Л<-*+"*\ 
the extraordinary and ordinary «are branches intersect 
( ilu * «luL ). In such a point, transformation of 
«ares can occur (Zaslavskii et al.» 1964)* In the following 
chapter we shall more fully inrestigate the eolution of the 
equation (4) near the point (14) and deduce the transfor­
mation coefficient of the extraordinary wars into an ordi­
nary ona and Ties тегаа. 

The point (14) is the intersection point of branches 
also in the oasa of snail angles of inoidenoe but the ware 
rector components "ч*,*. •*• purely imaginary in this oaso* 
It follows from the qualitative analysis that a* long as 
the conditions for the 1KB approximation are satisfied 
a possible transformation of the extraordinary wart into 
the ordinary wave Is тагу small and hence the extraordi­
nary ware Is practically completely reflected in the 
point (12) back to the lower densities. At small anglea of 
Inoidenoe the ordinary wars propagatee from the plasma 
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boundary up to the point of plasma resonance 

(15) p = Ы*-

where it ie also almost completely reflected. 

For bigger angles of incidence when 
the situation is acre favourable for the penetration of 
the ordinary wave into a denser plasma. In this case there 
are two points where kuA

 m 0 • The corresponding plai 
frequencies are determined by the following conditions 

(16) 
jo « 1TV171 

The evanescent layer for the ordinary wave is situated 
between the points (16) • The width of the layer depends on 
the value of A/, • In the following chapter we determine 
the reflection and transmission coefficients of the ordi­
nary wave incident upon this layer and the dependence of 
these coefficients on /v_ • 
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REFLECTION, TRANSMISSIOH HID ТЕАНБРОИИТТОН СОВРР1СИЯТГ 
О? THE ORDIN1RT WAVX 

We shall study the behaviour of the solution of the 
equation (4) near the points (14) and (16), aerating that 
Д/ * > 1/(2*+ 1) • Firet »• «b*11 d«4ttc« the reflection 
and transmission coefficients of the ordinary ware incident 
upon the layer which is situated between the points given 
by (16). The y-component of the ware vector of the ordinary 
wave is small ( L ^ fey.) within this plasma region and 
we can thus neglect, in eq. (4), the terms proportional 
to the third and fourth derivative of the electric field. 
Moreover, we shall suppose that the plasma density near the 
points given by (16) has a linear profiles 

(17) Ра*Ч* + * у О -
Tor simplicity we havevene origin of the coordinate system 
into the point of plasma resonance. On the basis of the aoove 
assumption we obtain from eq. (4) the following equation 
for the x-component of the electric field of the ordinary 
wavet 

where 

to.0 (18) can be used only for the following values of the 
parameters ď/ лг and the variable f s 
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(19) /~/; /</^|( Ш, lf-*l<f§- . 
Solution of oq. (18) oannot generally bo expressed in term* 
of known functions. We shall thus confine oureelree only to 
an analysis of the asymptotic eolations for 
which are of the fox* 

When the thickness of the evanescent layer equals sero 
eq. (18) has exact eolations 

Keeping in the mind the restrictions (19) we cannot 
use the solution (20) or (21) near the points T^ 0 , 

*f ~ CX/ • In order to obtain a connection formula for the 
solutions in front of and behind the evanescent layer we 
must continue the solutions to the f - complex plan*. 
(Beading 1962). In the following analysis we confine onrsel-
•ee only to the case when Л > £) • We look for a eolation 
representing in the region ¥ >* (U a ware transferring 

energy to the region of a denser plasma i.e. the ware 

given by 
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It should be noted that a sign of the y-component of the 
group relooity of the ordinary ware is changed after trans 
mission through the evanescent layer. The cuts and the 
Stokes lines in the F -complex plane related to the 
solution (20) are depleted in Fig. 2. Continuing the solu­
tion (22) into the lower coaplez plane we get the following 
combination of incident and reflected ordinary ware for T4.0 

(25) 1 - 7 

0 

The absolute value of the Stokes constant К corresponding 
to the line JU is determined by the conservation law of the 
energy flow. This law has the form 

D is a constant independent on ¥ • from (22) to (24) 

we then get the following relation for 
A 

(25) 4- fef - ̂  { - i ^ j f f ^ / j l j : 
о 

This method does not make it possible to find the phase of 
the constant К mad therefore too phase of the reflected 
ware cannot be determined either. Too amplitmde of tmo re­
flection coefficient is equal to I К J • from OQ« (25) ww 
obtain this expression for 
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The amplitude of the tranaalaaion coefficient / If la 

(27) \T\-Jup[ ^ )t 

In an a&alotpus «ay we obtain expression of the same fom for 
the reflection and transmission coefficienta alao in the eaee 
when CI ^0 . It follows froa (26) and (27) that the ordi­
nary wave is fully transmitted through the place of plasma 
resonance if O. ' 0 iH*0 /T/ «-/ ). 

The solutions (22) and (23) can be matched with the 
WEB solution in the region | *f | >> 7 • Then the coefficient 
in the amplitude of the incident ware can be found* Using 
(6), (7), (11) and (17) we get 

(28) 

After passing through the evanescent layer the ordinary 
wave propagates further into a denser plasma op to the place 
where the plasma density satisfy condition (14). In the 
vicinity of this point we must analyse the solution of eq* (4) 
in more detail* ?or this purpose let us expand the plasma 
density near the point 4T Into the Taylor aerleai 

<w jp • р(ут)У+*(у-fr) + •••] 
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Using (29) we get the following approximate expressions for 
the y-coaponente of the wave vectors (6) and amplitudes (7) 

V ' V ^ 2 7 ^ ^ 
(50) 

1,1 
Л4Я+Ае.+41 4 

where 
4l<^ / Щ^) 

The general 1KB solution (5) can then be written for 4<4r 

E^i^^J^^ as 

In order to get a solution for и >U.jw must continue the 
solution round the point 0 in the complex plane of (У~<4Т)< 
A part of the solution proportional toBt^LuAu-ifolixA a part 
proportional to ^ ( ^ ( т а Р ° not affect each other (Moiesev 
1966; Zaslavskii et a l . ) . If wt go with the solution round 
the origin of the coordinate system counter-clockwise the 
Stokes constants are equal to the Imaginary unit V • ín# 

following relatione betwewn the ware amplitudes are obtained 

under the assumption that the solution for U 3^ U~ i s finite 



- 18 -

We can вое that in the place of transformation u tho 
backward ordinary wave ie transformed fully into the forward 
extraordinary wave. This wave travel* then back to lower den­
sities and has the amplitude 

The extra ordinary wave propagates without obstacles up to 
tho region of hybrid resonance whore the approximation of 
cold plasma fails* 

THX IFFJCT OF ИЛСТНОН THCXRlTTffiE OF. THE PRCPAGUIOB 
OF 1AVXS 

An equation for the eleetrio field of wares in a hot 
intomogeneous plasma can be derired in the linea*' approxi­
mation from tho kinetic theory under tho assumption that the 
moan Larmor radium of electrons P (p = % p B P^/m/Hji» 
much smaller than tho characteristic length of inhomogeneity 
( HP <C<*j )• 2m» thermal oorreotions in eqe. (3) are 
important only for too extraordinary «даго la the ricinity of 
tho hybrid resonance. Using the generel expression for tho 
electric current la «a inhomogenoou* plasma with tarn Maxwell 
distribution function of electrons (Miohailorsxii 1967) wo 
obtain eq. (5b) in tho following form 
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. clb\ 

(3*) 
^К^ЛГЕМ^)' 

•Зуу С d Г . «tf»7 

then deriving this equation we have retained only ton» 
proportional to the snail parameter ku P at the component 
ty • Other thermal corrections in eqs. (3)are unimportant 
for our problem, further, in all equations we neglected the 
terms connected with collisionlese damping thus supposing 
\и)~ъь\\»\^ъ%\ • 

From eqs. (За), (3c) and 3*) we can derive for £" 
a differential equation of the sixth order in the form 

where a . 

A - 3 vř w„(^)/2(«l-w/)(w*.Ý*?») • 
In eq. (33) we neglected the terme proportional to £ y and 

P because they represent, near the hybrid resonance, 

small corrections to the electric field of the tTrtraordinary 

ware. The thermal terms neglected in eqs» (За), (5е) and (33) 
would gire rise, in eq.(35)# to small thermal corrections of 
the coefficients at the fourth and the lower derivatives of 

To clarify the physical meaning of taw terme connected 
with thanal mottaouof electrons let us first analyso the 
W D solution of the equation (35>* We get following expression 
for the wave vectors 
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If the wave в are in tha neighbourhood of the hybrli resonan­
ce and tha temperature of tha plasma ia not too high (i»e* 
|kVAl<<£-í" « 1 ) tha L ^ can be rewritten 

in a simple fore» 

(37) *Ji.--;£(&.+4iy)/ 

T "X • 
It in clear now that the expression (37) represents a square 

of the ware rector of tl*e extraordinary ware near tha hybrid 

resonance* She expression (Зв) represents a square of tha 
ware vector of too Bernstein node the frequency of which 
lies within the interval ( 4?0 34)^) (Kopecký et al. 1969)• 
The amplitude of the extraordinary ware ia proportional to 

f£ x in accordance with the Unit &Г*0 oade *» •«• (7) 
for С2Сч) • *or the WEB amplituda of the x-eoaponent of the 
electrio field of the Bernstein mode* we get 

- ЗД.еЩ 
She WD approximation oannot be need near the intersection 
of the branches ( Ящшкц+ ) *••• in the region where Ъ 

I£ i | — | k |Гд| • *• **•*•*»•* the amplitude of 
*he Bernstein mode* Gf we moat analyse behaviour of the so-
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lotion in this region more closely. 

In the following account we replace the £ x - compo­

nent by the Ey. -component using the approximate relation 

Talid near the hybrid resonance 

We make so9 beeaoae the wares are electrostatic in this re» 

giom and the electric field is practically parallel to the 

y-axis (|£^|<^l£y|) • We further suppose that the density 
has the linear profile in the ricinity of the point of hy­

brid resonance 

Using (35) v (*0) «Ad (41) we get the following equation of 

the fourth order for £«. 

(42) *%. Uf .db. л dEu . ^ 'f+к L*4Ř + 2.*ř>+№*)-* 
where 

Zm the «bore equation we omitted the tea» proportional to 
иг£ J(Лдъ as their effect on the form of the solution it 
is negligible. If wo express Eu la eq. (42) by 
of the potential ф giren by too relation £ • - — Д -
and if we integrate the resulting equation with respect to 

Л wo obtain 
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lbe equation (43)« only with another constant J-) » 

was studied by Kopecký et al* She results of that piper 

can be therefore applied to our problems. We consider» for 

example, the physical situation in which the extraordinary 

wa-e ( EK ^ Сг ЛЛр \-i J 4u x. d'i J * propagates fron a 
deneerplasma into the region of the hybrid resonance* Sup» 
posing further that CO < llO^ , i.e** К < 0 »and 
that the amplitude • -f the wave is decreasing for и < U u 
we obtain the following asymptotic expression for EK 

( £x *** J ф <A>i ) in the region и >и ц 

(44) 

- I 

-*? 

ICUe 

If we join the solution (44) to the WD solution we can 
find that the incoming extraordinary ware i s fully trans­
formed into the Bernstein node(£ ~ Cb Atpl"i\ k% duj ) 

transf ering energy back to a denser plasma* from the joining 

conditions we can determine the amplitude of the wares 0 

in the region of transformation and the amplitude Gf of 

the Bernstein modes 
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Rjmllarly» «о oould also use otbor results of tho papor 
by Kopeeky at al. and obtain a solution for tho ease lóyllC^. 

The results of this papor concerning tho oolliaionloao Dop-

plor damping of tho Bernstein nodoa ecu bo need aa well? 

ССЯСШ31Ш 

She foregoing analysis ahowa how tho nigm-frequency 
olootronagnotic ware can penetrate into a slewlywrarylmg 
magnetised plasma at an oblique incidence» On entering the 
plasma tho incident «are is split into an ordinary amd am 
extraordinary ware* She latter is mostly refloated back to 
tho boundary of a plasma independently of tho angle of inci­
dence* Я м reflection point ia given by tho condition (12» 
As for tho ordinary ware, mm may distingolsh three oases 
according to the magnitude of tho a*»1» o of incidence. If 
this angle ia small, so that Л / / £ 1/(Л**-1) , tho 
situation is too samo as that at a normal inoidenee ami the 
ordinary ware ia reflected in tho point of tho plasma roso» 

Л 11 i 
ware ia reflected la tmo point determined by tmo first 
ditiom from (1в). 
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The ordinary wave, however, can penetrate through an 
evanescent layer into a denser plasma provided that its 
angle of incidence lies in the vicinity of the value 
Ко * AKcurtb - • **• thickness of the evanescent layer 
is given by the conditions (16) and depends strongly on 
If Л// » 1 / Ы + 1 ) (i.e; £, *^0 ) the layev disap­

pears and the wave is fully transmitted through the region 

of the plasma resonance* She transmission of the ordinary 

wave through the evanescent layer is sufficiently intensive 

in the following interval of angles of incidence 

e * lílfo w> A if- . ^ 

If the angle of incidence fulfils the given condition then 

the transmission coefficient of the wave T is greater 

than у Q,. for instance, the interval (47) is approximate» 
ly equal to 27° for the parameters od = / 5" t А„,/# - 40 

After the transmission of the evanescent layer the or-
Ш^ « v . Prop.*... « . « . * . p i * fr 1 Й . * «fe. ^ 
tion (14) where it is folly transformed into an extraordina­
ry wave* It travels then back into the region of a lower den­
sity* In the Ljignbourhood of the hybrid resonance this ex­
traordinary wave is fully transformed into the Bernstein mo-
'e# - It is that evident that in the osse of oblique in­
cidence there exists, at least for some angle of incidence, 
a possibility of foil transformation of electromagnetio wa­
ves to Bernstein modes. 
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The transYerse wavelength of the ?erostein ardea is 

comparable with the electron Larmor radius and thus Its 

Doppler (lumping is much greater than the damping of the inoi-

dent wares. Xhle faot can ba laportant for the plaaaa heating* 

The daaplng of the Bernstein aodaa increases particularly 

iatenslTely if their frequency liea near the harmonica of the 

electron cyclotron frequency. 

The amplitude of the electric field of «area becomes 

greater in the region of transformation, from eqs. (36), (44) 

and (45) we can deduce the following expression for this 

amplitude 

<««> l£ l~!Eoi(^)% 

Soon an essential increase of the amplitude of electric field 

can lead to a further increase of the ware daaplng in the 

place of the hybrid resonance due to nonlinear mechaniame. 
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Fv? 

Pig.l. Square of tba dlaenaionleae аалга rector component pa-

4 
aa a ftmc-rallel to the density gradient 

« i . « . « - И М » P U - . d W * ^ * » ^ . 
fba angle of incidence jf{ Hfibff w i* ' trn a paraae-
tart h£* 0 - dotted line, Nt *0,4t- double dot-aad-
- daanad line, Д/* • 0,25 • dot-and-daaHed lina» Л//.0,* -

-full line, N^DfU- daanad line. 
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Tig* 2* Tha ? -eoaplax plane with eute (««97 line) and 

Btokaa lina (full lina) of tna aolution (20)V 


