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THE STRUCTURE OF STRONG SHOCK WAVES:
WITH IMPLICATIONS FOR DEUTERIUM SYNTHESIS IN SUPERNOVAE

ABSTRACT
Thomas A. Weaver

The structure of strong shock waves is calculated over the
range of shock energies (1 to 100 MeV/nucleon) and initial nunber
densities (10]5-1022 cm_3) believed 1ikely to occur in the red-
giant-1ike envelopes of stars undergoing Type Il supernovae ex-
plosions. These calculations were motivated by the proposal of
Colgate (1973, 1974) and Hoyle and Fowler (1973) that the ions
in such shocks could be heated to temperatures in excess of 10 MeV
by hard ion-ion collisions, resulting in the spailation of helium
and the subsequent formation of sufficient deuterium via neutron
capture to account for the presently observed abundance, without
recourse to its formation in a low density Big Bang.

The general equations governing the structure of such shocks
are developed on the basis of a hydrodynamic treatment of a plasma
composed of ions, electrons. positrons, and photons, making use of
diffusion theory to evaluate the dissipative and transfer terms.
The shock models resulting from these equations differ from pre-
vious treatments in that the effects‘of radiation transport on the
energy and momentum balance in tqe shock are taken into account,
as well as the relativistic corcributions to radiative emission
rates due to non-dipole electron-ioy bremsstrahlung, electron-

electron bremsstrahlung, and radiative Compton scattering. To

evaluate such rates, a general theory of relativistic distribution-




iid

averaged reaction rates is developed, featuring an analytic combined-
particle distribution function for the case of relativistic Maxwell-
Boltzmann distributions. An imphicit treatment of inverse Compton
scattering is also developed in terms of the creation and diffusion
of effective photons that allows a Substantial simplification in the
treatment of the radiation field.

Several strong shock structure models are formulated and solved
on the basis of these equations and physical processes. First, a
shock model dominated by radiation pressure and transport is con-
sidered, and criteria for its self-consistency deduced. In particu-
lar, radiative heat transport is shown to be a sufficient shock
dissipation mechanism even for non-equilibrium radiation fields
provided that the ratio of radiation to matter pressure in the re-
gion of the final shock compression exceeds 4.45, This criterion
is found to hold over the entire regime of interest, thus avoiding
the necessity of the shock being mediated by hard jon-ion colli-
sions. This fact, combined with the high rates of radiative emis-
sion and inverse Compton upscattering of the la‘ge reservoir of Tow
energy bremsstrahlung protons, results in peak ion temperatures
approximately two orders of magnitude below those possible in a
shock mediated by hard ion collisions. Specifically, peak eleciron
temperafures remain below ~ 70 ke¥ for shock energies 5 30-50 MeV/
nucleon depending on theinitial der<ity, while shocks with energies
n 1 MeV/nucleon are found to be in nearly complete radiative equi-
Tibrium,

For electron temperatures above ~ 70 keV, the yy+ e+e'

reaction is found to give rise to a sufficient number of pairs to



cause the principal source of shock dissipation to shift from
radiative heat transport to ion-lepton Coulomb friction. The
properties of such a pair-dominated model are discussed, and it
is argued that the peak shock temperatures vemain below < 200 keV
for shock energies below 100 MeV/nucleon.

The stabitity of radiation-dominated shocks and the lack of
self-consistent hot-ion shocks is demonstrated by considering shock
models in which both viscosity and helium effects are included.
This demonstration leads to the conclusion that peak shock tempera-
tures remain low enough to preclude production of a cosmologically
significant amount of deuterium in supernova shock waves.

Finally, the application of these concepts and results to the
problems of cosmic-ray composition, neutron star accretion, and

proto-galaxy formation is considered.
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1. INTRODUCTION

It is sufficieat in most cases of physical and astrophysical
interest to treat a shock as a discontinuous transition, since,
in general, the final post-shock state is uniquely determined by
the pre-shock conditions, independent of the details of the dissi-
pation mechanism involved (Zel'dovich and Raizer 1966). Exceptions
can occur, however, if non-equilibrium processes {(e.q. nuclear re-
actions or radiation or neutrino loss) take place within the shock
that cannot be ~elaxed in the final post-shock state, and in these
cases a detailed shock structure calculation is necessary.

The structure of strong shocks thus plays an important role
in a variety of astrophysical situations, including the proposed
production of deuterium and cosmic rays in supernova xplosions
{Colgate 1974; Colgate and Jonnson 1960}, the radiation spectrum
resulting from the accretion of matter onto a neutron star (Alme
and Wilson 1973; Zel'dovich and Shakura 1969), and the formation
of protogalaxies in the early universe (Silk 1974).

In this study we shall deal primarily with the question of
whether the shocks traversing the extended outer envelopes
{~ ]0]2 - 1013 cm in radius) postulated for Type II supernovae
(Shklovsky 1968) can reach sufriciently high temperatures to
cause deuterium, boron, and other light elements to be produced
via nuclear spallation and subsequent neutron capture as Colgate
(1973, 1474, 1975) and Hoyle and Fowler (1973) have predicted.
They postulate that as the shock formed in the mantle of a star

undergoing a supernova explosion moves down the steep density
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gradient at the mantle's edge it is accelerated to energies ~ 10
MeV/nucleon in the extended density regime at ~ 10'4 g/cma, and
to ; 30 MeV/nucleon by the time it reaches a density of ~ 10'7
9/cm3. We will thus examine the structure of those shocks with
initial densities ranging from 1015—1022 cm'3 and initial energies
from 1-100 MeV/nucleon to determine if the ion temperatures of

2 10 MeV n2eded for deuterium production, or those of ® 1 MeV
reguired for the production of other 1ight elements, can in fact
nccur. A brief account of a portion of this calculation was given
in Weaver and Chapline (1974).

The magnitude of the shock temperature that will occur is
principally determined by the degree of eguilitration of the radi-
ation field. If no radiation is present in the shock, the only
dissiapation mechanism capable of generating the amount of entropy
required by the Mugoniot relations for a strong shock (Zel'dovich
and Raizer 1966) is ion viscosity. This results in a shock a
v few ion-ion mean free paths thick in which “hard" ion-ion collisions
transform the kipetic energy of the incoming ions (in the frame of
the post-shock material) directly into ion thermal energy. The
hot jons then heat the electrons by Coulomb friction. and the
electrons in turn lose their energy to radiation in a relatively
large post-shock relaxation layer.

On the other hand, for non-relativistic shocks, if the ratio
of radiation to matter pressure exceeds 4.45 in the region of final
compression, the dissipation due to radiative heat conduction,

which ty..- 211y occurs on the scale of many Compton lengths, is




sufficient to satisfy the Hugoniot relations and prevents the
shock from steepening further into the regime where ion viscosity
is important. ({Belckon' 1959 and Section V.D below.) In such
"radiation-dominated’ shocks, the photons diffuse ahead creating
sufficieat pressuyre to decelerate the electrons {as viewed from
the frame in which the shock front is fixed). The ions are then
decelerated by a combination of a charge-separation-induced elec-
tric field and Coulomb friction with the electrons. The kinetic
energy of the ions is thus directly transformed into electron and
photon thermal energy. The ions are only weakly heated by Coulomb
friction, and by the generally small amount of viscous heating
that can still take place over gradients of many Compton lengths.
fFor pre-shock kinetic energies and densities of less than 100 MeV/
nucleon and 102] cm'3 , the peak temperature of a radjation-domi-
nated shock ranges from less than 10 keV if the radiation field is
everywhere in black-body equilibrium to at most 4 MeV at the point
where the criterion for radiation-dominance is no longer satisfied.
This is in sharp contrast to the up to 50-70 MeV temperatures that
would occur in a viscous ion shock. Figure 1.1 {liustrates quali-
tatively these various possible types of shock structure. In
addition, as is discussed in Section VI, the presence of electron-
positron pairs in the shock front can result in a shock structure
in which dissipation occurs principa) y by ion-pair Coulomb fric-
tion.

The essential object of the calculations that follow is to
decide which of these structures in fact occurs at a given initial

energy and density. Our treatment differs from that of Colgate



{1974) in that we include the effect of photon diffusion on energy
and momentum balance in the shock, while Colgate considered only
the post-shock radiative equilibration. In addition, we include
the effects of electron-electron bremsstrahlung, radiative

Compton scattering, electron-positron pair creation, and a more
accurate treatment of inverse Compton scattering. As we shall see,
these effects substantially increase the rate of radiative equili-
bration. Further, the suggestions of Colgate {1975) that radiation-
dominated shocks may be unstable, or that consistent hoat-ion shacks
may also exist, are examined in the context of a shock model con-
taining both viscous and radiative effects, iand taking into account
the presence of helium, and found to be invalid.

In Section 11, we derive the hydrodynamic equations governing
shock structure in sufficiently general form to treat both viscous
and radiation-dominated shocks; and in Section III, discuss and de-
velop the physical processes that determine the parameters in these
equations. Section IV describes an approximate treatment of the
radiation field in terms of "effective photons" that substantially
simplifies the shock equations, while including inverse Compton
processes implicitly. The radiation-dominated shock model is formu-
lated and solved in Section V, and is shown to result in shocks
whose peak temperatures remain below ~ 100 keV for shock energies
5~ 40-50 MeV/nucleon, while the effect of pairs is explored in
Section VI. Section VII develops shock models containing vis-
cosity, and these are merged with a realistic treatment of the

radiation field in Section VIII. The resulting general model




verifies the consistency of the radiation-dominated shock model,
while no consistent "hot-ion" shocks are found. The astrophysical
implications of these 2asults are discussed in Section IX.

Unless explicitly stated otherwise, cgs-Gaussian units will
be used throughout this study. A list of the symbols employed

with their definitions and units is given in Appendix E.
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Figure 1.1 - Types of shock structure. These shocks are
schem..ic and are shown in their comoving frame, where the matter
moves with velocity v to the left. Ti‘ Te’ TR’ and T are the ion,
electron, radiation, and mean temperatures respectively, while o
is the matter density and x the spatial coardinate. Vor 9g? and
To are the pre-shock values of v, p, and T, while Teq is the

final post-shock equilibrium temperature.



11, SHOCK STRUCTURE EQUATIONS

A. Basic Mydrodynamic Equations

The general hydrodynamic equations governing the structure of
8 multispecies shock assumed to be one-dimensional and to have
reached a steady state in its comoving frame can be obtained by
requiring the conservation of momentum, energy, and particle num-

ber for each species, and can be written in the form:

apl .
e L (2.1)
3
dE) i
- = z: gl (2.2)
J
i s
Qﬁﬂa%_l = Q‘ (2.3)

where Pix’ Ei, vi and ni are the pressure and enerdy components
of the stress-energy tensor, and the macroscopic velocity and
number density respectively of the ith particle species or energy
group. Here pij and Ei"l are the rates of momentum and energy
transfer from group or particle j to group or particle i, and Qi
is the rate at which particles of type or energy group i are
"created" or "destroyed". All of the above quantities, including
the spatial coordinate x, are to be measured in the frame in

which the shock is at rest.



If we neglect external electric and magnetic fields, the
electrical properties of the shocked plasma are given by the one-

dimensional Poisson's equation:

dz

15} =4 mp (2.4)

where Z, is the x component of the electric field and p, the
charge density.
In their present form equations (2.1) - (2.3) are relativis-
tically correct (cf. Johnson and McKee 1971) and can be most
readily evaluated by Lorentz transforming the various stress
tensor, transfer, and source terms fram the rest frame of each
particle species to the shock frame. The resulting relativistic
shock equations and shock models will be the subject of a later
paper. For the purposes of the present study, however, we shall
restrict ourselves to non-relativistic shock velocities and in
addition make the following general assumptions:
1) The shacked material is a fully ionized hydrogen
plasma and its associated radiation and electron-
positron pair fields. (The effect of helium and high-
Z components will be discussed in sVIII.B.)

2) The electrons and fons can be characierized macroscopi-
<2’ ly by temperatures Te and Ti' velocities Vo and Vi

and densities n, and ny (see sIX).



3) Except for the very small differences giving rise to
clectrical effects, the positrons share the .:locity
and temperature of the electrons and their number
density, n_, is included in R (see §V.D and sVI).

4) The radiation field is allowed to have an arbitrary
energy spectrum. but radiation transport in x-space
is assumed to be adequately described in terms of the
diffusion approximation, (see §III}, and to take place
in an optically thick region (see sIX).

5) VYiscosity, heat conduction, and momentum and energy
transfer among the fons and electrons are given by the
usual Navier-Stokes relations (e.g., see Landau and
Lifshitz 1959, Jaffrin and Probstein 1964, and 5IX}.

The validity and self-consistency of these assumptions is discussed
in the sections noted.

With these assumptions, equations (2.1) - (2.4) can be

written in the more explicit form:

dv
d 2 _ 87 < p- 2
ax [nekTe * Ef/3 + mengve = ¥e gx 1= P * eIy (2.5)
d 1 3 2, 4.
dx ["eve(]+°e)kTe tPfeVe t MpVaMet * 3%Ve

PR -, 8 =g j
Sy 7 %eTix T Vele o = Egy t dely (2.6)



p dy,
B DK+ v = g il = gy + engy (2.7)
dr dv

d 5 1 3 i i
Rr A MU UL e A i e

= -Eg; +eviniz, (2.8)

dn_(e_)

d d
Fry [Veny(e:y)] oy [DY(EY) —-};—T—]

= ng¢ JC [nY(e;) - nY(eY)]o(eY+e;)dc; + QY(EY) (2.9)
A nyl=0 (2.10)
dx LM%y ’
é% [neve] = 20! (2.11)
dz,
= ° 4,[pe+en1] (2.12)

Here mj. "j' %5 are the mass and coefficients of viscosity and
heat conduction respectively for species j; EY and SY are the
energy density and flux of the radiation field in frame of the
electrons; Péi and Eé' are the portions of the total momentum

and energy transfer terms not involving the electric field; ny(eY)
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is the number density of photons in an energy group centered on
photon energy e c(cy+c;) is the cross section for a photon to
be Compton scattered from e, to eyt Qy(sy) is the rate at which
photons are emitted into energy group ey; Qt is the production
rate for electron-positron pairs; DY(EY) is the diffusion co-
efficient for photons; Po and je are the charge and current
density of the electron-positron fluid as viewed from the shock
frame; 2 is the rativ of the energy density to pressure of the
electrons (assumed %-for the ions); and as usual ¢, k, and e
are the velocity of 1ight, Boltzmann's constant, and the protonic
charge.

Equations (2.5), (2.6}, and (2.11) describe momentum, energy,
and lepton number conservation for the electrons and positrons,
including the effects of radiation energy density, energy trans-
port, and pressure, Radiation momentum transport and all higher
transport moments are neglected, due to the assumad non-relativis-
tic bulk velocity and optital thickness of the shocked material.
Equations (2.7), (2.8), and (2.10) describe momentum, energy,
and particle conservation for the ions, while equation (2.9)
describes the diffusion, creation, and scattering of photons.
Note that the distribution function ny(sy) is defined in the
rest frame of shock and not in the frame comoving with the
electrons. Finally, equation (2.12) is Poisson's equation.

The form of the parameters in equations (2.5} - (2.12) de-
pends on the energy and density regime of interest and will be

the topic of Section III.
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B. Boundary Conditions and Integrated Shock Equations

In order for equations (2.5} - (2.12} to describe a shock,
appropriate boundary conditions must be introduced. Specifically,
we shall assume that as x + —=, Yo * Vit Vgr Mg >y g,

T, + Ty Toe nY{EY) -> nyo(eYJ, n, +0, £, > 0, and the gradients
of Ti' Te, Y5 and Vo vanish; and, in addition, that nv(cY) +
nY](eY] as X » +o, Here we have associated the subscript "o"
with the pre-shock condition of the fluid and the subscript “1"
with its post-shock condition thus assuming a fluid flow from -«
("upstream") to += ("downstream"). The singular nature of the
shock equations at = prevents these boundary conditions from
being sufficient, and we must also require that the temperature
and velocity gradients vanish at +=, and that VeV, at some finite
point X=x_. The last condition is necessary to fix the location
of the shock; and, as we shall see the range of Vg must be
restricted to obtain physically realizable shocks.

Utilizing these conditions, we note equations {2.10} and
{2.11) imply that net electrical currents vanish. We can then
obtain integral momentum and energy conservation equations for
the entire plasma by adding (2.5) to (2.7) and (2.6} to (2.8),
making use of (2.12), and integrating. Cr .inuity equation
(2.10) can also be immediately integrated, while (2.8) can be
simplified by subtracting L times (2.7). The resulting set

of shock structure equations becomes:



dv

1 e o4
ekl ¥ NikTy *+ 3E -~ e @y " i &

= minovo(vo—vi) * me(novs—nevg) + P
neVe(Ttag KT, + 3n v kT, + gche +S -k, ﬂ;—f
-ng%} " Veke g;?-* Vi¥y g;} : %minovo(vg—vf)

* -%me(novg-nevg) * mecz(novo'"eve) * 5

nik'dd% - n:;° kT, fjd”vxl ¥ MingYe ‘:;i A d_;xi]

i

= Prei toengy

% anok(:—:‘i- * "ikTid—dV} - “i(%)z - :—x [Ki%]

= - (EgimviPg)

vy = vy = ("e -} Ve

Hgi' [ngvel = 20,

dy,

2
%

T

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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where Po is the pre-shock pressure, and SO, the energy flux due

to the initial internal energy density.and pressure.

(2,19)

(2.20)
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[11. PHYSICAL PROCESSES

A. Radiative Emission Processes

Bremss trahalung
The photon emission spectrum from a hot plasma due to
electron-ion bremsstrahlung is given in the non-relatiyistic
1imit by Drummond (1961) as:
16

NR =19 ¢ .
Jei(cy‘ee) dCY T3 (me“e

1/2 € de
2 2 2 2 - /28 Yy Y
e) ZjargngnimeTe v e Kol5e-)

(3.1)
where K0 is the zeroth order modified Bessel function of the second

kind; o is the fine structure constant; ro? the classical electron
radius, Be = kTe’ and Zi is the ionic charge,

It is evident from the form of (3.1) that the number density

of photons, Q(cc,ee), emitted per unit time down to some Tow
energy cutoff Ec << 8g» diverges logarithinically. While the total
energy emitted in low energy photons is small, they can contribute
very substantially to the cooling and effective heat capacity of
the electrons via inverse Compton scattering. The treatment of
this effect is undertaken in §III.D and §IV, and utilizes the
quantity Q(cc,ee) with Ec taken as the lowest energy from which a
photon can he effectively thermalized, which we shall term the
"effective photon* emission rate. Non-relativistically, we find

from (3.1) that:
-12

NR - -1/2 2 -3 =1
Qi (egr8e) = 5.692x107 °T, ninEZig](?\)E](’A)cm sec (3.2)



Foat
where 3 = cc/ee, E](;) = J{ %— dt {s the first order exponential

integral function, and: x

500 = [ k% ) (3.3)
al2

9 is a slowly varying factor and can be expressed to an accuracy

of better than one percent in the numerical form:
g1(x) = 1,226 - .475 wnx + .0013 (znz)2 108% 2 < .8 (3.4)

The E](A) function can also be conveniently approximated numeri-
cally {Abramowitz and Stegun 1964, p. 231) and in the limit of
small A beccmes E](x) a -tn{a) - .5772, and thus contains the
logarithmic singularity expected from the 'I/eY term in the
emission spectrum.

For plasma temperatures above ~20 keY, electron-electron
bremstrahlung and relativistic corrections to e-i bremsstrahlung
must be taken into account. Unfortunately, plasma emission
spectra have not been calculated for these processes for most of
the range hetween first order in ee/mec2 and the extreme rela-
tivistic Timit. At present, therefore, we must be content with
making approximations to these rates, and then determining the
sensttivity of our results to these approximations.

The general effect of relativistic additions to the brems-

strahlung rate is to greatly increase the high energy portion of




the spectrum while more moderately increasing emission in the Jow
energy tail (cf. Quigg 1968]. This results in the temperature
dependence of the energy emission rate increasing from Be1/2 to
eezn(Zee/mecz) (Maxon 1972) as the transition to relativistic
temperatures is made, while the mean energy-weighted emitted
photon energy increases from %ee to v .856e at 8 = mec2 to
1.889e in che extreme relativistic 1imit (e-i case).

This behavior suggests that we take the effective photon
emission rate from relativistic corrections to bremsstrahlung to
be:

W+ w, 1 ifa<1/5

Q B —— e, = (3.5)
RCB — epclq RC ™ 15 iF 4> 1/5

and wee and wzg are energy emission rates for e-e and the rela-
tivistic correction to e-i bremsstrahlung. Here the form of the
cutoff for large A was determined by requiring Epe = 3 fora=.6
as is the case non-relativistically. (See 5I¥.B]. Note that this
approximation is conservative in that it ignores photons with
energy << o, produced by relativistic effects.

Maxon (1972) has interpolated between first order and extreme
relativistic results. to obtain bremsstrahlung energy emission rates

for a plasma of arbitravy temperature. From his vesults, we obtain:*

19 1(341.0220+.22102-.230:%) © < 1.5
RC MR )2
i = e - 9,my1/2_1/2
34 (enarr.923)1 215 (3.6)

N
*Here we have somewhat improved Maxci's interpolation by explicitly

introducing the qyadrapole correction to e-i bremsstrahlung before
interpolating.



3 {1~ 1281 + ,898:2-.430:%) 1 < 1.5

W =WR e
ee ei Ny .

3@V e+ e73) 1215 (3.7)

where
2. 172
NR _ 32,2 2 3,%%
Wei =3 Zf“ro"e"imec (mn czl (3.8)
X .

is the non-relativistic e-i bremsstrahlung emission rate, and

T = ee/mecz. The interpolation errors appear to be ~15-20%.
Gould (1974}, however, has very recently recalculated quantum
mechanically the lowest order (i.e. quadrupole) cross sections
for e-e bremsstrahlung and found them to average roughly a factor
of two lower than the semi-classical cross sections of Fediushin
(1952), used by Maxon. The net effect of this correction is to
reduce “ée by ~65% for 0y << mecz, which we shall approximate by

multiplying (3.7) by the factor (1 - J682e%/MeC ).

Radiative Compton Scattering

The process of radiative Compton scattering
et+tyret+yty (3.9)

is expected from general quantum electrodynamics arguments to
proceed at a rate «a(=1/137) below that of ordinary Compton scatter-
ing at photon energies mmecz, and thus be a potentially important
source of :hotons in the extremely hot plasmas characteristic of

the strong shocks under consideration. The differential cross-

section for this process was calculated by Mandl and Skyrme (1952)

PO



and has recently been numerically integrated by Ram and Wang (1971)
to give the total cross section for photon emission for < > 5 keV.

In order to average this cross section over a partially rela-
tivistic electron distribution, a general theory of relativistic
reaction rates has been developed and is given in Appendix A.

The most notable results bf this theory are exact expressions for

total rates involving cnly a single integral over the cross-section
for the usual case of relativistic Maxwell-Boltzmann (RMB) or Bose-
Einstein distributions (RBE) (see equations (A1lc), (A22b), and (A31)).
This results from the fact that in the relativistic as well as the
non-relativistic case, an effective combined particle distribution
function, F, can be found analytically.

For an RMB electron distribution (eq. (A9)) and RBE (eq. (A18))
photon distribution, the total photon emission rate (eY > 5 keV),

QRC' is given in Figure 3.1. Here C is the degeneracy parameter

for the photon RBE distribution, ranging from 1 for black-body
radiation to {nfinity in the non-degenerate 1imit. As can be seen,
the density-normalized radiative Compton rates (i.e. <ovope = QRc/nYne)
for C = 1 vary from ~15% below to ~10% above the non-degenerate rates
as ee ranges from «mec2 to >>mec2. (Here nY is the number density of
photons in the RBE distribution, which we shall associate with the
effective photon number density in 5IV.} This is due primarily to the
relative augmentation of the low energy tail of the black-body distri-
bution and the peak in the total cross-section near mecz. Because

of this small distribution dependence, and the fact that knowledge

of radiative rates 1s most important far from equilibrium, we shall

19
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adopt the non-degenerate rates for general use in the presint
work.

The rates given in Figure 3.1 when compared to the effective
bremsstrahlung rates given tn the last section, indicate that
radiative Compton scattering will dominate near-thermal photon
production in the 8, = 50 keY¥ - 5 MeY regime if n, Z‘ne. At
higher temperatures, the relatively unexplored processes of multiple
bremsstrahlung and multiple radiative Compton scattering may become

dominant.

Approach to Equilibrium
Except in the case of the low energy tail of the bremsstrahlung

emission spectrum, we shall approximately allow for photon absorption

processes by multiplying the emission rates by the factor:

fe=1- ——Y-a- (3.10)

bTe

where b = 20.3 cm'3/°K3 fs the radiatfon equitibrium number density
constant, in analogy to the usual relation between emission and
absorption for photons of a given energy (Zel'dovich and Raizer
1966). Inverse bremsstrahlung processes will be taken into account
explicitly in determining the cutoff energy, €es above which

bremsstrahlung photons can be effectively thermalized (see SIV).

4
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8. Clectron-Positron Pair Production
Tmission Processes
The wost important means of electron-positron pair creation

at electron and photon temperatures below 1 MeV are the reactions:

vty e ve (3.11)
PEE I et v e (3.12)
y+e' setvet e {3.13)

Like other second-order processes in quantum electrodynamics such
as Compton scattering, y-y pair prnduction has a cross-section mrg
in the region where it is energetically allowed. Cross-sections
for the third order processes (3.12) and (3.13) are typically a
factor of f%7 below these levels {for 2=1}, and so for photon num-
ber densities at all comparable to the matter density, y-y pair
production will dominate,

Jauch and Rohrlich (1955) give the relativistically correct
y-y pair production cross-section in the form:

o = wlfr(22e?-e®) cosh'd) - (1eDH0-61)1/21 (309)

mC2

where ¢ = —E:— €y is the center of mass energy of rne of the
photons, and o is meant in the Lorentz invariant sense of eg. {A24).
Using the formalism of Appendix A {see eq. (A31)), this cross-sec-
tion can be readily averaged over a non-degenerate "RBE" plioton
distribution, to give the pair production rate, Qiy, shown in Fig-
yre 3.2, Also plotted is the "non-relativistic" expression for

this cross-section, obtained by assuming kTY << mec2 and using the

non-relativistic limits of (3.14) and (A31) to find:



2 2.2 2\3 2
~2m_c“ /KT

MR _ My CT T {MeC e ¥ )

ny =5 ET;— e (3.18)

As is apparent, this attempt to model an intrinsically relativistic
process non-relativistically is a reasonable but not complete

N s + .
success, which suggests expressing QYY in the convenient form:

NR

* kT /2 "72
Qw = 1.042 (1. + .728 (m—?n Q2§ <ow
e

10 KeV % kTy 3 100 KeV (3.16)

which is accurate to 2%.

Pair-Photon Relative Equilibrium

A given number density of pairs will be in relative equilibrium

with a Bose-Einstein distribution of photons (via e+e'}vyy) when:

+u_+omcl (3.17)

ZuY =y an X

¢
where uj is the chemical potential of species J (cf. Chiu 1968,
p. 134). In the case of an RMB distribution, the number density

of positrons, n,, is related to u, by:

2
- m;s; e(uf + mgC /KT K2[°1

+ 'ﬁ L]

2
v kT
=y, € b + T v (3.18)
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and for non-degenerate photons, e is given by:

B bT3 u /KT uylkT

= 2 Y =
n G @) @ 20 e (3.19)

where ¢ = meczlkT, £(3) = 1,2021...., and K2 is the second order
modified Bessel function of the second kind. Since in full
thermodynamic equilibrium W, = 0and u, = -mecz, we identify

o and "o with the final equilibrium density of pairs and
photons, at temperature T, that would occur if these particles

remained non-dngenerate. Numerically we find:

K(e) _
N = 177 x10%0 2t a3 0y 2.22x10%0 072,
ve? pd (3.20)
and
n o = 16.9 1 (°K) a3 = 3.52x10%0 73 em3 (3.21)

Returning to (3.17), we find that for the case of non-
deg :nerate distributions, o4 = Mg and TY = Te’ that the pair-

phcton ratio is given in relative equilibrium by:

n

+ _ 4o
el (3.22)
Y Yo

fhus, for example, a 100 keV plasma would contain .04 positrons

per photon. Such a relative equilibrium is expected when the



YY ¥ ete” reaction succeeds in interchanging pairs and photans
much more reapidly than bremsstrahlung and radiative Compton

scattering can make new photons,

24



C. Transport Coefficient

Ton and Electron Viscosity and Heat Conduction

We wish to find the transport coefficients for a plasma
containing protons ele~trons, and photons where the {ons and
electrons may hav . di.ferent temperatures. To do this, we shall
start from a generalized diffusion approximation and then
normalize our results to the case of a uniform temperature,
radiationless plasma which has been treated more precisely.

Firom the diffusion approximation, we find the coefficients

of viscosity and heat conduction for species J to be:

- th

Hj Cu nymv; Aj (3.23)
- th

Kj = cxajnjkvj AJ (3.24)

where Cu and cK are constants of order unity (usually taken equal
to 1/3, (cf. Bond, Watson, and Welch 1965, p. 240, 285)); o is
the ratio of internal energy density to the pressure and equals
3/2 for a non-relativistic perfect gas; v;h and Aj are the mean
thermal velocity and "transport mean free path" for species j

given non-relativistically by:

36,
th o ®50172
Vs (mj) (3.25)

Ay = I getvim) 1! (3.26)
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Here Ajk(w) is the transport mean free path for a particle of

species j with velocity w in a gas of k-particles, defined by:

ag (W)
R,
_Jw__ z “""71’ 2 b (3.27)

where <bwqp> is the expected initial rate of change of the
parallel componant of the J-particleb velocity, For interactions

between charged particles, tsJk’ is given by Spitzer (1962) as:

2 ,.th2
ik - ] ﬁv" ; 7 th (3.28)
$J (Vmy/m ) 12ne"n, 237, enn 6(A.5 WiV
erf (x) - x -3 (erf (x))
6(x) = rf (x) ; ac terf (x (3.29)
2x
"3\1/72
pe—3 (f-?—) (3.30)
2,26 ™

where erf(x) is the usual error function; and 2nA, which indicates
the relative importance of small-angle scatters, has been taken

>> 1 in deriving (3.28) - (3.29).
For e-i, i-e, and j-J] Coulomb interactions, we then find (i+p):

thy _ 9 of
A (vi") = 5 —F— (3.31)
epe :' ﬂe4n1£nA
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fen\172 0}/ 0 b
(v hy .3 (3.32)
1 8 l e) e4n na
th ol
a5 = Lses *J——,;n ey, {3.33)

The transport mean free path due to nuclear forces acting

between protons dominates the Coulomb cross-section for oy 31 MeV

and is given to a rough approximation by (Colgate 1974):

N , th Oi(MeV) 1/2 1024
A (‘H):{‘,( 3 rcm
1< Qi < 10 MeV (3.34)

For non-relativistic electrons traveling in a photon gas,

we have from Section III.D that for Te ==T1:

i i I B e %e (3.35)
w _th ¥ m c2
W=y e
e
implying:

2
e

UTn



where 9 is the Thompson cross-section (gnrg). Using these cross-
sections the non-relativistic coefficients of electron and proton

viscosity can be written in the form:

1/2 5/2
1.018 ¢ ] 3/2
u';.‘R=— % {1+ ozs——( )
e LA 1
10 3/24-1
+ 6.9 ThR (ei(MeV)] ] (3.37)
12 52 n:
MR 1o on®e Y2, g
q e
e nA
n
+15x M0 (o, ev))%/2y! (3.38)
e

Setting Ti = Te, Ny = Ngs nY = 0, and neglecting the nuclear
contribution, we see by comparing the sum of equations (3.37)
and- (3.38) with Spitzer®s (1962) eq. {5-54) for the plasma
viscosity coefficient that Cu = .55, when account is taken of
the factor of é—difference in his definition of u. We s=¢
that for equal velocity gradients and temperatures in the
Coulomb regime, the overall effects of viscosity increase as
T5’2, with ion viscosity dominating electron viscosity by a
factor d;i 1/2. For k11 & ¥ MoV, nuclear and radiation effects
limit this increase

Similarly the non-relativistic expressions for ion and

electron heat conduction are given by:
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[l

KNR

_3k X N
SRR o IJJR (3.39)

™ S
where by comparison of (3.39) with the result of Spitzer (1962)
for a hydrogen plasma of uniform temperature we find ¢ = 1.14.
We see that for equal temperatures and temperature gradients in
the Coulomb regime that heat conduction also increases as TS/Z,
with electron heat conduction dominating ion heat conduction by
a factor (;&] ]/2.
While a precise extension of these results to allow for
relativistic electron effects has not been made, and is beyond
the scope of the present werk, the following approximate corrections
seem evident. First, the mean electron thermal velocity relativisti-
cally becomes:
th _ 1y %,y -2q1/2
Vo' s [ - 0 SR (3.40)
e
Second, the factors of ©, in the Coulomb mean free paths are
transformed to %‘ue ©, to allow for the increased electronic specific
heat (see Section III.E for values of ue); and third, or in
(2.36) qoes to the Klein-Nishfna cross-section while the factor
(g%—]lfz is limited to 1/c. As we shall see, electron temperatures
foremost cases of interest remain below ~?00 keV, so relativistic

corrections are unlikely to become crucia,, especially in view of

the large temperature dependence of the Coulomb cross-sections.
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For future convenience, we define: A, = "i01—5/2 .

Photon Diffusion and Heat Transport

Following the diffusion approximation, we take

1 (3.41)

Here &, is the Compton transport length, and non-relativistically

(ie e, 6 < mecz) o, = op. Relativistically, o, ~ m: o
with more precise numerical results and analytic fits being given
by Cooper (1974). The use of the diffusion approximation in the
form of (3.43) has been shown to be accurate to % 5% (cf. Alme
and Wilson f§73). provided the directed photon velocity v, S ;ﬁ
is much less than c. For vT ~ ¢, the diffusion approximation can
be modified to give accurate results (errors A5%) by Jimiting vy
to < ¢ by an appropriate multiplicative expression termed a flux
limiter (ibid).

The heat transport by radiation relative to the frame of the

electrons is then given by (non-flux limited):

dn ()
s,(e) = -0 () — (3.42)
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D. Transfer Processes

Ion-Electron Energy and Momentum Coupling

Burgers {1960) has calculated the momentum and energy transfer

-

rates, P;1 and E between ions and electrons due to Coulomb

ei’
forces for arbitrary temperature and velocity differences. Assuming
m m,
i - th _1 i
Ti << m, Te. VeVl << ve . ve << ) Vi and neglecting terms of

m
order (ﬁf—)llz, his results can be written in the form (cf. Jaffrin

i
and Probstein 1964):

. An_n.m, (v~ v:)
= Teii ‘e i
Pei = - -———6—3/7——— (3-43)
. e
E . == Al"e"i[3(°e'°i) + (Ve'vi) vimyd (3.44)
ei 03/2 :
where:
1/2
.8 /% 4,27
A]-3/2— e Ziﬁ 2ni
=3.21 x 107 Zf LnA erg3/2 m® sec”! (3.45)

Hhile relativistic calculations of electron-ion coupling do
not exist at present, an approximate correction can be given if
the electrons are not too relativistic (i.e. % b mecz). In this
case, the low energy electrons to which the ions are most strongly
coupled will remain non-relativistic and the coupling mechanism
wWill be affected only by the relative depopulation of the low

energy tail of the electron distribution by the factor:
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2
12 _“TeS /%
=8 & e —>
1’ei' Z n c2) Z ) NR

e Kz(mec 19,
1 - ¢NR 3.46
15 % ) fei ¢ )
1 +-§— -5
m,C

where the non-relativistic form is accurate to ~20% up to

8 = mecz. At sufficiently high temperature, however, this
depopulation will become severe enough to increase the effective
interaction energy and thus reduce this effect. For Tack of a
better treatment, we wil? use fg'} as the correction factor for

8y < mecz, and correct by f::? (mecz) = .35 at higher temperatures.



Compton Scattering
The cross-sections indicated by o(eY-> e;) in the Compton

scattering kernel in equation (2.9) have been evaluated numerically
by Stone and Nelson (1966) in a relativistically correct fashion.
(See Stone 1971, 1973; Cooper 1971, 1974, for subsequent applicat-
ions and special cases). For electron temperatures below 100 ke¥
and photon energies below 1 MeV, the effects of Compton scattering
in changing the energy of continuum radiation can be accurately and
much more conveniently represented using the Fokker-Planck approxi-

mation (Cooper 1971) according to which:

an(e. t)
—at_L’— = ‘—2 ga- [ P(E Ty )[n(e ,t)(“ﬂ(e o))
Ey
an(e ,»t) ] (3.47)

where n(: ,t) is the dimensionless photon d1str1but1on function

(nor'mahzed by requirlngf n(eY,t)esdeY = %’-— ny) as a function
and t

of photon energy, € time, and uFP(eY’Te) is the Fokker-

Planck coefficient given approximately by:

4
aphee, 1+ f(Te)/(l + .Dzek)

app (e »T ) = -~
FPvel M gk 00ge,+4.26107%]

o e

. _5 e 15 e 2 _ 0O
where ¢, is € in keV and f(T,) = 7 (—-—-‘m cz) tg )-8
e e m,¢
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In this approximation, the expectation of the energy change

of a photon per unit time is given by:

(e T, )
<(€; - EY)> = %[%F—P;—Y————-“ ‘(c oTe )] (3.49)
Y
Y

Non-relativistically this reduces to:
€
<le; - b> = oqnge (m—Z—f) (40, - <) (3.50)
e

40 -
corresponding to a fractional photon energy change of _ezy_
(S

per Compton collision. Thus non-relativistic Compton scattering
is capable of e-fo?dmg the energy of a sub-thermal photan
(i.e. °, <kT } in mT—-co]hs\ons

To very roughly est1mate the quantity <A"u>ey (the expec-
tation value of the initial rate of change of the parallel compon-
ent of an electron's velocity as it passes through a photon gas at
temperature Tv = Te') which 15 required in equation (3.35), we

note using (3.50) that:

2
“Bwi1>e . %' A1y
[™ v 2
oyt ey th
n_<lez -¢)> e
L1yl = noc—% (3.51)
2n YT 2
e 7 ee IﬂeC
£ =3¢
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E. Electron Specific Heat
The electron specific heat coefficient, a , defined as the

ratio of the electron energy density to electron pressure, is given
for a non-degenerate arbitrarily relativistic gas by: (cf. Chiu

1968):

[0+ K@)
oy = ] W—_ -1 (3.52)

where ¢ = mecalee and the Ki are modified Bessel functions of the

second kind. A convenient numerical expression for a, is:

3
“e =7 0% g ) (.53

which is exact to 1st order in 1/¢, goes to the correct relativistic
Timit and, in general, {s accurate to better than 2%.

It is apparent that ag goes from %4+ 3 as 8 goes from 0 to «
with substantial (i.e. X 10%) relativistic corrections occuring

for o, 2 50 keV.
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Figure 3.1 - Radiative Compton scattering emission rate.

Here <gv> = QRc/ne"y’ hy = e and C is the Bose-Einstein

degeneracy parameter of the radiation field.
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Figure 3.2 - The rate of the yy ~ e*e” reaction. Here
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IV. THE EFFECTIVE PHOTON APPROXIMATION

A. General Formulation

In their present form, shock structure equations (2.13) -
(2.20) are quite cumbersome and do not lend themselves either to
numerical selution or analytic interpretation. A key factor in
their simplification is to note from § II1.D that the time re-
quired for a near thermal photon (i.e. eY :.1ee) to be thermalized
to v8, is typically quite short in an optically-thick plasma at

temperatures above a few keV. For example, a 1 keV photon requires
2

m_c 8
only ~ 4§ n (EE) = 30 Compton collisions to be thermalized at
e

ee = 10 keV. Since the post-shock velocities (v] = v°/7, see

§ V) under consideration range from ¢/150 (E° =1 Mey) to-c/15

(Eo = 100 MeV), such thermalization will occur as the matter is
swept through .2 to 2 Compton lengths. As has been shown in the
Monte-Carlo Compton scattering calculations described by Chapline
and Stevens (1973), such thermalization results in the buildup

of a Bose-Einstein distribution of photons, characterized by an

“effective” photon number density, n, . and an effective tempera-

ture T_ =T _,
¥ e
If € is the lowest energy from which a photon can be
thermalized over a "relevant” shock length scale, then from
5 II1.A, we see that the quantity 2nx = zn(ec/Be) provides a
rough measure of the importance of subthermal photons in cooling
the electrons. Thus, if we find that relevant shocks scales are
indeed X Compton length as we expect in radiation-dominated shocks,

the effect of inverse Compton coaling will be substantial for
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8, % 5-10 keV.

To make these considerations a logically rigorous basis for

simplifying equations (2.13) - (2.20), we shall first explicitly
make the following assumptions, and later show that the shock
structures that result are self-consistent with them:

1) Al but a negligible fraction of the energy in the radi-
ation field can be characterized to sufficient accuracy
by a Bose-Einstein distribution with effective photon
density n and temperature TY ~ Te'

fﬁ can be

2) The creation rate of effective phatons, O:
taken as the integral over the photon emission spectrum
down to some cutoff energy € determined by the con-
straints of inverse bremsstrahlung, screening, and the
photon thermalization time with respect to relevant
shock time scales, as prescribed in 5 IV.B.

Using this set of assumptions, which we shall term the

effective photon approximation, we can reduce the muitigroup treat-
ment of the radiation field implied by equation (2.20) to the

following relatively simple equation describing the creation and

diffusion of effective photons:

d{n_v ) dn
ye _d [ - neff
dx 'dx[ 3n,3, TEY'] Qv {4.1)
where
eff NR
Q" = Qo5 * Qpep + Q¢ (4.2)

and EC = o, (3ae) is the mean Compton cross-section. Also we find:
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E, =3P, =27 nbe (4.3)
=9 ¢ d
Sy 1) "é_c dx ("yee) (4.4)

Here we have adopted the black-body specific heat coefficient of
2.7 in (4.3) to achieve consistency with the final equilibrium
state. The 10% error this introduces for a non-degenerate Bose-

Einstein distribution (where EY = 3nyee) will be neglected.
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B. Cutoff Energy for Effective Photon Emission

Absorption

Chapline and Stevens (1973) have examined the effect of Comp-
ton scattering on bremsstrahlung emission spectra by utilizing the
Fokker-Plank approximation (cf. Cooper 1971). They find that low-
energy radiation will be absorbed by inverse bremsstrahlung before

it can be thermalized for photon energies below

n 1/2
-5/4 e ’
ep = .77 9 (kev) —1 keV (4.5)
B e (lozocm 3

provided eg << mecz.

Screening

In a plasma, bremsstrahlung emission occurring at impact
e

parameters larger than the Debye length, Ap = { 2) , will

4nn o

be suppressed by Coulomb screening. This effect will be important
for a given photon energy, €y only if
?'B

Ap X Doy ¥ T hic {4.6)
¥

where bmax is the normal cutoff impact parameter for that photon
2 v;h v:h 2 -1

energy (cf. Jackson 1962,eq. (15-28)}, and ¥“8 & —=— [1-(-) ]

where v:h is given by eq. (3.40). We find that the photon energy,

betow which screening is important is given approximately by:

Esc?
3 n V2 e, Y b
eoe ¥ 5.2 x 1078 ol () T ¢ 28R T8 oy
10%%cm m_c m.¢
e e {4.7)
Thus Cscis typically 3 1 eV, and exceeds eg for 8, 3160 keV,

It is often the



case, however, that not enough time is available to thermalize
a 1 eV photon to 8, > 100 keV, and thus the dynamical cutoff
discussed in the next section usually dominates where screening

would otherwise have been important.

Thermalization

Since according to (3.50), a non-re]a&ivistic, sub-thermal
photon will be e-folded in energy in n ;%f—- Compton collisions,
the Towest energy, Eqs from which a photoi can be thermalized in
a dynamical time, Ty is:

2 88, (74)
eq=2.78, exp {-dcnopr 8 /mct) {1 + ——§;~——) (4.8)
where Aee(rd) is the mean change of temperature that a photon
experiences during 4 In the shock models discussed below, 4
will be taken as the time a photon at mean velocity, VY' takes
to cross the photon number or electron temperature e-falding
distance, whichever is smaller. The mean photon velocity is de-

fined by (see (4.1)):

v —~L oy (4.9)

Y 3ne

allo

cny
(See § V.D for a discussion of shock structure sensitivity to

this choice of 7.}

Maximum Cutoff Energy

When conditions are suc. that ed/ee ~ 1, we expect the
effective photon approximation to become {paccurate. In this case,
we can still obtain the proper bremsssrahlung energy loss rate

from the electrons by not letting e exceed ¢ the cutoff energy

max’
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at which

NR _ uNR RC
3Be(qei * QRCB) = Wy * Woi + Woq {4.10)

where the W's are the bremsstrahlung energy loss rates given in
§ III.A, From the relations in § 11I.A, we find:

£
PRl SUR (4.11)

A
max 8a

The effective photon cutoff energy , €eo is then taken as the

maximum of €gs Egeo and gq Up to a maximum of .6 8




V. RADIATION-DOMINATED SHOCK MODEL

A. Assumptions and Basic Equations

The radiation-dominated shock model is based on the general
formalism of Section II, with the following additional assumptions
and restrictions:

1) The pre-shock internal energy is negligible compared to

the shock energy.

2) The effect of electron-positron pairs is not crucial.

3) The ions and electrons move together with velocity v,

and thus have the same density n.

4) The effective photon approximation is valid. (Note that

this includes the assumption TY = Te')

5} The principal dissipation mechanism is radiative heat

conduction,

6) Except at the leading edge of the shock, radiation

pressure dominates matter pressure.
The validity and self-consistency of these assumptions in the
context of the shock structures they generate is considered in
§ V.D below. Using them, the shock structure equations, (2.13) -

(2.20), can be recast in the particularly simple form:

nve = novomH(v -v) (5.1)
d(n_o_)
. eV . 2.2
avnp - DA _ﬁ:u_ ng¥omy {vg=v©)/2 (5.2)
din_v) dn off
"'d'L"' dx[m ?}] = OT (5-3)

an

et B A e
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nv
. .00
n= - (5.4)
de, ny
3 i 00 dv 5/2 ,dv,2
Moo a T v fiax RN (& (5.5)
v.n 2 A
00 1
*+{ v ) 3/2 3(ee_ei)
%

where eY = f%~kTY = %%—ae, my is the mass of a hydrogen atom,
and A2 and A] are defined in § II1.C and by equation {3.45}
respectively. Note that the plasma momentum conservation equa-
tion (5.1), is now algebraic and describes a linear relationship
between radiation pressure, nYey, and v. Equation ({5.2) is the
plasma energy conservation egquation, while (5.3) and (5.4) des-
cribe photon and matter particle continuity, and (5.5} is the
ion heating equation. ODue to its small coefficient, ion heat
conduction has been neglected in equation (5.5}, with the re-
maining terms on the right-hand-side describing compressional
work, viscous heating, and electron-ion coupling.

For future convenience, we define Ey = %mva, the initial

energy per nucleon in the shock frame.



B. Analytical Solutions

By differentiating equation (5.1) and using it to eliminate
eY and n, from (5.2), we obtain a decoupled equation for v:

(7v-v°)(v°-v)

coo 2ve (5.6)

Using the boundry condition that the velocity gradient vanishes

at x=+= , we immediately obtain the expected post-shock conditions:

v = V(+o) = v°/7 ) (5.7)
m,v

oy = 6, (3e) = Sty (5.8)

L n(+=) = 7n0 (5.9)

Equation (5.6) can then be integrated directly to find x(v):

' (v -v)’
= st — -2 13,7
*=@gagg | vy W8] T 3] (5.10)

where we have taken v = 4Vo/7 at x=0.

Thus the velocity profile of the shock is indepeadent of the
details of radiative equilibration {see Figure 5.1). Near the
upstream Timit (v»vo). and using (5.1) and {5.6), we see that the
energy in the radvation field, 3nyeY , e-folds in a length
as c/(BECnovo). In the downstream Vimit (v + v /7], the
residual directed momentum in the ions e-folds in a length a/7.

A characteristic shock is thenaa or wcaT/3vo’uc pre-shock

Thompson lengths,
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To calculate the peak fon temperature occurring in the
shock and thus the expected amount of nucleosynthesis, it is
st111 necessary first to solve the photon continuity equation
(5.3) and then the ion heating equation (5.5), which in general
must be done numerically. Some analytic insight can be gained,
however, by using (5.6) and (5.1) to change the variable in

(5.3) from x to v, yielding:
2
d®n dn
20y 32 X - 2 'y
(7v-v4)"(vyv) o + 8(7v-v,) (v~v)° 1

12vc  .eff (5.11)

* 6(Iv-vp ) (vg-yin, = - 55~ ()
00C

Note that by doing this we have explicitly exhibited the singular-
ities in the photon continuity equation by moving them from i=
tov = Vor v°/7.

Equation (5.11) can now be solved analytically for the case
of a near equilibrium radiation field (i.e. fE << 1, where fE is
the radiation equilibrium parameter defined by equation (3.10)).

T H
. and nY then become

1/4
R IOnovomH(vo-v)

T = [—mrrfp——] (5-12)



n, = C0ngymaty v)/9k¥4 p(1-r)y 1/ (5.13)

For small fE and Vo < c/2, eY will always be less than 50 keV,

and so only the non-relativistic bremsstrahlung photon source

term will be important, Setting the (l—fE)1/4 terms in (5.12)

and (5.13) equal to unity and using (5.11) together with {3.10) to
solye for fE yields:

- 1/8
] My 7/8 ocb/ 7/8

fE(v) s i7§'(T§EJ 64cd vivg-vi
(ngv,) 0

v 1 (gy(a))7! (5.14)

where, using equation (3.2), we have defined a bremsstrahlung

-12 oK'I/Z cm3 1 and

emission coefficient J, = 5.692 x 10 sec”
combined Gaunt factor g,(1) = gy(a) E;(3). The neglect of
derivatives involving (l-fE) in deriying (5.14) is a good
approximation except for v § 2v /7 where the shock is very close
to equilibrium and all gradients are small.

An approximate criterion for the consistency of our assumption
of a near-equilibrium shock can be established by requiring that
the maximum value of fE(v) be £ 1/2 (with A held constant), and

can be written in the form:

1/15 8/15
/ {ﬂ) / MeV (5.15)

£y X 71 (ngg) 5
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o _ 20 -3
where Nog = no/IO cm

» and we have taken Ec = op since the
resuiting equilibrium temperatures are << mecz.
To determine %, we note from equation (4.9) that for an

equilibrium shock

3
dr v, v
eq . _ -~cv hi dv - _0
Y g W & TS (619
0 0cC ¥y

while the photon e-folding length, lAy, is %'lAt' the temperature

e-folding length, and using (5,10) we find that for v 2 2 v,:

zZ‘Y‘ e (5.17)
9 CFUN
implying:
A EAe;a,\,;iq - 8¢ (5.18)
9 ocnovo(v°+v)
and:
- sz o1y _ %
€4 3.6 0 exp(-g (-no-;) W) (5.19)

For E0 =1 MeV, N = 1020 cm'3. and Ec = gp> We have at mid-shock
(v = %vo) that €4 = .31 keV (ee = 1.32 keV); or for n, = 10]7 en™d
that Ed = .51 keV (ee = .23 keV). The corresponding inverse
bremsstrahlung cutoffs are ,54 keV and .15 keV respectively,

while those for screening are G.l’fx\()"4 keV and 2.0x107° keV.
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We thus find A = 41 and .6 yielding 92(1) = 1.65 and 1,47
respectively, Criterion (5.15) thus becomes E, % ,52 MeY and
E, « .31 Mev for n = 102 cn™3 and 107 en~3 respectively,
Thus shocks with E0 <~ 1 MeY wi11 be reasonably close to black-
body equi{iibrium over this density range.
The temperatures of such shocks will remain 5 Teq' the
final equilibrium temperature, given by:
= 1.57 (n3, €, (Mev)1 ke (5.20)

Teq

The final equilibrium photon density will be:
n% =122 x 102 (Eg(Mev) ndo)¥/* on3 (5.21)

Evaluation of the terms in the ion heating equation (5.5) shows
that for temperatures of a few keV and the velocity gradients
given by (5.6) that electron-ion coupling dominates, and thus

requires o o 6.



€. Numerical Solutions

The photon continuity equation (5.3) can be solved in a stable
fasion numerically, by using double-side boundary conditions and
an appropriate back substitution algorithm. The details of this
method of numerical solution are given in Appendix B. These
details are important since several straightforward ways of
differencing (5.3) lead to unstable results.

The boundary conditions are taken as ny(xo) = nS and ny(x])

Y

= nsq. The points Xg and x; are then moved toward -= and += re-

spectively until the solution stops changing significantly. The
value of n: is typically chosen either as 10'2 n, or ng where
Ts is defined below, and the resulting shock structure is found
to be quite insensitive to this choice provided n: << ng-

Once nY is known, the analytic equations (5.1) and (5.10) serve
to determine v and ey, except at the leading edge of the shock
where matter pressure becomes important. In addition, at tempera-
tures below a few keV, Compton scattering becomes less and less
effective in maintaining Te v Ty. These points are discussed in
more detail below, but in fact the shock structure is reasonably
insensitive to where the upstream (i.e. x » -« } boundary on nY
is taken. In view 0of this, it is convenient to use the following
procedure for choosing the upstream boundary point.

The matter-pressure terms are re-inserted into the expression

for the radiation temperature (see {2.13)) with the assumption

Ty = Te = Ti, yielding:
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T = "o"nmn(fo’v) (5.22)
y T .9kny+zn°v°k7 v)

The upstream boundary point is then chosen so that the resulting
temperature, Ts' is sufficient to ensure that Compton scattering
will result in rapid temperature equilibration of newly created
photons. Typically Ts is taken ~ 5 keV and n: = IO'zno for
Eo 2 10 MeV. The peak shock temperatures that result are found
to agree within ~ 1% with calculations where Ts is chosen such
» For Eo < 10 MeV, adequate Compton ther-
malization can occur for T, > 1-2 keV while at lower temperatures

that n® = bTS ~ .1 n
Y s

the number of near thermal bremsstrahiung photons emitted over a
characteristic shock scale is sufficiently great to insure a near
equilibrium photon number (although the spectrum will probably be
distorted). Such shock calculations are started using the

n: = bT: ~ .1 n condition.

Given the temperature and velocity, the ion heating equation
(5.5), can be solved by taking ei(xo) = ee(xo) and integrating
downstream. The appropriate difference equation is given in
Appendix B.

The Bose-Einstein radiation-dominated shock structures that
result from the present model are shown in Figures 6.1 and 6.2
for typical values of Eo and fge The abrupt rise of n, and
corresponding fall in T apparent in some of these shock structures
near the downstream boundary {e.g. 5.2{a)), is due to numerically
forcing the shock to come to final equilibrium at a point, Xy not

sufficiently far downstream, and is done so the shock can be zoned
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and piotted on a reasonable lenyth scale. Test calculations show
that this has essentially no effect on the structure of the shock
outside the "flared" region., Figure 5.3 plots the peak tempera-
ture reached in the shock as a function of E0 over the range 1-100
MeV/nuclieon, and shows explicitly the effect of the various sources
of radiation, as well as various characteristic temperatures. In
these models Ec = cT.which is a reasonable approximation consider-
ing the temperatures involved. The effect of decreasing ac is to
somewhat lengthen the shock width and thus somewhat increase
the degree of radiative equilibration (note that inverse Compton
scattering involves ops Mot Ec ).

Before discussing the details of these results and the impli-
cations of the relatively low temperatures involved in these shocks
for nucleosynthesis, it is necessary to determine under what con-

ditions our model is valid. This is undertaken in the next

section.
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D.  Self-Consistency of the Radiation-Dominated Shock Solution

sufficiency of Dissipation by Radiative Heat Conduction

We wish to derive the value of the ratio of the radlation to
matter pressure, & = Py/Pm’ below which radiation heat conduction
is insufficient to prevent a shock discontinuity in the absence
of viscosity. To this end, we introduce matter thermal energy
and pressure terms {nto the equations of momentum and energy con-

servation, (5.1) and (5.2), and utilize the variable n = Vv- »
[

yielding:
P +P =nm vz('l-n) (5.23)
m s o Ho "
5.0 + a0 €n EEI = n mv2(1- 2)/2 (5.24)
Z M Ty nV3c dx ool " :

where Py = n.(eY and Pm = ZnOkTh/n. and where Tm is the average of
the electron and fon temperature. To determine 1f these equa-
tions can have a simultaneous solution, we note from substituting

(5.23) into (5.24) that:

[N

p

v w = (e e e, (s.29)
oocC

dP
and thus 75} > 0 (for Vb in the positive x direction) in the
range 1 > n > . Here n is the postshock value of n (i.e. the
dP.
n for which 75} In =0and n<1). Fron (5.25), we see ny must
1
satisfy the Hugoniot relation:

1-4
o) = gt (5.26)
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resulting in 4-fold compression across the shock in the absence
of radiation (E(n]) = 0) increasing toward 7-fold compression as
‘.(n]) + @,

On the other hand, differentiating (5.23) with respect to x

yields:
P dT.
1y . f20-14ng ( dny __2k “m
7 & - (e O ax! 7 & (5.27)
Mo LT

where for a physically realizable shock we require gx <0 {i.e.
that the matter velocity decrease monotonically). Thus to be
consistent with the requirement derived from (5.25) that g;} > 0,
the right hand side of (5.27) must be positive in the range
1>n> ny- Physically this requirement amounts to the observa-
tion that conservation of energy [(5.24) and (5.25)1 requires
energy transport by radiative diffusion in the -x direction (and
thus %E} > () while the conservation of momentum {5.23) determines
the relation between P and n. As long as 921-< 0, the required
magnitude of energy f1ux can be obtained by adJust1ng gx s but
this is no longer possible in a region where 1f1-> 0, and thus a
discontinuous jump in density and velocity will cccur across such
a region in the absence of other dissipation mechanisms. (See
Zel'dovich and Raizer (1966, p. 477} for analogous arguments con-
cerning electron heat conduction.)

To evaluate the right-hand side of (5.27), requires some

dT,
assumption about 75? . If 75; < 0, then a sufficient condition

that no discontinuity exists is:
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1-2n
n

* £ > for 1> n > m;. (5.28)
This condition is most stringent when n + e Using the
Hugoniot relation (5.26) we find that in this case (5.28)

becomes:
£ 2 2+ /6 = 4.45, (5.29)

It is interesting to note that for n > 1/2, essentially no radia-
tion is required to prevent a discontinuity. However, if the
amount of radiation is small, the gradients needed to obtain the
necessary energy flux will become very large, and eventually other
dissipation mechanisms will become impartant, even if they are

not strictly needed to prevent a discontinuity. This situation
will be considered in the next subsection. _

. dT,
It remains to consider the case when d;" > 0. The Bose-

Einstein model we are considering assumes Ty = Te’ while we have
found Ti X Te‘ The range of validity of this assumption is con-
sidered below. Within this range, we take Th L TY. observe that

dT dT, dP.
d—:‘- > 0 implies —d% > 0, which implies that if 3;7-< 0, then

g;} < 0. However, the character of the photon continuity equation
{5.3) and its associated boundary conditions preclude %Ef-frun
being negative as long as stf remains positive, which is the
physical case of interest. Thus no discontinuities arise in this

case.
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Thus, within the framework of the present study, equation
(5.28) is a generally sufficient criterion for no shock discon-
tinuities to arise and is plotted in Figure 5.3 as Tcrit‘ It
might be noted that (5.28) and (5.29) are consistent with previous
treatments [(Belokon' 1959), Zel'dovich and Raizer (1966, p. 543)]
of the occurrence of discontinuities in shocks where the radiation
field is assumed in equilibrium.

As has been pointed out by Zel'dovicl and Raizer (1966, p.
546) a more intuitive, if less rigorous, approach to these ques-
tions is to note that ion-ion collisions can only substantially
influence the shock when the ion sound velocity (at n ~ n]) is
above the velocity of the shock front relative to the post-shock

material, i.e. when [using (5.23)]:

— A | e— £ v (5-30)
7 3rn1 49(1+¢) 0
or
£E< 43 (5.31)

which is in good agreement with the previous results.

Numerical shock models in which both ion viscosity and
radiative diffusion are taken into account are discussed in
Sections VII and VIII and shown to be consistent with the above
analytic resylts,

Non-Radiative Dissipation Mechanisms
If the velocity or temperature gradients in a radiation-

dominated shock steepen to the order of a few electron or ion
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mean-free~paths, non-radiative dissipation mechanisms such as ion
viscosity and electron heat conduction will become important.

Quantitatively we shall consider that ion viscosity plays a
significant role in determining the shock structure when the
viscous stress, Pv' becomes greater than % the radiation pressure,
corresponding to the level at which matter pressure becomes import-
ant. This criterion can then be written:

_ 4 o52|dv 1
P, = Ay 05 IEY =3 novomH(vo-v) (5.32)

Y

Using (5.6), (5.1) and the main Coulomb term in (3.37), this

criterion can be re-written as:

2/5 o 2/5
H v T &nA
ei 2.2 (7V"V°) (&: '—]0) MeV (5.33)

Taking ;?—= 7/4 as is typical near the peak shock temperature,
;; = ops 20A = 10, and TY " Ti' we find that viscous effects can
only become important when eY % 0.8 MeV. (Note, however, the .
1imiting effects of nuclear scattering for 8 3 1 MeV.) This
criterion is plotted in Figure 5.3 as Tv. The exception to this,
of course, is when the radiation to matter pressure ratio falls
below 4.45 at this temperature, causing the shock to steepen

until viscosity generates the needed dissipation.

Charge Separation
If the fons are stopped exclusively by the action of an

electric field, the maximum electric field occurring in the shock
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will be given approximately by Lnax ™ EO/(eA) where 4 is the
characteristic shock width. Taking a = c/(JnOVOE;) and using

Poisson's equation, we find the net charge density, p, to be:

a7 10718 (:—;)2 ndy E2 (Mev) (5.34)
Thus the maximum required charge separation is quite small, and
using (5.4) we see that the difference between the ion and electron
velocities is also negligibly small. As discussed below, however,
the presence of electron-positron pairs can cause substantial
differences between these velocities. In addition, if ions with a
different charge to mass ratio from hydrogen are present at levels
typical of Population I stars, the electric field is not sufficient
to encuyre that all species remain co-moving. As will be shown in
Section VILI, however, viscous forces acting between ions serve to
keep the resulting velocity differentials small.

Consistency of the Effective-Photon Approximation

One expects the effective photon approximation to be valid
provided Ag = ed/ee << 1, Examination of the numerical solutions
shows this to be the case for temperatures 21-5 keV, depending
on the shock energy. Temperatures < 5 keV are typically found only
near the leading edge of the shock and in the final post-shock
equilibrium region for shocks of low density and energy. HNumerical
sensitivity experiments show, however, that the bulk of the shock
structure is little effected by conditions in these extreme

regions.




The principal error involved in the effective photon approxi-
mation arises from the specification of the time available for
photon thermalization, Ty By taking T4 @S the smallest relevant
shock scale, we neglect soft photons which are thermalized only
after times tonger than T but still in time to help cool the
downstream portion of the shock. The sharp increase in photon
density across the shock, however, will tend to dilute this effect.
In addition, this error toward lower photon density is consistent
with the policy we have used in resolving uncertainties in the
evaluation of stf {see Section III.A), and results in the temper-
atures in radiation-dominated shock models being in fact approxi-
mate upper 1imits on the actual shock temperatures.

Since the electrons serve principally as intermediaries in
" transferring energy between the hot photons that have diffused
upstream and newly created subthermal photons, we expect that their
temperature will be a good measure of the effective photon temper-
ature and thus T, R Ty.

Pair Effects

From the results of Section III.B we nate that the number of
electron positron pairs will become significant somewhere in the
regime 6 = 60-100 keV. The substantial changes these pairs make
in the shock structure is the topic of Section VI. The critical
temperature T: derived there for the onset of the changes is

plotted in Figure 5.3.
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E. Discussion

Comparison of the radiation-duminated shock structures pre-
sented in Figures 5.1 and 5.2, and sunmarized in Figure 5.3, with
the results of Section V.D shows that throughout the range of our
calculations, radiative heat transport provides sufficient
dissipation to mediate the shock transition, and moreover does so
over scale lengths sufficiently large that viscosity never becomes
an important dissipation mechanism, and serves only to mildly heat
the ions. It is evident that while not required to avoid a viscous
shock, inverse Compton scattering provides the dominant mechanism

. for cooling the electrons and thus reducing the peak shock temper~
atures by more than two orders of magnitude from those that could
occur in a hot-ion shock.

The density dependence of the peak shock temperatures is due
primarily to the density dependence of the inverse bremsstrahlung
cutoff, TR defined in equation (4.5). This cutoff has the most
effect in determining the effective photon emission rate at low
energies where it is not usually dominated by the thermalization
cutoff, T and this behavior is reflected in Figure 5.3. 1In the
shock calcualtions where inverse Compton processes are neglected,
the only residual density dependence is due to the factor fE'
defined in (3.10), which allows for inverse pracesses near
radiative equilibrium, and the very small density dependence of
the CouTomb logarithm (see eq. (3.28), {3.30), and (3.45)) The
treatment of inverse Compton scattering used in the present study
is substantially more accurate than the approximate treatment used

in Weaver and Chapline {1974), primarily due to the use of the
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variable Gaunt factor gl(x) (see eq. (3.8)) in place of a constant
"ayeraged" one (91 = 2.71). This results in a reduction of the
peak shock temperatures by 5-50% from the previous work, for the
case where inverse Compton scattering is included.

The ion temperature is determined primarily by viscous heating
and electron-ion coupling (see eq. (5.5)). For 8o % 25 keV the e-1

coupling is sufficiently strong to keep T1 essentially equal to

-3/2
e

coupling together with the T?’Z dependence -0f the ion viscosity

Te' while at higher temperatures the T dependence of this
allows moderate temperature differences to develop. Since radiative
heat transport serves to convert the kinetic energy nf the ions
directly into electron and photon thermal energy, Ti tends to lag
Te in the upstream portion of the shock where the velocity gradi-
ents are small and thus viscosity is negligible. The viscous heat-
ing that occurs near the center of the shock {x=0) is usually
sufficient to make Ti > Te there, a difference which is then
quickly relaxed in the post-shock region (e.g. see Figure 5.1(g)).
For Te % 300 KkeV, however, T1 lags Te so much in the upstream
region that the fon temperature never reaches the maximum electron
temperature (see Figure 5.1 (h})). The ‘1 curve in Figure 5.3
summarizes this behavior.

As predicted by the near-equilibrium analytic shock models
of Section V¥.8, the shocks are close to equilibrium near Eo =]
MeV, particularly in the upper part of the density range, where
fewer photons per electron are required for equilibration (see

Figure 5.1(a), 5.3, and eq. (5.21)).
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Comparison of the T, and TY curves in Figure 5.3 shows that
pairs become important for radiation temperatures % 60-70 keV and
shock energies 3 30-50 MeV/nucleon. The general effect of this
transition is to increase the degree of radiative equilibrium and
thus lower the peak shock temperature relative to the radiation-
dominated model, At the same time the source of dissipation is
expected to shift from radiative heat transport to ion-lepton
Coulomb friction. The calculations leading to these conclusions
are given in Section VI.

We thus conclude that the ion temperature remains below ~400
keV for shock energies up to 100 MeV/nucleon, and below
¥ 100-200 keV when the effect of pairs is taken into account.
Since spallation thresholds (Z > 1) are ~8 MeV/nucleon, the amount
of nuclear spallation that will take place in these shocks is quite
small, and thus essentially no deuterium will be produced. Indeed
the nt products characteristic of the temperature peaks of these
shocks (where 7 is the time duration) are only of the order of
10'5-10'7 en™? sec, which for T, 100 keV will only suffice to
burn whatever deuterium, tritium, and perhaps Hea, that might have
been present originally. For Ti ~ 400 keV and nt ~ 107 en3 5€C,
some lithium, beryllium, and boron burn up will also occur.

Before accepting these conclusions, it is desirable to inves-

tigate whether other self-consistent shock structure solutions can
be found (especially one corresponding to a high temperature

viscous shock), and indeed, whether the self-consistency of the

RS A R s

Tow~temperature radiation-dcminated solutions is stable against

perturbations. To do this 1t 1s necessary to explicitly include
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the effects of viscosity in our calculations. This 1s done in two
stages. Section VII treats one-fluid viscous shocks and their
alteration by simple radiation field models. Having thus established

workable methods of solution (in particular—efficient, stable

numerical approaches), the treatment is generalized in Section VIII
to a multi-species, multi-temperature model with a realistic

radiation field.



Figure 5.1 - Radiation-dominated shock structures for
no = 10 3. Here V= v - v /7, EO = E, QN0 = ny, TO= T,

QNGS = nf. NG =n,andT=T.



RADIA O OORINAILD SLN - - TYkQ
€0- ) 0 MV QNOv ) OFe20 CM-3 10 | 0OL40B DEGK QNGSS @ O3E+19 Cm-3

e e e e o
b
.
G - et
v
M
W
L * o
. g\ 5
’ \
! ' 2
. 1 z
% / | ”
:‘,’ v
1
- .
e ™
Y
L
4
A
. FUE S U 'y QN Ry N Y RS WIS S W PR S 5 1
“‘l'liltlrvllru::f““—lx'
£+ v % ° 5 & & el H
X, cH
{a) E = 1 MeV
Hab(81i0M DOM(NATED SHOCK:-TYKO
te v Q0. 1 0Ee20 (M-8 10 | COE+06 DEGK OMGS» @ OSL+19 Cm-3
. e e e = e
e = = &
h
et
<
i v
3 Y -
o i "
. I
» { o]
; | .
. g
. B ‘ 2
& \ o
=4 7
ST /
» ) 4
; —_—
r‘ %
o 6 |
(U Y ;,I,t sop- s Am—d 4 dod J”'
gy 1ot o o : : : v 3

{b) EO =3 MeV



RADIAT IDN-DOWINATED S50CK- - TYKD
€Ov 10 00 MV QNOs | Oe20 CM-3 O« | 0OL+DB DEGX QwGSs 2.03+19 Cm-3

o
s —_
W e
|
o "
t
J
3
[
5w w
.
>
'
H ¢
3 -
N —
2

PR S R
« s s Tz

Eg = 10 Mev

RADIATION -DORIMATED SHOCK - T vHD.
F0- €0 00NV QNOs | QE+ROCM Y TOs 1 DONSQB OCOK QMGSe 2.030+1d Cn-3

|

A >~
7”/
u
o
wn
i n
>
3 a2
o
o
.
e e e e e e 2o
X, CH

(d) E, =20 MoV

CH-3

NG,

., tn-3



ATLON-DONINATED SHOCK--1YKD
0+ %0 (O MY QWD=  1.0R420 CM-J  TOr  |.00Ee0B DEGK QvGS= 2.03E+(9 CM-3

-
!
o
2
wi
¥
o m
j
N X
= o
. .
N <
' z
X
O
W
a
L]
(e) Eo = 40 Mev
RADIALION DOMINAILD SHOCK- - TYRQ
€0« S GO0 MCv  Qwde  t OE*PQ In-3  19¢ } OJE-00 DEGK ONGSe 2 03E+19 CM-3
[ e e
.
i ,
] ]
I - . -
H
v
[
[ g .,
. Vod P
I [ &
I .
! i o
” P¢
P .
:3 . '-} rn
S
»‘ ” ' I
/ ! b
!
! 1
{
A |- P - N i - doo o A
E i e L O N
N
x, M

(f) Eo = 50 MeV

T~



RADIA | 10M-OOMINATED SHOCK--17K0
€0 70.00 MEV  QNO-  E.UE-20 CM-3 0=

1.0DE+05 DEGK QNGS» 2.03E+19 CH-3

/
i ___/
5 -
e
©
W
w
I 23
[=}
5
«
& ¥
& 3
w
a
K
e
" n 1 L
- = - 0 -
: .~ - A v
X, CH

RAQIATION-DOMINATED SHOCK--1YKD
€0 )00 00 MEY  QNO» ] QE20 CH-3 10«

(g) EO =70 MeV

§.00E¢06 DEGK GNGS™  Z.03£+19 CM-3

CM/SEC
5

DEGK -~- v,

T,

.

™
™
S GNP S S WS W U S ST Y
N EEEE
L
™

(h) E; = 100 Mev

CH-3

NG,

NG, CM-3

PP




MeV.

Fioure 5.2 - Radition-dominated shock structures for E0 = 30

(See Figure 5.1 for notation.)
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Figure 5.3 - Peak and characteristic shock temperatures. The
curves labeled NRB, RB, and RB+2C show the peak radiation tempera-
ture reached in the shock where only non-relativistic bremsstrahlung,
relativistic bremsstrahlung, and relativistic bremsstrahlung and
radiative Compton, respectively, are included in the calculation
{and the average thermalizable bremsstrahlung photon energy is
conservatively taken as %-kTe). These curves are plotted for density
n, = 1020 cm'3; but except near equilibrium, the density dependence
is quite weak. The curves labeled Tv(lols-lozz) are the peak
radiation temperatures reached in a shock of the indicated density
(in cm'3) when all radiation effects including inverse Compton
scattering are included, while the curve labeled Ti(n° = 1022) shows
the peak fon temperature associated with TY(1022). Ti. max 1S the
ion temperature that wouid occur if all the shock energy were
transfermed into ion thermal energy; Tcrit is the temperature
(near the rear of shock) below which photon diffusion can mediate
the shock; Tv is fon temperature above which ion viscosity is
important; T, is the temperature at which the number density of
pairs equals n_; and Tls is the final equilibrium temperature at

) q
ng = 10 S a3,
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VI. EFFECT OF ELECTRON-POSITRON PAIRS ON SHOCK STRUCTURE

The number density of pairs created in a characteristic

radiation-dominated shock width, ( £ ) » by photons moving

3v.no
with velocity ooc
v
'}
VY v is
Q c 2
§o= L. e = = 06, + ,782¢°
r‘p b 3Vo"oc’t: %0 ) [ )(] )
3 _-2¢
L2 -] E—(nm (6.1)
where we have made use of (3.16); and
mec2
¢ = X From Section 111.B, we have that the number

density, n*, of electron-positron pairs in relative equiiibrium
with a Bose-Einstein distribution with photon density, ny,
is:
ot 32 ¢
50¢K(¢)n —> .63 0% e Tn 6.2
2 Y o y (6.2)
and, for example nt ¥ .00 n, at kT = 100 KevV. Combining
(6.1) and (6.2) and assuming y, '\-vY {see below), we find
that y-y pair creation will cause the pair density to be in

relative equilibrium for:

g
£ tHeV) < 1.52 x 10° (mn ) { T) 32 & (140.78270)712
(6.3)

L3I
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For o, = 50 keV, and A °T’ we find the pairs will be in
relative equi]ibrium for E i 00" Me¥; for e =75 kev. for
E, 3 a35 T—I—— MeV; and for 6, = 100 keV, for E, 3 1750 Tﬁ%ﬁ‘ Me¥.
Thus for the energies of present interest, {i.e. E 5 100 Mev), the
pairs can be considered to be in relative equiifbrium whenever
their density is at all significant (i.e. 3 ny).

By combining (5.1) and (6.2) we can derive the condition for

>
“2 v no as
E, (Mev) % 0.95 ¢™/2 ¢ (6.4)

where ¢ is evaluated at vv—o = 447 {i.e. essentially at the peak
shock temperature). Since the density of pairs is extremely
temperature-dependent for % 5 200 keV, the temperature, T 4o 8t
which n, = n_ (derived from (6.4)), is a good criterion for when
pair effects can become important, and is plotted in Figure 5.3.

A principal effect of the pairs is to support a current
tending to short out the shock electric field and thus weaken the
electron-ion coupling, lengthen the shock scale and allow more
time for radiative equilibration, At the same time, however, the
presence of pairs increases the opacity as well as the photon
production rate, which tends to redyce the scale of the shock,
while leaving the degree of equilibrium unchanged. Which effect
dominates depends on the pair conductivity, and on the magnitude
of the direct ion-lepton coupling via Coulomb fricticn.

While accurate solution of the resulting shock structure

seemingly must be done numerically, and will be the subject of a



later paper, a fairly plausible pair-dominated shock can be
sketched out.

Using the facts that the total current t ough the shock must
vanish and the fractional charge density must be exceedingly small

(i.e. Debye length << shock width), we find that:

) {6.5)

(=
<

v, = vs (1 - ——

i enyv,
where J, : en, (ve-v+) is the current due to the presence of pairs
and v, and n_ are the positron velocity and density. Approximately
adopting the classica) plasma conductivity given by Spitzer {1962)
to a pair gas by multiplying it by a factor /2 n+/n§. ve find:

J ? i -
. a -4 3/2 N
i N 3.56x107" 6.7 “(ke¥) E,(MeV) Rg op IR T~ (6.6)

where 7, is the electric field, n., the total e” density, and
Loax the maximum electric field that can occur in the absence of
pairs (see V.D.). We see that for a, A 60 ke, E, 3 30 MevV,

n, T ngand %5 that 3 /enyy is 2 1. Since the velocities
in (6.5) cannot be negative, a self-consistent solution of (6.6)
will be reached in which 1, ., and J /enyv, ¥ 1. Physically,
one expects that without the aid of a strong electric field the
electrons will be approximately comoving with the radiation field,
and mast of the shock dissipation will occur via resistive heating
of the pairs and Coulomb friction between the ions and leptons.
The relative contribution of these effects can be estimated by

calcylating the ratio of the classical Coulomb stopping distance

77



a4 (derived from Spitzer 1962) to the distance over which the

reduced electric field can stop the ions. This ratio is given by:

L g,
ei -4 A
= 1,26 x 10 —
Eoie:x or
. 10 "_o Ly (6.7)
WA Mg Inay

For nge"ovo = 1 appropriate when § << Inax * ¥e find from (6.6)

that:
L n.. v n
el e 1) 0
s ,35 S — L (5_3)
E°7e:x n,ovi-ve n,

It thus appears that electron-ion Coulomb friction will provide
the dominant dissipation when mere than a few pairs per nucleon
are present. The scale of the shock, &, » is then 2ai with

Vo/(vi've) nl, i.e,.:

g
0-4 eo 10 [ (6.9)

which holds when i" >> 1 and --1? < 1 and ‘provided the classical e'e”
condyctivity and stopping 1=ngfhs assumed above are applicable.
Two stream instabilities between the ions and electrons or
the electrons and positrons may, however, lead to anomalously
small values of ¢, and the Plasm conductivity. Idealized
linear theory (Stringer 1964) predicts the existence of stable

counterstreaming for |v,-v] < 1.2 (o /m, N2 wnen Te= T
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For 0g2 60 keV where pairs become important, we thus require

E > 160 MeV to reach an unstable regime for fv;-v i = v.
Further, McKee (1970) has shown in one-dimensional numerical
simulations that the e-i two stream instability leads to heating
=M, |vi-ve|2 which is a factor milme too small to mediate a
collisionless shock. Thus classical two-stream instabilities do
not appear to play a crucial role in the shock structures of
present interest.

Returning to equation (6.9), we see that due to the rapid
rise in pair number with temperature below 200 keV, the absolute
size of the shock will be smaller than it would have been without
pairs, decreasing to a minimum of ~.2y at100 keV and then expand-
ing. khen the size of the shock is measured in Compton lengths,
however, the shock width with pairs increases monotonically and
always remains more than that of a shock from which pafrs have
been artificially excluded, The pair shock's radiation field
will thus be seemingly better equilibrated and reach a lower peak
temperature than the pairless shock, although one must solve the
problem self-consistently, allowing for the sharp decrease of
pair number with temperature. The probable outcome is that the
temperature will remain below ~100-200 keY¥ for € < 100 MeV/
nucleon. Using the criterion of section V.D we see that this is
too 1ow a temperature for ion viscosity to become important even
over the ceduced shock scales. In addition, ion viscosity will
be damped by ion-lepton cnllisions.

We &re thus 1ed to the ogverall picture of a pair-dominated shock
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where a relatfvely cool radfation-pair field stops the incoming
electrons fairly abruptly near the front of tﬁe shock while the
ions are stopped gradually by the pairs, heating and regenerating
the radiation-pair field in the process. This scenario is in some
respects similar to the equilibrium pair-dominated shocks suggested
by Cotgate (1969) to occur fn the mantles of compact supernovae

(n° A IU28 cm'3. Teq n 500 keV, E° > 16 MeV) and to be involved in

cosmic ray production.
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VII. SHOCK MODELS WITH VISCOSITY

A. One Fluid Viscous Shocks Without Radiation

Specializing the shock structure equations {2.13)-(2.20) to
the case of a single fluid containing no radiation or pairs, we

obtain after some rearrangement:

AV KT - v %% = mnovo(vo-v; ov (7.1)

an_v kT - AL mn v (v -v){v_-v#2e v ) +a P v (7.2)
oo dx 2 "oo0''0 0 00 oo0o0 '

o= ngv /v (7.3)

Kere Po and o are the pre-shock pressure and spe:ific heat
coefficient, € H Polmnovﬁ. and the species identifying sub-
scripts have been dropped.

Models of the type represented by (7.1)}-(7.3) have been
studied hy reveral authors (cf. Zel'dovich and Raizer, 1966).
For clarity and continuity, and to develop methods applicable to
the more general shock problem, we shall independently derive
some of the properties of this model, for the case of constant
voand .

It is convenient to first cast equations (7.1)-(7.3) into

the dimensionless form:

LY gg = n(1-n) e (7.4)
ar . 9o l“.n)(].rwa: ) va e {7.5)
@ "2 0 o0 :

S,

e
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n 1
- g - (7.6)
l‘lo n
where:
xn_v_k
.y . bk . oo . KT
n § : 4 = T = = (7.7)
Vo Mk 13 mv‘z,

The Hugoniot relations governing conditions on either side of
the shock are obtained as usual by setting the gradients ia
{7.9) and {7.5) to zero. By construction the pre-shock solution
is n=ng, =1, LRl For the case of constant a, the post-shock
conditions {denoted by the subscript "1") are found directly to

be {independent of the constancy of y and x):

I‘SED . 3
1+2{14a) 4 ‘T e
R olep |, 7.8}
1 2atl ]*850
—7—— e=3
(1+5:°}(3-to) 3
a= %
. (1*2(”0):0;(20—%) . {7.9)
L]
(2a41) (148e, M6-e )
A a=3

{7.19)

°= ]_.5
L
I Je

L
Far aon-constant a, the Hugoniot relations can be solved quadra-
tically and then iterated to find ny and 1.

For the special case 8= 1/{g+1} {o constant}, equations
{7.4)-(7,6} can ge solved analytically, {This was first shown
by Becker 1922). 1his i5 a not ynreasonsble approximation for



single species gases or single component plasmas. Indeed 5 .36
for the latter case, although u and « are then highly temperature-
dependent, Adding {7.4) to (7.5) and making the above substitution

we find:

(@) +  ofe r & [at)e s Foll = ot + 3 (.1D)

making the substitution h = {a+1)t + ;—nz, we see that (7.11) is a

standard first order differential equation having the solution:

h=n,+0 el (7.12)

where hO H (u+l)eo + %- is the upstream value of h, and D is an
undetermined constant. Unless D=0 the exponential term in (7.12)
will blow up at the downstream limit, while the Hugoniot relations
show ho to also be the correct downstream value of h. We there-
fore conclude that h=ho throughout the shock. Using this result,

we find from (7.4) and (7.8) that:

dn (1-n){n-n;)(2a*1) = latl) dt
o u - g (7.13)

which can be integrated to find z:

g = ) 2n {(“'“) J tz, (7.18)

a-“*'u)eo n=ny )n]

where % is a constant fixing the location of the shock.

Asymptotically:

10~ exD[(u—(lfu)so)L] [ AR R
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o eXP['%‘](u-U“u)eo)c] r+ te (7.15)

Equation (7.14) is singular for gg = a/{1+a) which is just the
point where Yo equals theinitial adiabatic svind speed, cg, and
retracing our steps we find g'[;l = 0 as expected. 1In general, the
upstream Mach number, M, is given by:

Vo _ e /2
M= 'c'a‘ = [z'H,u,eo] (7']6)
13

It is interesting to note that the velocity profile given by
(7.18) is identical to that in the radiation-dominated shock model
when € ° 0 and o = 3 (see(5.10)), although the relation between
v and n is different.

Taking another special case, we can investigate the role of
viscosity by setting § = 0 and seeing if continuous shock solu-
tions can be obtained., Differentiating (7.4) and using (7.5) to

. dr .
eliminate & we find:

_gn = ?sz..ﬂ (]_'")_E'_-"_')_ (7.17)
< (1'2n"r:°)

T4
This solytion is singular for ne * -—2-3 and we thus expect a

shock discontinuity unless ny > This occurs only for weak

shocks with:

:d
L

2at3 172
e> Z¥s O M < [&q (ﬂﬂ} (7.18)

|

fFora = % . this criterion becomes M < /975 = 1,34,
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Thus ordinary heat conduction is usually insufficient to
mediate a strong shock and some other dissipation mechanism
(typically viscosity) 1is required to prevent a discontinuity.
Note, however, that no discontinuity occurs foroc< %3 a case
which might correspond to a highly Fermi-degenerate medium.

This fact, together with the large heat conduction coefficient
typically associated with suzh media, might dramatically increase
the scale of the shock retative to a viscous mean-free-path
astimate. The possible mplications of this for carbon-detonation
supernovae are being investigated.

In general, the physical content of criterion (7.18) is that
in the absence of viscosity, relatively 1ittle 1ncrease in the
energy density near the back hmnl) of a shock is required to
provide pressure balance {scales as (1-n} from (7.4)), while the
material there is being ranidly compressed (x%—). For strong
shocks, this usually results in a negative temperature gradient
and thus the inability to provide the reguired heat flux toward
the front of the shock. Weak or lgwa thermal conduction shocks
are possible because they are not sufficiently compressed to
encounter this difficulty. Also, as we have discussed amalyticil-
1y in Section V.0 and will treat numerically in the next subsec-
tign, strong shocks with sufficiently high radiation pressure
may be mediated solely by radiative heat conduction, basically
since the radiation field goes not take part in the final sharp
compression, HNote also that the radiation field can transport

energy against a temperatyre gradient if a sharp erough gradieat
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in photon number exists to compensate,

Returning to the radiationless case at hand, we wish now to
solve the basic viscous shock equations, (7.1)-(7.3), numerically
in the case of arbitrary & (but constant u and ¢, and a = gﬁ.
This can be done in a stable and convenient fashion by differenc-
ing (7.1) and {7.2) in the manner given in Appendix C and solving
i+ i+] at

the resulting equations simultaneously for v and T

point xi+] in terms of the variables at point xi. The form of
the specia; case solution (7.12) suggests that such an integra-
tion will be stable only if carried out in the -x direction, i.e.
from the back to the front of the shock, for otherwise the
unwanted exponential solution will exponentiate off the noise
ineyitable in any finite difference scheme. This is indeed
observed to be the case.

In order to begin such an integration, one needs an
asymptotic solution for the downstream limit for T in terms of'v.
To obtain such a solution, we make the substitutions ¢ = n - n
and ELETh - in equations (7.4) and (7.5). Using the
Hugoniot relations (7.8) - (7.10) and neglecting terms mgher

than first order in ¢ and I we obtain:

[ de _ e
e - E(l+550)az'- 2{1-350) {(7.19)
T ST (7.20)
2T 4 % :

Tne form of these equations and the methods of nonlinear
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mechanics {cf. Minorsky 1947) suggest trying exponential solutions

in the form:
¢ =B et e = C R (7.21)

where B,C, and A are undetermined constants. Making these
substitutions and sclving for C/B yields:

:—T= %- [[(1—3:04-3n16)2 - 161]6]”2 -1 -3(016-50)-] (7.22)
J

The shock integration is then started by choosing ¢ = € << 1
at x = 0 ana then finding € from (7.22). Numerically, we find
that using this asymptotic sclution leads to the appropriate
upstream boundry conditions.

The results of such numerical integrations are shown in
Figure 7.1 for the case of strong shocks with various values of &.

Note that the majority of the velocity change takes ptace over a

few viscous lengths (A = -2__) near the back of the shock
u mn v,
while thermal conduction has preheated the incoming material

over a distance AK = %*u . The analytic solution for the special

case 6= .4 agrees precisely with the numerical calculation. It is
also clear from Figures 7.1 {a) and {b) that heat conduction does

nat play am essential role in the formation of a viscous shock.



B. Viscous Shock Models with Specified Radiation Fields

To study the effects of radiation on viscous shocks, we
reintroduce the radiation pressure, energy density, and heat

transport terms into equations (7.1)-(7.2), yielding:

{T4xn)n v kT - wv dx = mngVo (Vo-v)v + Py (7.23)

3 d 1
(F+3xnIngv KT - A n vkT al - k- dx = gV (Vo -v) (Vg -vH2e vy )

+agPovy (7.24)

where:
9 ILL c 1
X £ IF k” = ¢ + xnA_ v n_k A= S — (7.25)
10 n, 000 0 T v n.g.
and:
32+ 3;(0
PO = (1 + xo)nokTo oy = _]T (7.25)

Here Xo is the pre-shock value of x,and the specific heat coef-
ficient for the matter has been taken as 3/2. In addition, our
assumption of constant u and «x will be retained.

in dimensionless form these equations become:
(14xn)t - né 80 - (1-nte, ) (7.27)
X né gy = nll-ntey .

(%* 3xn)t - An‘r - (1+xnA) d—T= —('l n)(l-n+2: ) +a o0 (7.28)

A
where A = XQ . In the present section, we shall assume x(x) is a

(.4
known function.
The main analyti. result of this model, the ability of

radiation to mediate a strong shock, has already been discussed
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in a slightly different form in Section V.0, and we will concen-
trate here on the methods necessary to obtain specific numerical
solutions.

As is obvious from the radiation-dominated shocks shown in
Figure 5.1, the photon number gradient, gé ,» will not in general
vanish at the same downstream region as the velocity ana pressure
gradients. Instead, an extended radiation relaxation region will
typically occur after the shock-proper, in which increasing
photon number balances a declining temperature to maintain
constant pressure. It is numerically convenient to separate

these two regions by choosing an x = Xg such that %% << 1.
X
H

For the purposes of calculating the structure of the shock-proper,
the downstream radiation conditions are taken as Xs E x(xs) and

LS -
Xs = (d:)xs ; and (gé) is assumed to becomz negligible.

K=
Pseudo-Hugoniot relations can then be obtained by first
assuming g% +0 in (7.27). Differentiating the result we find
immediately that g—g also + 0, where 1 = {(14xn)r. We tnhen find
the pseudo-downstream conditions {denoted by subscript "1"} to

be described by the relations:
(l+X"Y\])T] = ’)]“'n]+5°) (7-29)

3 . (A1) 1 .
(f + 3x]n|)1'1 T MMXy ‘+x|n-, =y (l-n,)(l 11]+2€°)

tae, (7.30)

The second term in (7.30) represents residual dissipation



occuring at the relaxation layer interface and is typically
small. Indeed, if this term becomes too large, meaningful solu-
tions of (7.29)-(7.30) for nqand 1, do not exist, implying that
our arbitrary association of shock and radiation field by our
choice of X  was nonphysical. Typically, however, reasonable
values or r] and x) are readily found by using (7.29) to eliminate
t; from {7.30) and then iterating.

To find pseudo-downstream asymptotic solutions, we proceed
as before, except that instead of €, we introduce the expansion
variable €, =My -0 where mo= (]+x1n1)r] . We obtain the

relation:

€ €
(21)2 AM] + El * tA“1‘1'Zﬂ]+EU) + AD1X]T1 + ﬂ]5(a]'n]CK)]

+ [(1-2n]+so)ﬁu]xl‘rl - anU-nl +EO-H]CK)] =0 {7.31)
where:

|32 xm TrgmA AUy (7.32

a-l z TF X]n] u«l = AT-—_T]"'X-‘I'I] C,c H __—“‘x\n] X] . )

This relation can be readily solved quadratically with the
positive value of the square root term being physical. e is
then related to €, and ¢ by the expression:

+
E" T]x1€

€ = '—ln—)(‘;]—- (7.33)

We can now quantize our earlier spectfication of g by
choosing n(ks) = npteg where e << 1 and is typically taken 1073,

We can then find x(xs) by making use of (7.33), and thus have a
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starting point for the numerical integration of the shock model
equations (7.23)-(7.24).

The difference scheme adopted for equations (7.23)-(7.24) is
given in Appendix C. Due the change in character of the shock equa-
tions as radiation pressure becomes dominant, most straightforward
difference schemes are either intrinsically numerically unstable in
one or more limits or require an exceedingly fine x-mesh to be caon-
vergent. The method adopted, however, appears to satisfactorily
resolve these difficulties.

Figure 7.2 shows the shock structures that result from assum-
ing that the radiation/metter pressure ratio {£ = xn) remains con-
stant across the shock, while Figure 7.3 shows the results when
x 1s taken to be an exponentially increasing function of x given
by:

x(x) = xg * {xg=x,) e/, (7.38)

The transition from a viscous to radiation-dominated shock is

seen to occur for x = 3-5 (in the region of the maximum velocity
gradient), in agreement with our analytic limits. Specifically,
the scale of the velocity gradient underyoes a transition from

mxu to wkon/3. In addition, the shocks with exponential radiation
fields already exhibit the temperature maximum typical of the

non-equilibrium radiation-dominated shocks ot Section V.



Figure 7.1 - One-fluid viscous shocks for varicus values of
§. Here vV =v, £0 = Eo' QND = Ny» TO = To’ EPSP = §, EPSS = g
and XVISC = 2Au. The curves marked "E" in the ¢ = .4 case are
the special case analytic solutions, and are essentially in coin-

cidence with the numerical solutions marked T and V.
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Figure 7.2 - Shocks with constant radiation/matter pressure
ratios. Here, and here only, XI = xn; ITOT is the total number of
zones; and the remaining notation was defined in the caption to
Figure 7.1. Note that A = 7\0/7\‘ is equal to the ratio of the
radiative diffusion length to the heat conduction Tength in the up-

stream region and is ~ 7 times this ratio in the downstream region.
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Figure 7.3 - Shocks with exponential radiation fields. Here
KL = %> and the remaining notation is unchanged. MNote that as
X is varied from 0 to 50, a hot viscous shock is transformed into

a cool radiation-dominated shock with a characteristic temperature

peak.
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VIIT. GENERAL EFFECTIVE PHOTON SHOCK MODEL

A, Formulation of the Model

We are now in a position to consolidate our results into a
model containing both explicit viscosity and a realistic treatment
of the radiation field based on the effective photon approximation.
We shall refer to this as the general effective photon shock model,
and base it on the general assumptions of Section II, while in
addition assuming essentiaily comoving ions and electrons, the
absence of crucial pair effects, and the validity of the effective-
photon approximation.

The shock structure equations (2.13) - (2.20) then take the

form:
dv _
(1 + tg + xn) nv kT - wv g = mov (vo-v) v + Py (8.1)
dn
(B ap o * 3m) v kT = % A KT L - o T (8.2)
.1 :
=7 mnovo(vo-v)(vo-v+250vo) +arovs
d g (o Ny err
dx (nYV) ~ dx [T *&;Y‘] =q, (8.3)
daT, nv
3 _i___0o dv 5/2 (dv,2
2"k W v KTiax Rk (R
n_v A
2 1 .
+ (29)f Lo gret) {8.4)
v (kT)3/2 i
nv
= = =020
n= n,=ng= -3 (8.5)
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Pk
where RIF and

~ 3(1+X°)

e T (8.5)

Po = (2+xo)nakTa a

K” = kg + xnAgVon k (8.7)
As before, we have neglected ionic heat conduction due to its
small coefficient, and since as was shown in Section VIL.A, it
has little effect on the velocity profile and only moderately
(s ™ .36) broadens the temperature profile of a viscous ion
shock.

To cast equations (8.1) - (8.2) into dimensionless form,
it is convenient to introduce g*= fi, where Xx is an arbitrary
constant length. (Note that the hé:t conduction length, AK, is
no longer suitable because of its large (m(kT)S/Z) temperature
dependence.) We then obtain:

dn

{t + 15 +xn)7- né” a n{i-nte,) (8.8)

3 . d d
(5 L 3xn) 1 - A'nt H%‘ -6, -

1
=z (1-n)(1-nt2e) + ape, (8.9
where
A x’
5" = u A= ,.._g § = ——— (8.]0)
m"OVOAX AX ® nOkaAX

Final Hugoniot relations are then found by setting al}
gradients to zero and requiring the radiation field to be in

equilibrium, yielding:



2Tf + Xq“fo4 = ﬂf(1-nf+€°) (8-”)
Ef 2) Tf + 3anqTf = —‘(1-nf)(1-nf*2€ ) ta EO (8-12)
whe = 9 2__ 3 ngn
re % * 10 o (————) and the subscript f denotes « Final
downstream value. (The subscript "1" will be used below to

denote pseudo-downstreain variable values.) These relations can
be readily quadratically iterated to find s and Nes and
- 3
Xg XqTf
Pseudo-Hugoniot relations are obtained in the same manner
as described in the previous section, with the definition of

1 generalized to n = (1 + 7 + xn)1, yielding:

= n(l-n + g) (8.13)
an - (1w AT $E = 3 (1n)(1on + 260) + 0 e (8.14)
where: 3
[ p +a.  + 3xn
P K _IM e
VERTER T T TR e (6.19)

By construction, these conditions describe any point, in the
radiation relaxation region characterized by gg N g", a 0, and can
be solved iteratively if axu,x. and TR aTe known at that point.
Her: the relatively small amount of dissipation arising from

the slow variation of TR in the relaxation layer due to e - 1
relaxation, and of n due to the change in a during radiative

equilibration, has been neglected.
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To fix the Tocation of the shock we shall choose a particular
point x = x, near the upstream boundary of this region, by spec-
ify g that the true value of n (xs) differ from the value deduced
from pseudo-Hugoniot relations (8.13) - (8.15) by a small amount
es- MWe find T(x) and v(x} by using equattons (8.1) - (8.2) to
jniegrate upstream and equations (8,13) - (8.15) to find conditions
downstream of X.. To do this we need to first assume initial
values for TR(X) and ny(x). Once values for T(x) and v(x) are
found, equations (8,3) and (8.4) are sequentially solved to find
new values for TR(X) and "v(x)' The whole process is then jterated
until it converges,

To begin the upstream integration to find T and v, we still
require an asymptotic starting solution. Following the same
procedure as before we find €, can be obtained by quadratically

solving the relation:

C‘I‘I 2 en -
=] A [A‘uf (-2zny + cg) + ATy

t (°‘1'“1°E)] * [("'2"1 *gg) AT,

(8.16)
- r\ld](l-n] teg " H]C;)J =0
where:
. ~y(d 31, ta, * 3In
A(T-ul) |52 s R e 1|
.= 1 (d?; L 21 1 (8.17)

c = TFo # yon. ay =
kPt ! Vg, YoM
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Here 7y, ny, and related "1" subscripted quantities have been

obtained from the pseudo-Huganiot velations at point xg We

then find:
e+t xiT,€
1 1
& TR TR_I"X]'\-' '8.17)

The photon continuity equation (£.3) and ion temperature
equations (B.4) are solyved by methods very similar to those
used for the photon-dominated model, except that g—:— is evaluated
explicitly from the preceding solutiun for v(x). The photonic
boundary conditions {n, = ]—g ny Xg = nsq as X = and ny = ng
or 10'2 n, as x + - =) are taken at points far erough upstream
and downstream as to have negligible effect on the bulk of the
shock. The ion heating equetion is integrated from upstream

to downstream starting from the condition tp = 1.

The explicit difference scheme used for equations (B8.1) -

(8.4) is given in Appendix D. Typically, runs involving ~ 1000

mesh points converge in 10-15 overall iterations.
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B. Effect of Non-Hydrogenic Ions

The enyelope of a normal population I star contains ~ 25%
by weight of helium and ~ 2% higher-Z material. Since these
ions have different Z/A ratios from hydrogen, a given electric
field is not sufficient to keep all species comoving with the
electrons. Instead, the electric field will act to keep an
"average" ion comoving, white individual ion species develop
drift velocities whose magnitude is limited principally by
ion-ion collisions.

Quantitatively, we find that to maintain pseudo-charge

neutrality:
0 0
n;y ny
- i'o ._e0 )
§; n; I Z: _V;_ Zi 'V;' (8.19)
i i

and assuming the electric field to be the dominant force

accelerating the ions, we find:

0
n.v dv.
8o = § 0 X
e Ve Iy T ™%V dx (8.20)

where ng is the pre- shock density and Zj.the number of protonic
charges in component j. Differentiating (8.19) by time and

using it to rewrite (8.20) gives:

8.21)
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where Ai = mi/mﬂ.

To use our present model to estimate the magnitude of the
ion drift velocities and resultant ion heating, we shall restrict
our attention to a hydrogen-helium plasma, and assume that the
helium drift velocity, Vdrift’ relative to the protons, is in

: . \ dvi dv
approximate steady state (i.e. & @ - 3}9 and Yynift << v .
o

(This latter assumption is founi to be self-consistent over a wide
range of parameters), This allows us to approximate the insensitive

factor <%a » as:

bX 0
A\n'
‘%’ -1 ;_ (8.22)
£Zng
i

From Burgers (1960) and Section III.D we find that the force on

the o-particles, F__, due to collisions with the protons is given

ap
by:

Fap = 0.0 Vapift (8.23)
where in cgs units:

£ = 8.23 x 1074 eni (k7,)7H2 (8.24)

provided Varift < v?h, the ion thermal velocity. Requiring the
Coulomb drag force to compensate the differing electric forces on
the o's and p's sufficiently to give them roughly equal acceler-

ations, we find:



enply - MfgVariee _ 28M% * MpMe¥arisy (8.25)
" o'

and solving for Vapift® We have:

o elm, - 2rnp)1:x . my av (5.26)
drift T(ﬁbmp + munu) np + 2nu F dx
The rate of jon heating from Coulomb dissipation, Hup’ is then
given by:
2.2
n_n Amv 2
= . = a ———H gl
Hura - Fup Vdrift {n + 2n )2 f (dx} (8.27)
[ [

Inserting Hup on the right-hand-side of the ion heating equation
ny
(8.4), and relating n = —979 to np in such a way as to keep the

initial mass density constant (i.e. n_=n - 4nu). we can approxi-

mately include helium effects in our zhock model, without extensive
modifications. Thg price we pay for this convenience is to slightly
{for small Xje = E%J underestimate the electron-ion density ratio.
The resulting appapent over-estimate of photon creation rates, is
almost exactly compensated for by the fact that per-particle
bremsstrahlung rates are (Za/Zp)2 = 4 times larger for alpha
particies than for protons, which we do not include in our
calculation of radiative emission.

For Eo > 1 MeV, the final equilibrium temperature is high
enough to keep the high-Z atoms sufficiently stripped so that
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bound-bound and free-bound emission processes do not become

important, (see (5.20) and Clayton 1968, p. 224),



C. Results and Discussion

The shock structures that result from this model are shown
in Figures 8.1 - 8,3 for various values of Ny and Eo' The
calculations involved were started "hot" with essentially no
radiation in the region of the shock. As can be seen, they have
in a1l cases” relaxed to radiation-dominated shocks very similar
{typically within 3-5%) to those calculated in Section V, and
the discussion of the salient features of these shocks given in
§ V.E still applies in detail.

Figure 8.4 explores the effg;ts of the pres-»nce of helium
for a 40 MeV/nucieon shock, and is seen to result in only modest
ion heating even for a 50% mass fraction (xHe = ,25). For lower
energies, electron-ion coupling and ion-ion Coulomb friction are
sufficiently strong that there is virtually no effect. At higher
energies pairs become importari, and as we have seen, all species
will be decelerated principally via ion-iepton Coulomb friction.

To search for stable "hot-ion" shocks of the type predicted
by Colgate (1975), runs were made in which radiation emission was
reduced by a factor of 100, resulting as expected, in hot viscous
shocks. When these had converged, the radiation emission rate
was returned to normal and the structure allowed to rilax. This
always resulted in reaching the same radiation-uominated shock
structures ob>tained above. An example of this process is shown

‘n Figure 8.5, Note, in particular, that when the radiative rates

*Specifica1]y, runs were made for nj = ]0]5, 1017. 1020, and
1022 cn™® and E, = 1, 10, 30, 50, 100 MeV.

m



are returned to their full values, radiation diffuses forward and
changes the shock structure in such a way as to allow increased
diffusion. Tne ensuing radiation diffusion wave engulfs the hot-
ion shock, broadening and cooling it into a radiation-dominated
shock. Figure 8.6 shows some of the typical intermediate hot-ion
shocks. Note that even with emission reduced by a factor of 100,
the residual amount of radiation is still sufficient to keep

Te << Ti near the center of the shock. In most cases, reducing

radiation emission by a factor of 10 is not sufficient to cause

a hot-ion shock.
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Figure 8.1 - Strong shock structures including viscous effects
for n, = 1020 em3. Note the close similarity of these shocks to
the radiation-dominated model shocks of Figure 5.1. Here V = v;
X10 = Xg? the upstream value of x; Y is the helium mass fraction;
J is the iteration number; and the remaining notation is common

to the previous figures.
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Figure 8.2 - Strong shock structures including viscous effects

for n, = 107 en3,
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Figure 8.3 - Strong shock structures near the onset of electron-

positron pair-dominance (See Figure 5.3).
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Figure 8.4 - Effects of the presence of helium (Eo = 40 Mey;
ng = 1020 cm'3). Note that except for a moderate increase in ion
temperature near x = 0 , the shock structure is only very slightly

effected.
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Figure 8.5 - Relaxation of a hot-ion shock to a radiation-
dominated shock. (Eo = 30 MeV, n, = 1020 cm'3, and Y = ,25).

frame labeled J = 1 shows the initial shock configuration.
In frames 2-11, the radiative rates are reduced by a factor of 100,
and the initial structure is seen to relax to a hot-ion shock. In
frames 12-25, the radiative rates are restored to normal, and the
hot-ion shock is rapidly transformed into a radiation-dominated
shock idential to that of Figure 8.2(c} (including axis labels)

except for a very s}ightly higher ion temperature at x = 0 due to

the presence of helium.
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Figure 8.6 - Typical hot-ion shocks (radiative rates reduced

100-fold).
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[X. DISCUSSION AND ASTROPHYSICAL IMPLICATIDNS

A. Prospects for Deuterium Production in Supernovae

In the previous sections, we have shown under fairly general

assumptions that strong shocks in the density regime 10]5 -1022

cm'3 and energy regime 1 to ~ 40 MeV/nucleon will be non-
equilibrium radiation-dominated and reach peak temperatures

below ~ 70 keV, while low temperature (£ 200 keV) pair-
dominated shocks are 1ikely to prevail in the ~ 40-100 Mev/
nucleon energy range. As we discussed in Section V.E, the
“limited nucleosynthesis that can occur in such shocks will

tend to burn up rather than produce deuterium and other 1ight
elements. We conclude that if 1ight elements are produced in
supernovae, 1t will be under circumstances and physical conditions
other than those we have assumed. With this in mind, it is useful

to review both our general assumptions and the context in which

the shocks have been set.

Energy and Density Regime
The density regime was chosen to be that typical of the
envelope of a red giant star, but there seems no basic physical
reason why our models can't be extended upward in density until
the onset of Fermi degeneracy, the breakdown of the assumption
that the inverse bremsstrahlung cutoff be << mecz. or the onset
of sufficiently relativistic electron temperatures that the
physical parameters calculated in Section III become qualita-
2.

tively suspect (i.e. Oe >> m.c Above n = 1022 cm'3, however,

e
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the fina)l post-shock equilibrium temperature is § 10 keV for
EO > 3 MeV, so any deuterium prcduced is likely to be burned
up before the post-shock region can be sufficiently cooled hy

expansion over typical red giant length scales (e.g. for a 10]2

cm radius and a .lc expansion velocity, we have n1 = 2x1025

em™? sec while <avyg (10 key) = 12610718 cn*3 sec™! and

B ond sec”! (Fowler, Caughlan and

av¥epp (10 kev) = 1.6x107
Zimmerman 1974)).

Again, while no basic physical approximation breaks down
at n = 10]5 cm'3, initial length scales of 3 3100 cn are
required at that density to even approach the assumption of
reasonable optical thickness (e.g. see Figures 5.2(a}), and
distance scales ~ 1014 cm are required for such a region to
contain a solar mass. Such large red giants are observed to
be far from average, and indeed far less than .1 solar mass
of such low density material is believed to be contained in a
more typical red giant (Iben 1973).

For en -gies below 1 MeV/nucleon, little nuclear spallation
will occur even in a hot-ion shock, while shock energies > 100
MeV/nucleon must of energetic necessity occur only in a small
mass fraction of a apernova. Physically, very low energy
shocks are likely to be in radiative equilibrium (in part
due to bound~bound and bound-free processes) and to eventually
become viscosity-dominated when the equilibrium radiation
pressure can no longer satisfy criterion {5.29). At e.ergies

above 100 MeV/nucleon, higher radiative transfer moments



(e.g. radiative momentum transport} become jmportant since
Yo is no longer << ¢, and in addition relativistic kinematics
must be employed (Johnson and McKee 1971).

Optical Thickness
The assumption of optical thickness for shocks giving rise

to a cosmologically significant amount of deuterium can be
shown to be reasonable by noting that the radiss, R, beyond
which a shell 30 Thompson lengths, QT' wide and containing

.0l M,s where M° is the solar mass, 1s given by:

ot e 14
= ) -
R .‘(m) = 1.5x10"" cm (9.1)

Since: 1} 30 2 is a greater distance than radiation can diffuse

in a shock passage time for E, 2 1 MeV; 2) R is considerably

larger than the radius of typical red giants and thus presumably

pre-supernova stars; and 3) for a galactic Type II supernova

1, a galactic age and mass of 10]0 years and

rate of .03 year™
10” Ma’ and a current D/H ratio of 1.4x10'5 {Reeves 1974), a
mean supernova event must produce 5x10'3 Mn of deuterium and
thus involve the processing of R .01 M° {even for Y = .5) of
material to Tf % 10 MeV; we conclude that significant optically-
thin deuterium production is unlikely in supernovae. Such
production is not ruled out, however, in supermassive stars

of the type discussed by Hoyle and Fowler(1973), although no

evidence of the existence of such objects has been found.
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Assumption of Steady State

Similar arguments can be made to qualftatively justify the
assumption that the density regime through which the shock
propagates fs sufficiently wide that the shock has reached a
near steady state condition. This follows since 30 s
equivalent to ~ 90 vo/c characteristic radiation-dominated
shock lengths, is a more than adequate distance to recreate
a1l the radiation in the shock and thus probably to relax any

significant structural transients.

Sensitivity to Radiative Rates

As noted in Section VIII.C, a 10 to 100-fold reduction in
radiative rates is required to produce a hot-ion shock. Numeri-
cal sensitivity experiments suggest, hawever, that the present
treatment of the radiative rates is accurate to within a factor
of twe with most of the uncertainty arising from the specifica-
tion of the dynamical cutoff, Tgs due to inverse Compton scatter-
ing, in Section IV . Note that the most conservative reasonable
assumption was made there,

A multigroup treatment of the radiation field in the form
indicated by (2.20) is probably required for more accurate
results, and is being undertaken in connection with the neutron
star accretion problem (See § IX. B). It is evident, however,
that the present level of accuracy is sufficient to settle the
deuterium production question, With respect to errors in the

relativistic corrections to the bremsstrahlung rate, we note
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that the use of Gould's (1974) quadrapole e-e bremsstrahlung
rates instead of those given by Maxon (1972) typically makes

only ~ 2% difference in the calculated shock structures.

Navier-Stokes Treatment of Dissipation

Since radiation-dominated shocks typically extend over
several Compton lengths, sources of dissipation that are non-
linear in the gradients of the physical parameters are unlikely
to become important, and so a kinetic or Monte-Carlo treatment
of the shock structure does not appear necessary, It is
interesting to note, however, that strong hot-ion viscous
shocks occurring over 1-2 ion-ion mean-free-paths can show
several interesting nonhydrodynamic effects, In particular, two
dimensional Monte-Carlo calculations of shocks made up of hard
spheres {Bird 1967) show that such shocks are a factor of 1.5-2
broader thar predicted by the Navier-Stokes relations, have
higher longftudinal than lateral temperatures, and show a
secondary peak in the high energy tail of the Tongitudinal velocity
distribution corresponding to particles that have been back-
scattered against the general flow while approximately retaining
the absolute magnitude of the flow velocity. This last effect,
though probably diminished in a realistic plasma due to the
usual (i.e. non-nuclear) predominance of low-angle scatters,
may have interesting implications for nucleosynthesis if

circumstances are found in which hot-ion shocks can occur.
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Hot-Ton Shock Nucleosynthesis

Calculations of shock-wave nucleosynthesis (Epstein,
Arnett, and Schramm(1974)) based on the hot-ion shock model
of Colgate (1974) show overproduction of Li, Be, and B relative
teo deuterium, While the details of these results depend on
the initial composition, and the revised hot-ion shock
structures recently proposed by Colgate {1975) may reduce
some of the abundance discrepancies, no natural resojution
has yet emerged.

Such problems with hot-ion shock nucieosynthesis are, of
course, completely consistent with the coal, radiation-dominated
shocks found in the prazsent study.

Conclusion

The conclusion thus seems reasonably forced that the
production of a cosmologically significant amount of deuterium
does not occur in supernova shock waves. The only currently
viable and "nan-exotic" means for the production of the presently
existing deuterium appears to be its formation via the ptn+Diy
reaction in the primordial Big Bang (Gott et al. 1974). As is
well known, such a process requires a low density and thus open

universe if subsequent deuterium burn up 1s to be avoided.



B. Qther Astrophysical Applications

While the shock structures in this study were calculated
principally to evaluate the prospects for supernova deuterium
synthesis, the concepts and results can also be applied to other
astrophysical situations involving strong shocks.

Supernova Cosmic_Ray Production

Colgate and Johnson (1960) have postulated that cosmic rays
ave produced as the shock formed in the envelopeof a Type I super-
nova explosion is accelerated to extreme relativistic energies as
it transverses the steep density gradient near the surface of the
compact star (s 109 cm in radius) thought to be involved in such
an explosion. The composition of these cosmic rays is clearly
critically dependent on the temperatures reached in such relatiyv-
istic shocks. The initial calculations were made under the assump-
tion of complete radiative equilibrium and yosulted in tempera-
tures 5 500 keV.

It was in this context that the original suggestion was made
that sufficiently strong shocks would very probably exhibit a high
temperature "precursor”, either in the form of a hot-ion viscous
shock, or more probably a non-equilibrium radiation-dominated
shock, {cf. Weaver et al 1974). While a detailed treatment of
the relativictic shock structure is beyond the scope of the pre-
sent study, naive extension of our non-relativistic results leads
to temperatuves greatly in excess of 1 MeV. Indeed a preliminary
pair-dominated shock model yields a peak temperature of > 100 MeV
for a shock with a relativistic y of 15, despite the bootstrap

operating between pair-production via the yy -+ e+e' reaction and
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radiative Compton scattering. (Multiple radiative Compton
scattering and multiple bremsstrahlung, however, were not in-
cluded and may served to limit these temperatures.) Even if the
peak radiation temperatures remain ~ 1 MeV, both pair and radi-
ation-dominated models predict that the ions will stream though
the radiation/pair field so that a typical photon will appear to

have an energy of ~ 3y MeV. Thus, the survival of high-Z nuclei

in at all relativistic cosmic rays appears doubtful. More detail-

ed calculations are clearly needed to confirm this conclusion,
nowever, and will be the subject of a later paper.

In such calculations, time dependent effects related to the
breakout of the radiation field and the shock thickness becoming
of the order of an atmospheric scale height are likely to become
important. One interesting point in this respect is that the
presence of pairs in the high temperature “precursor” will serve
to "dam in" the post-shock radiation, and thus allow the shock
to propagate to a lower optical depth than would otherwise have
been the case. The magnitude of this effect is uncertain, and
indeed it is possible that Rayleigh-Taylor instabilities will
ensue.

Accretion onto Neutron Stars

The deceleration of material accreting onto a neutron star
at energies ~ 50-100 MeV/nucleon has been studied by several
authors (2el'dovich and Shakura 1969; Alme and Wilson 1973;
Shapiro and Salpeter 1974), and is proposed to involve either
electron-ion coulomb friction or strong plasma instabilities.

A key question in such a process is whether or not a standing
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accretion shock forms in the infalling material above the surface
of the neutron star, following whichlthe post-shock material is
adiabatically compressed up to its final surface density. The
results of this study, suggests that a rediation-dominated shock
of this type could be formed fairly readily, especially if
accretion is occuring at near the Eddingion Timit. Indeed, if
the accretion shock Ties 2 30 Compton lengths deep in the
accreting material, the shock structures calculated in this study
should be directly applicable. In the more 1ikely case of a less
optically thick shock, a multigroup treatment of the radiation
field in terms of flux-limited diffusion (see Section III.C) and
allowing for higher radiative moments such as momentum transport
is required, and is currently being pursued. In such a shock,
radiation Toss will compete with reduced inverse Compton cooling
to detcrmine the shock temperature and thus the characteristics
of the emitted radiation spectrum.

Formation of Proto-Galaxies

Shock compression arising from collisions between perturba-
tions in the early universe is thought to be important in the for-
mation of regions sufficiently dense to resist being dispersed by
the general expansion of the universe, and thus become proto-
galaxies (Silk 1974). If the perturbations involved are optically
thin, the radiation less rate and thus the structure of the shock
will be important in determining the velocity and extent of its
propagation. The shock structure treatment being developed for
neutron star accretion shocks appears applicable to such cases.

If the shock energies and resulting temperatures are sufficiently
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high, the passibility of nuclear processing, including light

slement formation, should not be overlooked.
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APPENDIX A

Relatiyistic Distribution-Averaged Reaction Rates

We wish to find the Lorentz invar{ant rate per unit volume,
R]Z’ at which particles of type 1 and type 2 interact to make
particles of type 3. In any given observer frame, the reactants
are assumed to haye a distribution of the form "1fi(35) vhere n;
is the total number density of particles of type 1 and fi(ai)
is probability that a given particle will have momentum Bi'
For convenience and clarity we will treat first the case where
the masses of the interacting particles, i and m,, are non-zero,

and later relax this restriction.

Particle-Particle Reactions:

In the specific case when the type 1 particies are all at
rest and the type 2 particles are all moving in a beam at relative
velocity, Ve the reaction rate can be given directly in the

famitiar form:
Ryp = Myny vp o(vR) (A1)

where this relation serves to define the laboratory cross section,
o(vR).
To find R]2 for more general distributions, we consider
PR - + > -
the specific momentum groups, n]fl(p]) dp; and nzfz(pz)dpz. in

the observer frame; transform to the rest frame of the 1-group



to calculate their contribution to the reaction rate; use the
Rlz invariance to transform back to the observer frame; and

then integrate over 31 and 32 to find the total reaction rate:

= 1 - - o
M2 = T7 5, [ [{n1"2°(VR)VR)ﬁ,framef'l(P1)f2(P2)dP1dP2 (A2)

where 12 is the Kronecker delta which has been introduced to
compensate for the fact that interacting pairs have been counted
twice when particles of type 1 and 2 are identical. To evaluate
{n1n213} consider the inveriant scaler product of the 4-vector

currents, j] = (n],n]-ﬁl) and j, = ("2’n2§2):

AU I M2} or B, frame  (A3)

o l_‘.<&

Here, Ei = where as usual V} is the velocity of particle i
and ¢ is the speed of light. In a similar fashion the scaler

product of the 4-vector velocities, (Vi’ViEH) gives the relation:
W8 - B) =y invariant (A8)
= 2,-1/2 s
where ¥ " - 87} and yp and Bp are now specifically

understood to be measured in the rest frame of the 1-type

particle group.
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The expression for R]Z thus becomes:

(g0 Y ops 2y o TRER o
ER o ff1(P1>fz(Pz’;,‘;;°(BR) &ydp,  (9)

If we now restrict our attention to distributions that are
isotropic in the obseryer frame and consider any specifiad E\

to be fixed along the z-axis, (A5) reduces to:

® = 1
clnqn,) YrB
_ 1"270bs R"R
Ryg = AT+ §,) /0{[ f1{p)F5(p,) e a(gg) dudp,dp,
3.8 (h6)
_ 12 _ 24 (>
where u = cos® = 55 and fi(p1) = dap; fi(pi)
so thatJZ— fi(pi)dp1 =1.
Utilizing relation (A4) to eliminate u in favor of PR =
VRBRmzc we obtain R]2 in the convenient form:
(n]n ) [
_ 2’0bs
R'IZ = m—— A SRCU(BR)F(PR)dPR (A7)
wheres YIYR(B'I+BR)m2C
YgB f,(py) falp,)
Fog) = Zace / = 25 dp, depy (B
O 872

'Y]'YRI B]‘BRINZC

To further simplify the expression for F(pR). it is
necessary to know the forms of fz(pz) and/or fl(p]). We treat
first the case where f](p]) is arbitrary, while f,(p,) 1s a
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relativistic Maxwell-Boltzmann distribution (RMB) given by:

P 2 e-[p22c2+m2204]1/2/k12
folpy) = 2 2 (A9)
2 Ma®
m,"c kTZKZ(—ETEQ

where T, s the temperature of the 2-type particles, K, 1s the
second order modified Bessel function of the second kind, and k

is Boltzmann's constant. We then find:

F(po) - YRBR [ fl(P;) .
R
1 arb. Myl 70 By

2m,cK, (5—)
f2 RMB 272 kTé

2 m2c2 ]

v
*{exp [-[vfyﬁ(s-,-aR)z +1] K,

2

172 my,c
-exp[-[vaﬁ(aﬁaRF +1)] kZTJ dp, (A10)
In the case where f‘(p]) is also an RMB, use of symmetry

and hyperbolic substitutions allow the integral to be done,

resulting in the relatively simple forms:

2.2 2
Flpo) . R B (m]c /KT;)
R m,c 2 2
f,RMB 2 mc myC
£ RHB Kefem el
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mcz 2
K][E%E—(u + ZayR + ])1/2]

. - {A11a)
(uz + 2avp + 1)]/2
and
2
R - Mplops  (me™/kTy)
LN R G P c?
fp RUB Ko ler~ )KZ(kT ¥,
2.3 "‘2°2 2 172
© oy Bp 0 (Bp K, [ (a® + 2ay, +1)'/€]
R "R R’™ sz R d
. j- 5 177 PR {A11b)
0 (a" + 2ayp + 1))
mTa
where o = o and K] is the first order modified Bessel function
2'1

of the second kind. This last result can be symmeterized into the

relatively simple form:

7 3
. _(nyng)ops  Soydy /’ LTI R
2ir a1 52 Kplh)iplep) (x2+1)1/2y
, RMB
where:
m1C2
b TR X = npég

i
and v = (52 + 201, (EIZ 4 9,71/
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In the case when T.I = T2 = T, we note kTy is Just the center
of mass energy of the two interacting particles, In the 1imit
when all energies and temperatures of interest are non-relativistic,

{11b) reduces to the familiar form (cf. Clayton 1968):

R . n.ln2 4l m1m2 ]3/2
12 ]*512 2nk(m]Tz+m2T1)
lf]NMB
f, NRMB
2
mym,,
12 (m2)

. - 3
o Zk(m]Tz + sz]j u(vR)vR dvg

Particle-photon Interactions:

The assumption of massive reactants made in the previous
section can easily be relaxed in the case when my = 0. (For
notational convenience in considering this case, we shall discuss
photons (1.e. 2+y) though no loss of generality is implied.)

The analogous expression to {4} s then:
pyy,(l-e]cose) a p; invariant (A13)

where p; is the momentum of the photon in the rest frame of

particte 1, and cose=§l§—1 = u where Ei and E; are measured in
1

the observer frame, Expressions (A1), (A2}, (A3) are changed

only in that 2+, vpot, alvp)» a(p,;). and &, = 0, and so for

general distribytions, we find:
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P(
Ryy = (n]ny obs® [[fl (P])f (P Yy l’(P )dP]dP (A14)

and for isotropic distributions, we find:

mﬁi
fn ) ¢ P
Ry, =t fu { f 001, (p,) (T o ddutpy e, (H15)

Y 1P
or .
Ryy = ("1"7)0b5,£- a(p;)F, (p;)dps (A16)
where y]p;(1 . B])
Fy(p;)=‘_)_‘;t :1(P12) lgi)_dpy dp, (MI7)
voAM Py

Y]P;(l - e])

P, f.(py)
=L 11
7 dp, de

o
Nti
bl

\h“\

me BN

1Py By
2 Ip P;

We now take fY(pY) to be a relativistic Bose-Einstein

distribution (RBE) given by:

fy(py) = —P_b-n——__ (n18)

Ny ce? Yy

where h is Planck's constant, TY is the photon temperature and
C is a dimensionless degeneracy parameter which is equal to 1
for a blackbody distribution and goes to infinity in the non-

degenerate 1imit. nY and C are related by:



3 @
16n(kT_) Z
Y 1. _
n = —e—— - = (A19)
Y 3 =1 "
n® /¢ C—e=
16n(kT)3
where £(3) = E: 1 1.2021 y and n: = ——§—§-l- .
= c’h

For this case, we find:

® p- c? 1 f1(py)
F () =2n'l_2:é1?:i -
vy f-l arb Y (kTy) 0 B1M

f RBE
Y

~PInc/kT oo .
e NPy vsmh(v]PYB]nc/kTy)dp] (A20)

For the case when f1 is an RMB, while fv is an arbitrary

isotropic distribution, we find:

- p, Pz mc?
1 m e
p’ fp) -_(_'§+-J_)__
FP) fe pup = ——— —$ e PP KT g
1 me 0 p Y
f_arb ZKZ(F—) v
1 (A21)

Finally, when f'l is an RMB and 1’Y is an RBE, we find R‘Y to he:

. ("1" )obs i

R
Tri¢, wup 3 mct el
ronee 20Ty Kpler)

"S]"
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2
m, ¢ p: T
@ 1 { Ty_ 13172
p'zu(p') Kl(kT] V+2n m, ¢ T 1)
. Yo X 1 dp; (A22a)
Q

pi Tl 1/2
[1+2n m ¢ T 1

or in more convenient ngtation:

0 hd = 2
K e
UL Lf 22 (2)K; (v N
1) =1 " Jo

R = >
e, v 2 KyTey) ¢ ¥
f_ RBE
Y (A22b)
where:
p.c 2
¢ = ﬁ: and ¥ = (47 + 2n¢1n)”2

The sum involved here is rapidly convergent, and vanishes in the
non-degenerate limit.

In the limit when the energies and temperatures of interest
are nonrelativistic (except in the the case of the inherently
relativistic photon where we require p{ << m}c), (A22b} reduces
as required to:

B > p:% alp;)dp;
1 h3 c ep;c/kTY

f] NRMB [}

, “NR"BE

Ry (A23)

In the non-degenerate case, expressions (A13)-{A23) can also be
obtained as the limits of the equivalent massive particle forus

when Yp p;c/mzc2 and m, * 0.
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Photon-Photon Reactions

The above formalism is still not in a suitable form to treat
reactions between massless particles, since it is impossible to
transform to a massless particle's rest frame. It is therefore
necessary to generalize the definition of the cross-section.

This could be done by directly assuming that the definition in
(A1) holds in a general reference frame (Stone and Nelson 1966),
but this results in a generalized cross-section that is not
Lorentz invariant. It is more conventional (Jauch and Rohrlich
1955) to define the cross-section by the invariant relation:

nny(1-8; Bp) [ (Py <P)2 = myPm, e/

R = Ca (A24a)
K
PluP2
2 28
mymsC
< myn, [(1-By 8,02 - 42— 12 ¢o (A24b)
172 1752 £2E
172
nyn,(1-8, 85)8pco for my,my = 0 (h24c)
nyno(1-8y +Bpleo for m or my =0 (A24d)

where P1u' Pg is the scaler product of the 4-momenta of particles
of type 1 and 2 (assumed to be in beams) and E; is the total
energy of particle 1. Equation (A24c) can be interpreted as
defining the cross-section as the ratio of the reaction rate to

the proper particle flux, and reduces to (A1) in the rest frame



of one of the particles; while (A24d) reduces to the natural
result, R = n]n22cu, in the center of momentum frame for two
masstess particles.

The case of reactions between distributions of massless
particles can now be treated in a fashion analogous to the
massive particle case, except that a transformation to the center
of momentum frame is used. The invariants analogous to (A3) and
(A4) are then:

nylnyz(l-cose) = Zn;jn;z (A25)

and

pY]pYZ(I-cose) = 2% 2 = vg z Zp* {A26)
where Pl and P2 are the magnitudes of the momenta of two
specific photon groups and o is the angle between them, while
"yi is the phaton number density of group i. The superscript “*"
denotes measurement ir the center of momentum frame. Here again
the trivial but convenient specialization to the photon case has
been made.

The reaction rate for general distributions can then be
written:

2

*

= 2 P -—l—-—P *)dp

RYY (“Y )obsc fff(PY])f(pyz) py'lpyz u(pT)de]dﬁYz (A27)

and for isotropic distributions, we find:

LY

cwn L o (02 P (p¥)do¥ (a28)

R c
Yy Y ibs g
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Where:
T flp,) - (p,5)
fp f(p.
- 3 pd | Y2
F;(p;)-zp; / - [2 2 dyp 5 dvyy (A29)
o P we, P2

Specializing to a relativistic Bose-Einstein phuton distribution,
we find:

042 6 ®
Bov) poe ™ it e —]Wf atprips? .
YYIRBE (kT,) n=1 2=1 /nf C o A

2p;c
M Kl[ﬁ;—fl‘ﬁ ] dp: (A30)
or:
- ()2 1 _
Ry, = (%) c:é] L e
RBE
: f a(e ), (2/Te)ds (a31)
]

where ¢ = p;c/kTY and , as before, the sums are generally
rapidly convergent.

In this case also, the non-degenerate form of (A30) can be
obtained as the limit of (A1Ib) if a transform from lab to center
of momentum coordinates is made and the invariance of the cross-

section is used.
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APPENDIX B

Numerical_Solution Methods: Radiation-Dominated Shock Model

The photon continuity equation (5.3) can be written in the

form: 2
Sy, Bt (-t (&1)
D, —5L+ D +D,n =-Q (1 - Bl
1 dx 2 3y neq
where:

- v2-8v°v+v§
D1 = mv Dy = %

o
0o¢C

. (7v-v°](v°-v)

3 2ve novogc (62)
Qeff
= :_._L._.
"eq ) bTe Q= l—ny/neq (83)

Utilizing a three point difference scheme on an unequally spaced

mesh of paints s (1 = 1,N), (B1) can be differenced in the form:

2p] . . ) S

- 1 [Axi-T/Z (n3+1 _ n}) . Ax1+1/2 (ns _ n}'l)J
0. X ) S

+ Z% [(ax1-172)2 (n}*‘ - n}) + (ax111/2y2 (n; - n}‘])J

an} an!
1. g -1
#0305 = QO+ ;‘J— - (84)

edy_ "qu_1



where "{" superscripts denote eyaluation at point x" and "j"
subscripts, evalvation at the Jth {teration; and where:

w2 oyt 41 a2 o {85}

A1 - Ax'H-'l/Z (AX'I-'I/Z)?. + Ax‘i-'l/Z. wiﬂ/ziz (86)

The form of the factor multiplying Q;_] was derived by Vinearizing

n 1 o\
(FL) about (7'-"'-) making use of (5.1).
eq ] eq

Solving (B4) and n} we find:

J=1

1_]/2"‘0;(“1_]/212] . ni_IIZD:MH']/Z_D;(AxI'H/2)21
1 3 i) =
nl = 4

A N 2 :
2D]‘(txxm"zmx"']/2),‘41 + DiL(ax1"17%)" - (Ax“”z)zhi - 0]

1
2D, Ax
n1+1[ 1
A

i i i
+ Qj_] 1+ 3nd-llneqi_-|) @)

1 ]
+ 4QJ_]/nqu_]

and define for convenience the coefficients P}. P;, and C', so that

i_ i i+l 1 1-1 i
0y = P.In‘1 + Po"J +C (88)
Now let:
N S L 1
ny = anytt * 8y (89)
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DRER IR (510)

Here the a; and s} are termed back-substitution coefficients and
can be found recursively by substituting (B9) and (B10} into (B8}

in the form:

;A ¢ Pt o)
= - B. =
EANUIMED 30l

with the boundary conditions that:
«2) - p(@) 8@ - p@, (1), (@) (812)

M

where we have assumed all quantities are known at x
Having found all the back substitution coefficients for i=2,
N-i, we can then use (B10) together with the assumed known value of

n(N) to recursively solve for the unknown n;. Since Q;_] and
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) rely on previous knowledge of n;_], we must begin our calculation

neqd_]

by assuming initial values for the photon density distribution ("El))'

and then iterating the back substitution procedure described above

until the results converge. Typically 400 mesh points and 20

iterations are sufficient to achieve an accurate, converged solution.

The ion-heating equation (5.5) can be rewritten in the form:

d61

. 5/2
ax Hcompei + Hviscei + Hei(ee'ei) (813)
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where;
o =21lfy ,2&_‘dv)2
comp = 3 v dx Hw'isc Ty, &
(814)
M, = Z"ovo Al
ef z 3Z
Vo0,

with 9L o Folloiing amalytically from (5.6), and ¢, from the solution

of the photon continuity equation. Explicitly differencing (B13)

5/2

and linearizing the By’ " term gives the difference equation:

1+1 ei 2 . ”2 i+1+ei
By i+ e i 10
"_TT (Bi) Hvlsc (19 36 HE Heomp 7z

: . it

i+1/2 (i41/2 _ 1 1
*Hgy T (og Py - 2% (815)
where ei+l/2 --(e"H ee). This can be solved directly for

S

» yielding:
i 5/2
1+1/2 Tyi+1/2 i i+1/2 1+]/2 1+1/2
e}ﬂ - 81 EA visc (91] '2'i'l e * H (e )]
ax141/2p5,141/2 i+l/2 1 i+1/2
1- ! [1“ isC (e ) + "‘Hcomp ?Hef ]

(B16)
Given eg” » (816} then yields the remaining a;. The tntegration is
stable proyided ei(” {s taken at the upstream boundary of the shock
(x=x4).
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Appendix C

Numerical Solution Methods: Simple Viscous Shock Models

Equations (7.1) - (7.2) are differenced n the form:

Ti+TH"I i vi”-v1 a
novok 7 - uv Ax1+]/2 = mngV,
P A Vgt
[(v°-2v ) 7 * T] + Py (—-l-—z ) {c1)
ALY AL LA L
MVok =7 ¢ T2 T Mo

-[(vi-vo)vi+] + vo(vo-vi)] + 2gPoVs

+ %mnovozgo [Zvo-vi-v1+]J (c2)

i+1

where the notation of Appendix B has been adopted. T and

v1+] 1 are known. The

are then readily found provided T1 and v
integration is started by means of the asymptotic solution derived
in § VII.A, and must proceed from downstream to upstream to be
stable.

By multiplying (7.23) by a = (%-+ 3xn}/{1 + xn), and
substracting the result from (7.23), we derive an equatfon for

the required shock dissipation in the form:



‘ g}(:ﬂ %m"ovo *

apy g{- - onano %— -K
* [vgv(142al + 2 (1+a) ev ] Ivyv]

3
+ ey (ag-adonyy,

Equations (7.23) and (C3} are then differenced as:

+1/2, 1+ 1 i+_ 0
X (v +v') i _, 00y v
[2 T MgVokl = 2u¥ —"_Wf)'!u

o

= mngvy [v"v'J + v“lvo - vaviﬂ + Zvivoeoj
i+ 1

i 1y " «y 1y g1 o1 i+1/2

2a uy W = Aoy k(T4TY) (%) /

{41 .1 .
- 24! %ﬁ-ﬁ%—l = mngn, [vo-viﬂ (1+2a")

+ 2(1+u‘) covol [vo-vij + 2 (co-ai) “"oV03
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(c3)

(ca)

(c5)

Since xi is known at all points, these equations can be readily

integrated starting from the downstream asymptotic solutions

derived in § VII.B.
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Appendix D

umerical Solution Methods: Effective Photon Shock Model

1=

The difference equations used to solye equations (8.1} -

(8.2) are given by:
0+ <)+ x1¥172 LXiili!jlé n v KT
TRTX v, 6"0
: i+ _ 1 i+, 1 s s
AL R RN OO L. 10 RV

00 -0

£ Py (1)
Ti+’+T') (g§)1+1/2

s i+ 1
tiiv "-v
2a u'v -——}—Axiﬂ 7" Xoﬂovk(

s il i :
- 2(c*)? T =T )lamy Iy -V1+](1+2u1)
ax 00 [+]

+
v 2 (%) 1 i 3
o covoj [Vo-v ]+ 2c°(a°-a ) mngv, (02)
1+ 15t xn
where l—s ——-—Rs-———--—— (D3)

setg Tyt

As in Appendix C, we have first transformed the energy
conservation equation (8.2) into an expression for the required

shock dissipation before differencing. These equations are then
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integrated upstream by the method described {n Section VIII.
The photon continuity equation (8.3) 1s solved in the
manner described in Appendix B, except that the D, coefficients

in equation (B1) are defined in more general form:
T _ A i it 2 (dv) i - _(dvyi
Dy = 3V DZ -y o+ T —- (dx) (p4)

The ion-heating equation, (8.4}, is differenced as:

3 172 (g™ - o) L3 dTy141/2
=n v kT R R +3nv k (3] .
20’0 T 290’0 ‘&

M+

g To¥o 14112 dvyi+12 SRR
R - e Y G R

6/2 1+1/72 5/2
+ Ay (k11172 [(""1 J (x3)

i i+, 1
. Ve 12 3A 1. O
vl+l72 (k-l-i+|l§)'|/2 2

(g )2 (TRi):’/Z 05)
and integrated from the upstream to the downstream limit with the
boundary condition that R 1 at the upstream boundary,

fne iterative solution of these equations requires that the
zoning be sufficiently fine that only a small change in the variables
takes place across a zone. It is thus sometimes convenient, though

not necessiry, to 1imit the ratio of "p/"o {typically to 3 10'3) in
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order to reduce the number of zones required.




APPENDIX E

List of Symbols

The principal symbols and subscripts employed in this study
are listed below with their units and defining equation where
applicable. Notation peculiar to the Appendices or figure cap-

tions, as well as briefly used notation, is not included.

Symbols
A - Ratio of radfative to matter heat conduction lengths
(= ag/a 1

A1 - Mass of species i1 in proton mass units
A ==y
32 3 -1 . :

cm” sec” ') - Electron-ion coupling parameter (3.45)
3 -5/2)

Ay - (erg
A, - (erg'al2 em ® sec) - Viscosity parameter (= u; (kTy)

b - (20.3 3 °K'3) - Radiation equilibrium number density

constant
[ - Radiation field degeneracy parameter (see (A19}))
¢ - {cm/sec) - Velocity of light
¢, - see (7.32)
c. - see (8,17}
cg - {cm/sec} - Pre-shack sound speed

DY(EY) - (cmz sec"} ~ Radiation diffusion coefficient

E; - {erg o2 sec']) - X energy component of stress-energy tensor
E;, - (Mev) - Initial shock energy (= My vilz)
Ey - First order exponential integral function

Ev - {erg cm"3) - Total radiation energy density
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gl

Eei

ei
9
92

ap

NR
Jei

- {erg cm"3 sec']) - Energy transfer rate from species j to i
- (erg cm"3 sec"1) - Non-electrical energy transfer rate from

ions to electrons

(eP91/2 Cm1/2) - Protonic charge

~ Equilibrium parameter (3.10)

Electron-ion coupling relativistic correction factor (3.46)

Bremsstrahlung Gaunt factor defined by (3.3)

- Combined bremsstrzhlung Gaunt factor (3,(a) = g;(x] €;(a})

- forg sec")-Cou]mnb friction heating between protons and alphas
- {erg sec) - Planck's constant/2r *
- (cm'3 sec"| erg“) - Non-relativistic bremsstrahlung emission

spectrum

(= 5.692%10712 °¢}/2 o3 sec") - Bremsstrahlung emission

coefficient (see (3.2}))
(ergV2 cm'3/2 sec']) - Net current density in the pair

fluid { = en (vg-vy))
- (er'g“2 32 sec'1) - Current density due to the electron-

positron fluid

Modified Bessel functions of the second kind of order i

(erg °K“]) ~ Boltzmann's constant

(cm) = Compton length (= I/acne)

{cm) - Stopping length for ions in an electron gas

]

{cm) - Thompson length (= 1/aTnC)
Coulomb logarithm (3.30)

165



166

M - Mach number - see (7.16)
L

m - (9] - Mass of shocked particle species, usually ™

- (g) - Solar mass

Mes Mya Moy mp’ L {g)-Electron, hydrogen, ion, proton, helium mass

n - (cm'3) - Common electron, proton number density

no- (cm'a) - Number density of component i

Mgs Mys Moo Moo Ny Mg s n - (em™3) - Mumber density of electrons,
ions, protons, alphas, positrons, negatrons, and pairs.

n, - (cn™3) - Pre-shock number density

0 20 -3

Ny - no/m . cm

nv(ev) - (cm'3 erg") - Number density of photons with energy e,
per unit energy

n$q - (cm'3) - Equilibrium photon number demsity (5.21;

n: - (cm'3) ~ Upstream starting photon density

nt - (cm's sec) - Number density - confinement time product

P {erg cm"3) - Matter pressure

Plx - {erg cm's) - XX pressure component of the stress-energy tensor
b - (erg cm"s) - Pre-shock pressure

P, - (erg cm'3) - Radiation pressure

Y
P'J ~ (dyne c.m'3) ~ Momentum transfer rate from species J to i

el = {dyne cm’a) - Non-glectrical momentum transfer rate from

ions to electrons
Q_Y(e‘r)—(t:rn'3 sec”! erg'l) - Photon emission rate at e per unit energy
Qe o0e) - (™ sec™!) - Total photon emission rate down to an

€, % g cutoff
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stf - (em™? sec™!) - Effective photon emission rate

Q::?- QRCB’ QRC - (Crn"3 sec'}) « Effective photon emission rates
due to non-relativistic bremsstrahlung, relativistic
corrections to bremsstrahlung, and radiative Compton
scattering.

Qy - (em
reaction

-3

3 sec'1) - Pair production rate due to the yy»e+e'
Q, - (cm sec']) - Total pair production rate

r - (cm) - Classical electron radius
2
2

S - (erg em” sec™1} - Pre-shock internal energy flux

sec”1} - Total radiative energy flux relative to

v
'

{erg cm™

the electrons

SY(:Y) - {en™? sec") ~ Radiative energy flux relative to the electrons
per unit photon energy at €y

T - (°k) - Common radiation and electron temperature

T Tin Ty Tﬁ(°K) ~ Electron, {on, radiation, and mean matter
temperatures

Tgr Ty Teq - (°K) - Upstream starting, initial and final equilibrium
(5.20) temperatures

Tv' T, - Critical temperatures for the onset of viscous and pair

effects

tSjk - (sec) - Transport collision peried (3.27)

v - {cm/sec) - Common electron and ion velacity
ML (cm/sec) - Yelacity of species i
Var Voo Voo v, - {cm/suc) - Electron, ion, positrom, and effective

photon velocities



Yarift = Relative velocity between a's and protons

v;h - (cm/sec) - Thermal velocity of species § (3.25)
vy - {cm/sec) - Starting velocity for shock integration

Vo - (cm/sec) - Pre-shock fluid velocity in the shock frame

3 sec'l) - Energy loss rates due to non-

R RC -

“2i' Wois Woe = (erg cm

relativistic bremsstrahlung, relativistic e-i bremsstrahlung
corrections, and electron-electron bremsstrahlung

W - (cm/sec) - Velocity of a particle

x - (cm) - Spatial coordinate

X - {cm) -~ Starting value of x for -shock integration

Rgs Xq = (cm) - Upstream and downstream boundary points

Y - Helium mass fraction

I, - Number of protonic charges contained in particle 1

a - Ratio of energy density to pressure; fine structure cr--tant

ay, - Pre-shock value of a

dgr Oy - Ratio of energy density to pressure for electrons and
species j

¥ - Relativistic y = (1-»/2/t:2)'.!’.2

8 - Characteristic radiation-dominated shock width (= cs./3v,)

4, - Characteristic pair-dominated shock width {6.9)

) - Ratio of yiscous to matter heat conduction lengths (7.7)

§° -z Au/kx

6, - FAM

€ - Dimensignless velocity difference (= n-n])
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€ - (erg) - Low energy cutoff for effective photon emission

€gs Egor £g " (erg) - Radiation emission cutoff energies due to

inverse bremsstrahlung, screening, and dynamical

considerations
eg - Starting value of ¢
& - Dimensionless pre—shdck pressure (= PO/mnovs)

e, €_ - Dimensionless pressure differences (eT ETTs e E my-r)

o - (erg) - Photon energy

14 - Dimensionless distance (= x/k")
¢- - Dimensionless distance (= x/Ax)
n - Dimensionless velacity (= v/vo)
8r 04 - {erg) - = KTy KTy

e, - {erg) -=0.9 KT,

v - (erg en sec”! °K']) - Heat conduction coefficient

k- {erg cm" sec'1 °K'1) - Heat conduction coefficient
including radiative processes (7.25)

- {erg en”) sec”! °K']) - Electron and jon heat conduction

coefficients

A - Low energy radiative cutoff parameter (= cc/ee)

- (cm) - Debye length (= (aelknneea)lfz)

Aj - (cm) - Transport mean-free-path for species j - see (3.26)
- {cm}) - Transport mean-free-path for species J with respect

to species &k
Apay - Maximm cutoff parameter (4.11)

Ay - {cm) - Convenient scale length

3 - (cm) - Radiation diffusion scale length (7.25)
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A - (cm) - Matter heat conduction scale length (= z/knovg)

A, - (em) - Viscous scale length (= p /mn v )

g - (erg ™ sec) - Viscosity coefficient

Ugr By = (erg cm'3 sec) - Electron and fon viscosity coefficients
wo- (erg) - Chemical potential of species J
uy - see (7.32)

w” - see (8.15)

4 - Ratio of radiation to matter pressure

n - Dimensionless pressure (= (Vixn)t)

s - (erg” 2 onS/ 2) - Net charge density

P - (erg”z cm'slz) - Charge density of the electron - positron
fluid

B, - (erg'/2 cm'aﬂ) - x component of electric field

Znax " (erg'/2 am™32) _ Maximum shock electric field (= £,/ (ea))

4 - (cmz) - Reaction or scattering cross-section

"c(‘:y) - (crnz) - Compton transport cross-section at photon energy ¢
s, - (cn®) - Mean Compton transport cross-section

o - (en?) - Thompson cross-section (8:1‘02/3)

<ay> - (cm3 sec") - Density normalized reaction rate

T - Dimensionless temperature (7.7); also v = tae/mec2 in § ITI
~ (sec) - Dynamica® time scale

Rno- Ion-electron tenperature ratio (:= TtlT)

’ - neczlkT

x - Dimensionless radiation number density (= 1.9 "y’“oJ



He - Helium - hydrogen number density ratio

Subscripts and Superscripts:

0 - Pre-shock value

1 - Post-shock or pseudo-downstream value
ER - Extreme relativistic

e - Electron value

f - Final post-shock vatue

i,p - lon or proton value
NR - Non-relativistic

¥ - Photon value
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