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THE STRUCTURE OF STRONG SHOCK WAVES: 
WITH IMPLICATIONS FOR DEUTERIUM SYNTHESIS IN SUPERNOVAE 

ABSTRACT 

Thomas A. Weaver 

The structure of strong shock waves is calculated over the 
range of shock energies (1 to 100 MeV/nucleon) and initial number 
densities ( 1 0 - 1 0 cm" ) believed likely to occur in the red-
giant-like envelopes of stars undergoing Type II supernovae ex
plosions. These calculations were motivated by the proposal of 
Colgate (1973, 1974) and Hoyle and Fowler (1973) that the ions 
in such shocks could be heated to temperatures in excess of 10 MeV 
by hard ion-ion collisions, resulting in the spallation of helium 
and the subsequent formation of sufficient deuterium via neutron 
capture to account for the presently observed abundance, without 
recourse to its formation in a low density Big Bang. 

The general equations governing the structure of such shocks 
are developed on the basis of a hydrodynamic treatment of a plasma 
composed of ions, electrons, positrons, and photons, making use of 
diffusion theory to evaluate the dissipative anJ transfer terms. 
The shock models resulting from these equations differ from pre
vious treatments in that the effects of radiation transport on the 
energy and momentum balance in the shock are taken into account, 
as well as the relativistic concributions to radiative emission 
rates due to non-dipole electron-io.i bremsstrahlung, electron-
electron bremsstrahlung, and radiative Compton scattering. To 
evaluate such rates, a general theory of relativistic distribution-
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averaged reaction rates is developed, featuring an analytic combined-
particle distribution function for the case of relativistic Maxwell-
Boltzmann distributions. An implicit treatment of inverse Compton 
scattering is also developed in terms of the creation and diffusion 
of effective photons that allows a substantial simplification in the 
treatment of the radiation field. 

Several strong shock structure models are formulated and solved 
on the basis of these equations and physical processes. First, a 
shock model dominated by radiation pressure and transport is con
sidered, and criteria for its self-consistency deduced. In particu
lar, radiative heat transport is shown to be a sufficient shock 
dissipation mechanism even for non-equilibrium radiation fields 
provided that the ratio of radiation to matter pressure in the re
gion of the final shock compression exceeds 4.45. This criterion 
is found to hold over the entire regime of interest, thus avoiding 
the necessity of the shock being mediated by hard ion-ion colli
sions. This fact, combined with the high rates of radiative emis
sion and inverse Compton upscattering of the la ge reservoir of low 
energy bremsstrahlung protons, results in peak ion temperatures 
approximately two orders of magnitude below those possible in a 
shock mediated by hard ion collisions. Specifically, peak electron 
temperatures remain below ^ 70 keV for shock energies £ 30-50 MeV/ 
nucleon depending on theinitial density, while shocks with energies 
•>» 1 MeV/nucleon are found to be in nearly complete radiative equi
librium. 

For electron temperatures above * 70 keV, the YY«-» e e" 
reaction is found to give rise to a sufficient number of pairs to 
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c.iuse the principal source of shock dissipation to sh i f t from 

radiat ive heat transport to ion-lepton Coulomb f r i c t i o n . The 

properties of such a pair-dominated model are discussed, and i t 

i s argued that the peak shock temperatures remain below •>. 200 keV 

for shock energies below 100 MeV/nucleon. 

The s t a b i l i t y of radiation-dominated shocks and the lack of 

self-consistent hot-ion shocks is demonstrated by considering shock 

models in which both viscosity and helium effects are included. 

This demonstration leads to the conclusion that peak shock tempera

tures remain low enough to preclude production of a cosmologically 

s ign i f icant amount of deuterium in supernova shock waves. 

F ina l ly , the appl icat ion of these concepts and results to the 

problems of cosmic-ray composition, neutron star accret ion, and 

proto-galaxy formation is considered. 
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I t is su f f ic ient in most cases of physical and astrophyskal 

interest to treat a shock as a discontinuous t rans i t ion , since, 

in general, the f ina l post-shock state is uniquely determined by 

the pre-shock condit ions, independent of the detai ls of the d i ss i 

pation mechanism involved (Zel'dovich and Raizer 1966). Exceptions 

can occur, however, i f non-equilibrium processes (e.g. nuclear re

actions or radiation or neutrino loss) take place within the shock 

that cannot be --elaxed in the f ina l post-shock state, and in these 

cases a detailed shock structure calculat ion is necessary. 

The structure of strong shocks thus plays an important role 

in a variety of astrophysical s i tuat ions, including the proposed 

production of deuterium and cosmic rays in supernova explosions 

(Colgate 1971; Colgate and Johnson 1960), the radiation spectrum 

resul t ing from the accretion of matter onto a neutron star (Aline 

and Wilson 1973; Zel'dovich and Shakura 1969), and the formation 

of protogalaxies in the early universe (Si lk 1974). 

In th is study we shall deal pr imari ly with the question of 

whether the shocks traversing the extended outer envelopes 
12 13 

(•v 10 - 10 cm in radius) postulated for Type II supernovae 
(Shklovsky 1968) can reach sufficiently high temperatures to 
cause deuterium, boron, and other light elements to be produced 
via nuclear spallation and subsequent neutron capture as Colgate 
(1973, 1974, 1975) and Hoyle and Fowler (1973) have predicted. 
They postulate that as the shock formed in the mantle of a star 
undergoing a supernova explosion moves down the steep density 
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gradient at the mantle's edge i t is accelerated to energies -\. 10 
-4 3 

MeV/nucleon in the extended density regime at * 10 g/cm , and 
to £ 30 MeV/nucleon by the time i t reaches a density of •v 10" 

3 
g/cm . We w i l l thus examine the structure of those shocks with 

15 22 -3 i n i t i a l densities ranging from 10 -10 cm and -Init ial energies 

from 1-100 MeV/nucleon to determine i f the ion temperatures of 

£ 10 MeV needed for deuterium production, or those of £ 1 MeV 

required for the production of other l i gh t elements, can in fact 

occur. A br ief account of a portion of th is calculation was given 

in Weaver and Chapline (1974). 

The magnitude of the shock temperature that w i l l occur is 

p r inc ipa l ly determined by the degree of equi l ibrat ion of the rad i 

at ion f i e l d . I f no radiation is present in tiu.e shock, the only 

dissiapation mechanism capable of generating the amount of entropy 

required by the Hugoniot relat ions for a strong shock (Zel'dovich 

and Raizer 1966) is ion v iscosi ty . This results in a shock a 

few ion-ion mean free paths thick in which "hard" ion-ion co l l is ions 

transform the kinet ic energy of the incoming ions (in the frame of 

the post-shock material) d i rec t l y into ion thermal energy. The 

hot ions then heat the electrons by Coulomb f r i c t i o n , and the 

electrons in turn lose the i r energy to radiat ion in a re la t ive ly 

large post-shock relaxation layer. 

On the other hand, for non- re la t iv is t ic shocks, i f the ra t io 

of radiation to matter pressure exceeds 4.45 in the region of f ina l 

compression, the dissipation due to radiat ive heat conduction, 

which ty;..'. i l l y occurs on the scale of many Compton lengths, is 



suf f ic ient to sat is fy the Hugoniot relations and prevents the 

shock from steepening further into the regime where ion viscosity 

is important. (Belokon1 1959 and Section V.D below.) In such 

"radiation-dominated" shocks, the photons dif fuse ahead creating 

su f f i c ien t pressure to decelerate the electrons (as viewed from 

the frame in which the shock front is f ixed) . The ions are then 

decelerated by a combination of a charge-separation-induced elec

t r i c f i e l d and Coulomb f r i c t i o n with the electrons. The kinet ic 

energy of the ions is thus d i rect ly transformed into electron and 

photon thermal energy. The ions are only weakly heated by Coulomb 

f r i c t i o n , and by the generally small amount of viscous heating 

that can s t i l l take place over gradients of many Compton lengths. 

For pre-shock k inet ic energies and densities of less than 100 MeV/ 

21 -3 

nucleon and 10 cm , the peak temperature of a radiation-domi

nated shock ranges from less than 10 keV i f the radiat ion f i e l d is 

everywhere in black-body equil ibrium to at most 4 MeV at the point 

where the c r i t e r i on for radiation-dominance is no longer sa t is f ied . 

This is in sharp contrast to the up to 50-70 MeV temperatures that 

would occur in a viscous ion shock. Figure 1.1 i l l us t ra tes qua l i 

ta t ive ly these various possible types of shock structure. In 

addi t ion, as is discussed in Section V I , the presence of e l tc t ron-

positron pairs in the shock front can result in a shock structure 

in which dissipat ion occurs principal y by ion-pair Coulomb f r i c 

t i on . 

The essential object of the calculations that follow is to 

decide which of these structures in fact occurs at a given i n i t i a l 

energy and density. Our treatment d i f fers from that of Colgate 



(1974) in that we include the ef fect of photon di f fusion on energy 

and momentum balance in the shock, while Colgate considered only 

the post-shock radiat ive equ i l ib ra t ion. In addi t ion, we include 

the effects of electron-electron bremsstrahlung, radiat ive 

Compton scat ter ing, electron-positron pair creat ion, and a more 

accurate treatment of inverse Compton scatter ing. As we shall see, 

these effects substantial ly increase the rate of radiat ive e q u i l i 

brat ion. Further, the suggestions of Colgate (1975) that radiat ion-

dominated shocks may be unstable, or that consistent hot-ion shocks 

may also ex is t , are examined in the context of a shock model con

taining both viscous and radiat ive e f fec ts , \ni taking into account 

the presence of helium, and found to be inva l id . 

In Section 1 1 , we derive the hydrodyiamic equations governing 

shock structure in su f f i c i en t l y general form to t reat both viscous 

and radiation-dominated shocks; and in Section I I I , discuss and de

velop the physical processes that determine the parameters in these 

equations. Section IV describes an approximate treatment of the 

radiation f i e l d in terms of "ef fect ive photons" that substantial ly 

simpl i f ies the shock equations, while including inverse Compton 

processes i m p l i c i t l y . The radiation-dominated shock model i s formu

lated and solved in Section V, and is shown to resul t in shocks 

whose peak temperatures remain below •v 100 keV for shock energies 

£ 40-50 MeV/nucleon, while the ef fect of pairs is explored in 

Section V I . Section VI I develops shock models containing v is 

cosi ty , and these are merged with a rea l i s t i c treatment of the 

radiation f i e l d in Section V I I I , The result ing general model 
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ver i f ies the consistency of the radiation-dominated shock model, 

while no consistent "hot- ion" shocks are found. The astrophysical 

implications of these j su l t s are discussed in Section IX. 

Unless e x p l i c i t l y stated otherwise, cgs-Gaussian units w i l l 

be used throughout th is study. A l i s t of the symbols employed 

with the i r def in i t ions and units is given in Appendix E. 
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Figure 1.1 - Types of shock structure. These shocks are 

scheir-Jc and are shown in their comovinq frame, where the matter 

moves with velocity v to the l e f t . T^, T , T R , and T are the ion, 

electron, radiat ion, and mean temperatures respectively, while p 

is the matter density and x the spatial coordinate. v Q , P Q , and 

T are the pre-shock values of v, p, and T, while T „ i s ths o r eq 
f ina l post-shock equil ibrium temperature. 



U . SMOCK STRUCTURE EQUATIONS 

A. Basic Hydrodynamic Equations 

The general hydrodynamic equations governing the structure of 
a inultispecies shock assumed to be one-dimensional and to have 
reached a steady state in its comoving frame can be obtained by 
requiring the conservation of momentum, energy, and particle num
ber for each species, and can be written in the form: 

dP ST .. 

dE, df = I! E 1 j (2.2) 

di"_i_I = Qi ( 2. 3 ) 

where P' , E , v 1 and n 1 are the pressure and energy components 
of the stress-energy tensor, and the macroscopic velocity and 
number density respectively of the i particle species or energy 
group. Here p J and E1** are the rates of momentum and energy 
transfer from group or particle j to group or particle i, and 0 
is the rate at which particles of type or energy group i are 
"created" or "destroyed". All of the above quantities, including 
the spatial coordinate x, are to be measured in the frame in 
which the shock is at rest. 



If we neglect external electric and magnetic fields, the 
electrical properties of the shocked plasma are given by the one-
dimensional Poisson's equation: 

-^ = 4 „p (2.4) 

where l is the x component of the electric fielrl and p, the 
charge density. 

In their present form equations (2.1) - (2.3) are relativis-
tically correct (cf. Johnson and HcKee 1971] and can be most 
readily evaluated by Lorentz transforming the various stress 
tensor, transfer, and source terms from the rest frame of each 
particle species to the shock frame. The resulting relativistic 
shock equations and shock models will be the subject of a later 
paper. For the purposes of the present study, however, we shall 
restrict ourselves to non-relativistic shock velocities and in 
addition make the following general assumptions: 

1) The shocked material is a fully ionized hydrogen 
plasma and its associated radiation and electron-
positron pair fields. (The effect of helium and high-
Z components will be discussed in sVIII.B.) 

2) The electrons and ions can be characterized maoroscopi-
caly by temperatures T and T,, velocities v and v., 
and densities n and n. (see SIX). 
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3) Except for the very small differences giving rise to 
electrical effects, the positrons share the ilocity 
and temperature of the electrons and their number 
density, n +, is included in n (see SV.D and §VI). 

4} The radiation field is allowed to have an arbitrary 
energy spectrum, but radiation transport in x-space 
is assumed to be adequately described in terms of the 
diffusion approximation, (see §111), and to take place 
in an optically thick region (see SIX). 

5) Viscosity, heat conduction, and momentum and energy 
transfer among the ions and electrons are given by the 
usual Navier-Stokes relations (e.g., see Landau and 
Lifshitz 1959, Oaffrin and Probstein 1964, and SIX). 

The validity and self-consistency of these assumptions is discussed 
in the sections noted. 

With these assumptions, equations (2.1) - (2.4) can be 
written in the more explicit form: 

dlr t "e k T e + V 3 + m e V e " «e S p l " P ei + V x < 2- 5> 

i t V e ( l + a e ) k T e

 + KVe 3 + VeV 2 + K V e 

+ Sv " Ke-df " V e ~& ' E ei + V x ^ 6 > 
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d r_ „ . _ _ ..2 d V < 3J Cn tkT t • m , n ^ - „ , ^ 3 = - P ^ • e n ^ (2-7) 

d S 1 3 d T i d v 1 
37 t ^ i v i k T i + 2 V t v t - K f -jgr - v t v f -aj-] 

" " E e i + e v i V x C 2 " 8 ) 

^rv t t s"-^iD Y (« 7 )^t l ] 

- Y <^) - n ( e ) M e •**')!*:- + q y ( E y ) (2.9) 
•/o Jo 

d [ n . v J = 2Q+ (2.11) 
dx 

-^ = 4i.[p e+e n i] (?.12) 

Here m., w., <. are the mass and coefficients of viscosity and 
heat conduction respectively for species j; E and S are the 
energy density and flux of the radiation field in frame of the 
electrons; P', and £', are the portions of the total momentum 
and energy transfer terms not involving the electric field; n (e ) 
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is the number density of photons in an energy group centered on 

photon energy e ; o(e *e') is the cross section for a photon to 
be Compton scattered from e to e'; Q (e ) is the rate at which Y Y Y Y 
photons are emitted into energy group e ; Q ± is the production 
rate for electron-positron pairs; D (e ) is the diffusion co
efficient for photons; p and j are the charge and current 
density of the electron-positron fluid as viewed from the shock 
frame; a is the ratio of the energy density to pressure of the 
electrons (assumed j for the ions); and as usual c, k, and e 
are the velocity of light, Boltzmann's constant, and the protonic 
charge. 

Equations (2.5), (2.6), and (2.11) describe momentum, energy, 
and lepton number conservation for the electrons and positrons, 
including the effects of radiation energy density, energy trans
port, and pressure. Radiation momentum transport and all higher 
transport moments are neglected, due to the assumed non-relativis-
tic bulk velocity and optical thickness of the shocked material. 
Equations (2.7), (2.8), and (2.10) describe momentum, energy, 
and particle conservation for the ions, while equation (2.9) 
describes the diffusion, creation, and scattering of photons. 
Note that the distribution function n (e ) is defined in the 

Y Y 

rest frame of shock and not in the frame comoving with the 
electrons. Finally, equation (2.12) is Poisson's equation. 

The form of the parameters in equations (2.5) - (2.12) de
pends on the energy and density regime of Interest and will be 
the topic of Section III. 
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8. Boundary Conditions and Integrated Shock Equations 
In order for equations (2.5) - (2.121 to describe a shock, 

appropriate boundary conditions must be introduced. Specifically, 
we shall assume that as x + •«, v + v, + v 0 > n e •+ n. •» n , 
T e •+ T\ ->• T Q, n Y(e y) •* n Ce ), n + + 0, I x + 0, and the gradients 
of T., T , v., and v vanish; and, in addition, that n (e ) •* 
n TCE ) as x + +». Here we have associated the subscript "o" 
with the pre-shockcondition of the fluid and the subscript "1" 
with its post-shock condition thus assuming a fluid flow from -» 
("upstream") to +» ("downstream"). The singular nature of the 
shock equations at +<• prevents these boundary conditions from 
being sufficient, and we must also require that the temperature 
and velocity gradients vanish at +», and that v=v at some finite 
point x=x . The last condition is necessary to fix the location 
of the shock; and, as we shall see the range of v must be 
restricted to obtain physically realizable shocks. 

Utilizing these conditions, we note equations (2.10) and 
(2.11) imply that net electrical currents vanish. We can then 
obtain integral momentum and energy conservation equations for 
the entire plasma by adding (2.5) to (2.7) and (2.6) to (2.8), 
making use of (2.12), and integrating. O - :inuity equation 
(2.10) can also be immediately integrated, while (2.8) can be 
simplified by subtracting v. times (2.7). The resulting set 
of shock structure equations becomes: 



di/ dy. 
nekT£ t n^kT. • ^ - , e ~ d f - ^ " d F - £ 

, . dT 
n

Q

v

0 ( 1 + a J k T

n + Sn v kT. + £ v + S - K. -np e e e e 2 o o i 3 y e Y e c x 

dT. dv dv. , y y 

-"iir " Ve sr" V i I T = ?Wo ( vV 

n i k dF " " ^ r k T i "dF + m t V o "dT " d7 iv1 ST1 

1 d T * d V < d v j 9 A d T i 

12 

V o v o ( V v 1 J + m e C V o - V e ! + P o (2.13) 

+ X , (n „ v «-n„v ; : ) + m c (n v -n v } + S„ 2 e v o o e e e o o e e o (2.14) 

= " p'el + e i V x (2.15) 

( E ' . - v . P ' . l 
1 ei I e v 

Vi = V o " ("e " 2n+> v e 

(2.16) 

(2.17) 

ST t " . ^ - %. (2.18) 
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3 ^ = 4» fenttpel £2,19) 

5 D r I V r S a - ^ l O T ( . T ) ^ - ] 

e / L Y Y Y Y Y Y Y > Y 
JO 

where P is the pre-shock pressure, and S , the energy flux due 
to the initial internal energy density.and pressure. 
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III. PHYSICAL PROCESSES 

A• Radiative Emission Processes 

Br.cJl-?s.tr.aiia.lMn9. 
The photon emission spectrum from a hot plasma due to 

electron-ion bremsstrahlung is given in the non-relativistic 
limit by Drummond (1961) as: 

J."?<V.> S - T ̂  « , . W W » . K0(̂ ) £ e e e y 
(3.1) 

where K is the zeroth order modified Bessel function of the second 
kind; a is the fine structure constant; r , the classical electron 

radius, e = kT , and Z. is the ionic charge, 

It is evident from the form of (3.1) that the number density 
of photons, Q ( E ,e ), emitted per unit time down to some low 

energy cutoff c « e , diverges logarithin'cally. While the total 
energy emitted in low energy photons is small, they can contribute 
very substantially to the cooling and effective heat capacity of 
the electrons via inverse Compton scattering. The treatment of 
this effect is undertaken in §111.D and sIV, and utilizes the 

quantity Q ( E . . 8 ) with E taken as the lowest energy from which a 
photon can be effectively thermalized, which we shall term the 
"effective photon" emission rate. Non-relativistically, we find 

from (3.1) that: 

Q^( Ve e) = B^xlO-^-^n^g^lE^cm^sec- 1 (3.2) 
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°° -t 
where ?, H z f9., E,0«1 2 [ §• dt ts the first order exponential 
integral function, and: x 

9,00 3 f e - x K 0 C x l V E l ( A ) (3,3) 

g, is a slowly varying factor and can be expressed to an accuracy 
of better than one percent in the numerical form: 

g,(x} = 1.226 - .475 M\ + .0013 ( m ) 2 10"6± X £ .8 (3.4) 

The E,(x) function can also be conveniently approximated numeri
cally (Abramowitz and Stegun 1964, p. 231) and in the limit of 
small \ becomes E,0\) * -B.n(fc) - .5772, and thus contains the 
logarithmic singularity expected from the 1/e term in the 
emission spectrum. 

For plasma temperatures above ^20 keV, electron-electron 
bremsstrahlung and relativistic corrections to e-i bremsstrahlung 
must be taken into account. Unfortunately, plasma emission 
spectra have not been calculated for these processes for most of 
the range between first order in sJmc and the extreme rela
tivistic limit. At present, therefore, we must be content with 
making approximations to these rates, and then determining the 
sensitivity of our results to these approximations. 

The general effect of relativistic additions to the brems
strahlung rate is to greatly increase the high energy portion of 
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the spectrum while more moderately increasing emission in the low 
energy tail (cf. Quigg 19681. This results in the temperature 
dependence of the energy emission rate increasing from s ' to 
e an(2e /m c ) (Maxon 1972] as the transition to relativistic 
temperatures is made, while the mean energy-weighted emitted 

2 2 
photon energy increases from -g& to £ .85e at e = m c to 
1.889 in che extreme relativistfc limit (e-i case). 

This behavior suggests that we take the effective photon 
emission rate from relativistic corrections to bremsstrahiung to 
be: 

w ^ + W a o 1 if A < 1/5 
Q R C B - " . 6 e

 E R C - - (3-5) 
R C B e R C e e R C ( 5X if X > 1/5 

RC and W and W . are energy emission rates for e-e and the rela-ee ei 
tivistic correction to e-i bremsstrahiung. Here the form of the 
cutoff for large x was determined by requiring E R C = 3 for A = .6 
as is the case non-relativistically. (See srv.B). Note that this 
approximation is conservative in that it ignores photons with 
energy « e produced by relativistic effects. 

Maxon (1972) has interpolated between first order and extreme 
relativistie results, to obtain bremsstrahiung energy emission rates 
for a plasma of arbitrary temperature. From his results, we obtain:* 

...RC ?.«"?.< 
3j- TO+1.022T+.221T 2-.239T 3) T £ 1.5 

| ( | l 1 / 2 T 1 / 2 a n 2 T + . 9 2 3 ) - 1 T M . 5 (3.6) 

*Here we have somewhat improved Maxell's interpolation by explicit ly 
introducing the qyadrapole correction to e-i bremsstrahiung before 
interpolating. 



m

 ne I 3 T(1-,128T + ,898T 2 - .439T 3 ) T £1.5 

^ ' f C f l 1 / 2 t 1 / , 2 an2T + .6731 : > 1 , 5 (3.7) 

where 

e 

is the non-relativlstlc e-i bremsstrahlung emission rate, and 
9 

T s ee/raec . The interpolation errors appear to be ̂ 15-20*. 
Gould (1974), however, has very recently recalculated quantum 
mechanically the lowest order (i.e. quadrupole) cross sections 
for e-e bremsstrahlung and found them to average roughly a factor 
of two lower than the semi-classical cross sections of Fediushin 
(1952), used by Haxon. The net effect of this correction is to 

2 reduce W by i<658! for e << m c , which we shall approximate by 
multiplying (3.7) by the factor 0 - .642e" ee / me c ). 

Radiative Compton Scattering 
The process of radiative Compton scattering 

e + y + e + Y + Y (3.9) 

is expected from general quantum electrodynamics arguments to 
proceed at a rate *vaC=1/137) below that of ordinary Compton scatter-

o 
ing at photon energies » c , and thus be a potentially important 
source of photons in the extremely hot plasmas characteristic of 
the strong shocks under consideration. The differential cross-
section for this process was calculated by Mandl and Skyrme (1952) 
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and has recently been numerically integrated by Ram and Wang (1971) 
to give the total cross section for photon emission for e > 5 keV. 

In order to average this cross section over a partially rela-
tivistic electron distribution, a general theory of relativistic 
reaction rates has been developed and is given in Appendix A. 
The most notable results of this theory are exact expressions for 
total rates involving only a single integral over the cross-section 
for the usual case of relativistic Maxwell-Boltzmann (RMB) or Bose-
Einstein distributions (RBE) (see equations (Allc), (A22b), and (A31)). 
This results from the fact that in the relativistic as well as the 
non-relativistic case, an effective combined particle distribution 
function, F, can be found analytically. 

For an RMB electron distribution (eq. (A9)) and RBE (eq. (A18)) 
photon distribution, the total photon emission rate (e > 5 keV), 
Q D C . is given in Figure 3.1. Here C is the degeneracy parameter 
for the photon RBE distribution, ranging from 1 for black-body 
radiation to infinity in the non-degenerate limit. As can be seen, 
the density-normalized radiative Compton rates (i.e. <<™>nr s Q»r/ nv ne^ 
for C = 1 vary from M 5 % below to VI0% above the non-degenerate rates 

2 2 
as e ranges from « m c to » m c . (Here n is the number density of 
photons in the RBE distribution, which we shall associate with the 
effective photon number density in fIV.) This is due primarily to the 
relative augmentation of the low energy tail of the black-body distri-
bution and the peak in the total cross-section near m c . Because 
of this small distribution dependence, and the fact that knowledge 
of radiative rates is most important far from equilibrium, we shall 



adopt the non-degenerate rites for general use in the present 
work. 

The rates given in Figure 3.1 when compared to the effective 
bremsstrahlung rates given in the last section, indicate that 
radiative Compton scattering will dominate near-thermal photon 
production in the e » 50 keV - 5 HeV regime if n - nfi. At 
higher temperatures, the relatively unexplored processes of multiple 
bremsstrahlung and multiple radiative Compton scattering may become 
dominant. 

Approach to Equilibrium 
Except in the case of the low energy tail of the brerosstrahlung 

emission spectrum, we shall approximately allow for photon absorption 
processes by multiplying the emission rates by the factor: 

f F = 1 - — h C3.10) 
E bT f i

3 

where b = 20.3 cm /°K is the radiation equilibrium number density 
constant, in analogy to the usual relation between emission and 
absorption for photons of a given energy (Zel'dovich and Raizer 
1966). Inverse bremsstrahlung processes will be taken into account 
explicitly in determining the cutoff energy, e , above which 
bremsstrahlung photons can be effectively thermalized (see §IV). 
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B. I le t l ron-Posi t rpn Pair Production 

rini ̂ s ion Processes 

The inost important im-ans of electron-positron pair creation 

at electron and photon temperatures below 1 MeV are the reactions: 

Y • >• • e* + e" (3.11) 

,• + 2 • 2 • e* * e" (3.12) 

Y + e 1 . e*"+ e + • e" (3.13) 

Like other second-order processes in quantum electrodynamics such 
2 

as Compton scat ter ing, Y-Y pair pnduct ion has a cross-section M-

in the region where i t is energetical ly allowed. Cross-sections 

for the th i rd order processes (3.12) and (3.13) are typ ica l ly a 

factor of ,yy below these levels (for 2=1), and so for photon num

ber densities a t a l l comparable to the matter density, Y-Y pair 

production w i l l dominate. 

Jauch and Rohrlich (1955) give the r e l a t i v i s t i c a l l y correct 

Y-Y pair production cross-section in the form: 

a = i . r ^ 2 [ ( 2 + 2 « 2 - * 4 ) c o s h " 1 ^ ) - ( H * Z ) ( 1 - * 2 ) 1 / 2 ] (3.14) 

where • = —— , c is the center of mass energy of rne of the 

photons, and o is meant in the Lorentz invariant sense of eq. (A24). 

Using the formalism of Appendix ft (see eq. (A31)), th is cross-sec

t ion can be readi ly averaged over a non-degenerate "RBE" photon 

d i s t r i bu t i on , to give the pair production ra te , Or , shown in Fig

ure 3.2. Also plotted is the "non- re la t i v is t i c " expression for 
2 

th is cross-section, obtained by assuming kT << m c and using tl 

non-re la t iv is t tc l im i ts of (3.14) and (A31) to f i n d : 
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fl-^-^We (3-is) 

As is apparent, this attempt to model an intrinsically relativistic 
process non-relativistically is a reasonable but not complete 
success, which suggests expressing Q~ in the convenient form: 

2 

Q^ » 1.042 (1. • .728 {-^))7/2 QYy = V ° V \ Y 

10 KeV $ kT^ < 100 KeV (3.16) 

which is accurate to 2%. 

Pair-Photon Relative Equilibrium 

A given number density of pairs wil l be in relative equilibrium 

with a Bose-Einstein distribution of photons (via e e"«-»YY) when: 

2« Y = »£ * M e . + 2 m e c Z (3 .17) 

where y. is the chemical potential of species j (cf. Chlu 1968, 
j 

p. 134). In the case of an RMB distribution, the number density 

of positrons, n + , Is related to i v by: 

. m3c3 > * + V 2^"" hiil 

= n

+ 0

e 

(»V + raec2)/kT { 3 - 1 8 ) 



and for non-degenerate photons, n , is given by: 

. T 3 v /kT V /kT 

2 
where * = m c /kT, c(3> = 1.2021 , and K„ is the second order 
modified Bessel function of the second kind. Since 1n f u l l 

2 

thermodynamic equil ibrium u = 0 and u + = -m c , we ident i fy 

n and n with the f ina l equil ibrium density of pairs and 

photons, at temperature T, that would occur i f these part ic les 

remained non-dogenerate. Numerically we f i n d : 

n + a - 1.77 x 1 0 3 0 %?- cm"3 - ^ f > 2.22x10 3 0 » " 3 / 2 -

• e"* cm"3 (3.20) 

and 

n Q = 16.9 T 3 (°K) cm" 3 = 3 .52x l0 3 0 * " 3 cm" 3 (3.21) 

Returning to (3.17), we f ind that for the case of non-

degmerate d is t r ibu t ions , u + = v , and T = T , that the pair-

phtton ra t io is given in re la t ive equil ibrium by: 

"+ . B +o 
n n _ 

Y YO 
(3.22) 

Thus, for example, a 100 keV plasma would contain .04 positrons 
per photon. Such a relative equilibrium is expected when the 
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rr <-• e +e" reaction succeeds in interchanging pairs and photons 
much more reapidly than brerasstrahlung and radiative Compton 
scattering can make new photons. 

I 
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C. Transport Coefficients 

'P.n__and. EJectrpn^scosity^and Heat Conduction 

He wish to f ind the transport coeff ic ients for a plasma 

containing protons e l ^ t r o n s , and photons where the ions and 

electrons may hav- d i . fe ren t temperatures. To do th i s , we shall 

s tar t from a generalized d i f fus ion approximation and then 

normalize our results to the case of a uniform temperature, 

radiationless plasma which has been treated more precisely. 

From the di f fus ion approximation, we f ind the coeff ic ients 

of v iscosity and heat conduction for species j to be: 

" j = cv w l S ( 3-2 3 ) 

K j = "WlS C 3- 2 4 ) 

where C and C are constants of order unity (usually taken equal 
to 1/3, (cf. Bond, Watson, and Welch 1965, p. 240 , 255)); ci. is 
the ratio of internal energy density to the pressure and equals 
3/2 for a non-relativistic perfect gas; vr 1 and J. are the mean 
thermal velocity and "transport mean free path" for species j 
given non-relativistically by: 

V- h - & V 2 (3.25) 

„th,,-1-,-l Aj " C i fcjktvprT' (3-26) 
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Here *j|<{w) is the transport mean free path for a particle of 
species j with velocity w in a gas of ^-particles, defined by: 

w " <M..> ' csjk r^T ' t, f k (3.27) 

where <4w-,,> is the expected initial rate of change of the 
parallel component of the j-particle's velocity. For interactions 
between charged particles, t Jk, Is given by Spitzer (1962) as: 

i f (Vfch)2 

s j k (l+mj/mk) 12« 4n kz|z^nA GC/T? w/v£h) 

, , e r f M -X f f i r (e r f to) G(x) = 5-2* (3.29) 

fe3 \ y z 

A 3-g- U U (3.30) 

where erf(x) is the usual error function; and JMA, which indicates 
the relative importance of small-angle scatters, has been taken 
» 1 in deriving (3.28) - (3.29). 
For e-i, 1-e, and j-j Coulomb interactions, we then find (1+p): 

2 
* e D

( y e h > = ? - T * — ( 3- 3 1 ) 

ep e f _„*„... 
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v ( v 
* ' " 8 1'*".) eVmA 

(3.32) 

» ^ h > - - 5 M ^ ? r j r J e tijinAZ? 
(3.33) 

The transport mean free path due to nuclear forces acting 

between protons dominates the Coulomb cross-section for 0\ S? MeV 

and is given to a rough approximation by (Colgate 1974): 

< ©̂  < 10 HeV (3.34) 

For non- re la t i v i s t i c electrons traveling in a photon gas, 

we have from Section I I I .D that for T„ ^ T : 

11 ey s 
% o Tn c e . (3.35) 

implying: 

ey'-'e ' /M , / 2 J£ - (3.36) 



where a T is the Thompson cross-section (gur). Using these cross-
sections the non-relativistic coefficients of electron and proton 
viscosity can be written in the form: 

N R 1.018 CraV2 <aVZ „ , 
NR „ _ ^ _ J L J L_ £ 1 + . 0 2 6 J. C ' j 
1 e M "l '-

+ 6 . 9 ^ t e i t H e V ) ] 3 ' ' 2 J - 1 (3.37) 

NR _ 1.018 c/JZOe^ n + _ 8 2 1 ^1 

eHinA e 

+ ^ i ^ «ff (^ (WeY)) 5 ' 2 ] - 1 (3.38) 

Setting T. = T , n., = n , n = 0, and neglecting the nuclear 
contribution, we see by comparing the sura of equations (3.37) 
and (3.38) with Spitzer's (".962) eq. (5-54) for the plasma 
viscosity coefficient that C = .55, when account is taken of 

4 the factor of :.- difference in his definition of v.. vie *c& 
that for equal velocity gradients and temperatures in the 
Coulomb regime, the overall effects of viscosity increase as 
T 5' , with ion viscosity dominating electron viscosity by a 
factor (jj4 ' . For k'l> J 1 KoV, nuclear and radiation effects 
limit this Increase 

Similarly the non-relativistic expressions for Ion and 
electron heat conduction are given by: 
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NR = 3 k_^ t NR , , 
N j 2 m. C v i V-i3> 

where by comparison of (3.39) with the result of Spitzer (1962) 

for a hydrogen plasma of uniform temperature we f ind C = 1.14. 

We see that for equal temperatures and temperature gradients in 
5/2 

the Coulomb regime that heat conduction also increases as T , 
with electron heat conduction dominating ion heat conduction by 
a factor (% 1 / 2. 

m e 
While a precise extension of these results to allow for 

relativistic electron effects has not been made, and is beyond 
the scope of the present work, the following approximate corrections 
seem evident. First, the mean electron thermal velocity relativisti-
cally becomes: 

vt" = [1 - 11 + !§!|)-2]V2 (3.40) 

Second, the factors of s e in the Coulomb mean free paths are 
y 

transformed to | « o to allow for the increased electronic specific 
heat (see Section III.E for values of a ); and third, aj in 
(3.36) goes to the Klein-Nishina cross-section while the factor 
rae 1/2 (gf-J is limited to 1/c. As we shall see, electron temperatures 
for most cases of interest remain below ^200 keV, so relativistic 
corrections are unlikely to become cruciai, especially in view of 
the large temperature dependence of the Coulomb cross-sections. 
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For future convenience, we define: A 2 = v^s.~ ' 

Photon Diffusion and Heat Transport 
Following the diffusion approximation, we take 

W-K-H^tri t 3-4 1 ) 

Here l is the Compton transport length, and non-relativistically 
2 "V^ 

(i.e. e , e e « m c ) <r = oy. Relativistically, crc i. - 2 — a 

with more precise numerical results and analytic fits being given 
by Cooper (1974). The use of the diffusion approximation in the 
form of (3.4J) has been shown to be accurate to £ 5% (cf. Alme 

S 
and Wilson 1973), provided the directed photon velocity v = - 1 

E Y 
is much less than c. For v <<• c, the diffusion approximation can 
be modified to give accurate results (errors £5<) by limiting v 
to 5 c by an appropriate multiplicative expression termed a flux 
limiter (ibid). 

The heat transport by radiation relative to the frame of the 
electrons is then given by (non-flux limited): 

S C<= ) = -* D C e ) L,^ (3.42) 
Y Y T Y If OX 
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D. Transfer Processes 

Ton-Electron Energy and Momentum Coupling 

Burgers (I960) has calculated the momentum and energy transfer 

rates, P . and E . , between ions and electrons due to Coulomb 

forces for arb i t rary temperature and veloc i ty differences. Assuming 
m i I I th m i 

* t < < in" T e ' v e " v i < < v e ' v e < - : in v i ' a n d n e 9 1 e c t i n 9 terms of e l ' e 
m , .„ 

order (-=•) ' , his results can be wr i t ten in the form (cf . J a f f r i n 

and Probstein 1964): 

V e n i m i < V v i * 
P e i " " l 6

e 3 / 2 6 ' < 3 " 4 3 ' 

. * 1 y 1 l 3 ( e e - e 1 ) * ( v e - v t ) v ^ ] 

where: 

e 

rol/2 
A. = I /I e4 zf =£• (DA 1 3 z 1 m-

3.21 x 1Q" 2 7 Z 2 MA e r g 3 / 2 cm3 sec" 1 (3.45) 

While r e l a t i v i s t i c calculations of electron-ion coupling do 

not ex is t at present, an approximate correction can be given i f 
o 

the electrons are not too relativistic (i.e. 0 * mc ). In this 
case, the low energy electrons to which the ions are most strongly 
coupled will remain non-relativ1stic and the coupling mechanism 
will be affected only by the relative depopulation of the low 
energy tail of the electron distribution by the factor: 
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1 5\ * fe? <3-46> 
m ec 

where the non-relativistic form is accurate to ^Z0% up to 
o e

 = "igC . At sufficiently high temperature, however, this 
depopulation will become severe enough to increase the effective 
interaction energy and thus reduce this effect. For lack of a 

NR better treatment, we wil 1 use f£ as the correction factor for 
2 NR / 2 

e < m c , and correct by f'? (m c ) = .35 at higher temperatures. 
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Compton Scattering 
The cross-sections indicated by o(.e + e ) in the Compton 

scattering kernel in equation (2.91 have been evaluated numerically 
by Stone and Nelson (1966) in a relativistically correct fashion. 
(See Stone 1971, 1973; Cooper 1971, 1974, for subsequent applicat
ions and special cases). For electron temperatures below 100 keV 
and photon energies below 1 HeV, the effects of Compton scattering 
in changing the energy of continuum radiation can be accurately and 
much more conveniently represented using the Fokker-Planck approxi
mation (Cooper 1971) according to which: 

^S.t) . 1 A 
St 2 3e 

an(e ,t) 
+ 0 - s — 1 H 

e 3E J 

Y 

« Fp(E Y.T e)[n(e Y,t)0+n( e Y,t)) 

(3.47) 

where n(e ,t) is the dimejisionless photon distribution function 

as a function 
Y Ft (hcl3 

(normalized by requiring / n(e ,t)e <k • v!j~' n 1 
of photon energy, e , and time, and o ( e

Y J e ) is the Fokker-
Planck coefficient given approximately by: 

°FP K'W = -hr^ e ^ T C3.48) 
f P Y e n e C 1 + .009ek+4.2xl0 6e£ 

where e k is E in keV and f ( T ) = f (-%) + 4£ {-K)Zn.%. j 
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In this approximation, the expectation of the energy change 
of a photon per unit time is given by: 

(3.49) 

Non-relativistically this reduces to: 

< U ' - E 1> = o Tn c ( — W (4s„ - e 5 Y Y T e „ „z* e v C3.50) 

4© -e 
corresponding to a fractional photon energy change of —^—£-

V 
per Compton collision. Thus non-relativistic Corapton scattering 
is capable of e-folding the energy of a sub-thermal photon 

m c z 

(i.e. e <kT ) in ^ -£g— collisions. 
To very roughly estimate the quantity <flw > (the expec

tation value of the initial rate of change of the parallel compon
ent of an electron's velocity as i t passes through a photon gas at 
temperature T = T ) which is required in equation (3.35), we 
note using (3.SO) that: 

<fiwii» 

w=v th 

1 2 

2 ^n>ey 

w = v e

t h 

2 n„ T°e 
= n o T c — * • = • 

Y T m c 2 

y3e e 

(3.51) 
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E. Electron Specific Heat 

The electron specific heat coefficient, « , defined as the 

ratio of the electron energy density to electron pressure, is given 

for a non-degenerate arbitrari ly relativistic gas by: (cf. Chiu 

1968): 

31^(4) + K,(t) 
(3.52) 

where * = m c /G and the K, are modified Bessel functions of the e e i 
second kind. A convenient numerical expression for a is; 

I " + 45+5 > (3.53) 

which is exact to 1st order in 1 / * , goes to the correct relativist ic 

limit and, in general, is accurate to better than 2%. 

I t is apparent that a goes from | + 3 as e f i goes from 0 to •» 

with substantial ( I .e. £ 102) relativistic corrections occuring 

for 9 e t 50 keV. 
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Figure 3.1 - Radiative Compton scattering emission rate. 

Here <ov> -- %Jnon > hv = e , and C is the Bose-Einstein 
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degeneracy parameter of the radiation field. 
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1 v• T.HJ. EFFECTIVE PHOTON APPROXIMATION 
A. General Formulation 

In their present form, shock structure equations (2.13) -
(2.20) are quite cumbersome and do not lend themselves either to 
numerical solution or analytic interpretation. A key factor in 
their simplification is to note from S III.O that the time re
quired for a near thermal photon (i.e. e £.16 ) to be thermal ized 
to -v.6 is typically quite short in an optically-thick plasma at 
temperatures above a few keV. For example, a 1 keV photon requires 

m.c 2 e 
only t j | — nn (—) = 30 Compton collisions to be thermal ized at e S 
8 • 10 keV. Since the post-shock velocities (v, = v /7, see 
§ V) under consideration range from c/150 (E = 1 Me.V) to-c/15 
(E = 100 MeV), such thermalization will occur as the matter is 
swept through .2 to 2 Compton lengths. As has been shown in the 
Monte-Carlo Compton scattering calculations described by Chapline 
and Stevens (1973), such thermalization results in the buildup 
of a Bose-E1nstein distribution of photons, characterized by an 
"effective" photon number density, n , and an effective tempera
ture T = T„. 

Y e 
If e is the lowest energy from which a photon can be 

thermalized over a "relevant" shock length scale, then from 
§ III.A, we see that the quantity M '• tn(e /B ) provides a 
rough measure of the importance of subthermal photons in cooling 
the electrons. Thus, if we find that relevant shocks scales are 
indeed I Compton length as we expect in radiation-dominated shocks, 
the effect of inverse Compton cooling will be substantial for 
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B e £ 5-10 keV. 
To make these considerations a logically rigorous basis for 

simplifying equations (2.13) - (2.20), we shall first explicitly 
make the following assumptions, and later show that the shock 
structures that result are self-consistent with them: 

1) All but a negligible fraction of the energy in the radi
ation field can be characterized to sufficient accuracy 
by a Bose-Einstein distribution with effective photon 
density n and temperature T £ T . 

eff 
2) The creation rate of effective photons, Q , can be 

taken as the integral over the photon emission spectrum 
down to some cutoff energy e , determined by the con
straints of inverse bremsstrahlung, screening, and the 
photon thermalization time with respect to relevant 
shock time scales, as prescribed in s IV.B. 

Using this set of assumptions, which we shall term the 
effective photon approximation, we can reduce the multigroup treat
ment of the radiation field implied by equation (2.20) to the 
following relatively simple equation describing the creation and 
diffusion of effective photons: 

d(n v„) j „ dn --
dx dx L 3n„o„ dx • 

where 

C f = q e 1 + W % M.2) 
and o « o (36 ) Is the mean Compton cross-section. Also we find: 
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Ey = 3Py = 2.7 n y e e (4.3) 

S = -% ••£=- i - (n e j (4.4) 
Tf 10 n o dx v y e 

Here we have adopted the black-body specif ic heat coef f ic ient of 

2.7 in (4.3) to achieve consistency with the f ina l equil ibrium 

state. The 10* error th is introduces for a non-degenerate Bose-

Einstein d is t r ibu t ion (where E = 3n a ) w i l l be neglected. 



41 

B. Cutoff Energy for Effective Photon Emission 

Abs_o_rp_tion 

Chapline and Stevens (1973) have examined the ef fect of Comp-

ton scattering on bremsstrahlung emission spectra by u t i l i z i n g the 

Fokker-Plank approximation (cf. Cooper 1971). They f ind that low-

energy radiation w i l l be absorbed by inverse bremsstrahlung before 

i t can be thermalized for photon energies below 

n \ 1 / 2 

u = .77 e „ - 5 / 4 ( keV) f ,% _ , jkeV (4.5) 

2 provided c„ << m e . 
110 cm 

Screening 
In a plasma, bremsstrahlung emission occurring at impact 

e. 1/2 
parameters larger than the Debye length, A n = (—-—•,) , will 

e 
be suppressed by Coulomb screening. This effect will be important 
for a given photon energy, e , only if 

>D « "max * ̂ * c < ^ > 
Y 

where b is the normal cutoff impact parameter for that photon 
yth vth 2 _1 

energy (cf. Jackson 1962,eq. (15-28)), and f 2B a -|— [l-(-f-) 3 
where v* is given by eq. (3.40). We find that the photon energy, 
E , below which screening is important is given approximately by: 

c . c % 5.2 x l O ' 4

 a \ n ( 2 Q

e .3 ) (1 + - ^ • 2 ) " ' ( H - ^ f ) keV 

10 2 ° cm 3 2 m / m / ^ 

Thus e is typically £ 1 eV, and exceeds tg for e g £160 keV. 
It is often the 
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case, however, that not enough time is available to thermalize 

a 1 eV photon to e > 100 keV, and thus the dynamical cutoff 

discussed in the next section usually dominates where screening 

would otherwise have been important. 

Thermalization 
Since according to (3.50), a non-relajivistic, sub- thermal 

m c1, 

photon will be e-folded in energy in i « g — Compton collisions, 

the lowest energy, e., from which a photon can be thermalized in 
a dynamical time, t,, is: 

z^ZJee exp (-4cn ea TT de e/m ec' !) (1 + — f - 9 - ) (4.8) 

where ae (t.) is the mean change of temperature that a photon 
experiences during T.. In the shock models discussed below, r, 
will be taken as the time a photon at mean velocity, v . takes 
to cross the photon number or electron temperature efolding 
distance, whichever is smaller. The mean photon velocity is de
fined by (see (4.1)): 

dn 
(4.9) \ - 3 n

e
3 c n

Y
 d x e 

(See § V.D for a discussion of shock structure sensitivity to 

this choice of TJ.} 

Maximum Cutoff Energy 
When conditions are suc.i that EJ/8 I. 1, we expect the 

effective photon approximation to become Inaccurate. In this case, 
we can still obtain the proper bremsssrahlung energy loss rate 
from the electrons by not letting e exceed t , the cutoff energy 



43 

at which 

3 8 e < + W ' We™ + W e R ? + Wee <«- 1 0> 
where the W's are the bremsstrahlung energy loss rates given in 
§ III.A. From the relations in § III.A, we find: 

The effective photon cutoff energy , e , is then taken as the 
maximum of c„, c , and e d up to a maximum of .6 9 . 
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V. RADIATION-DOMINATED SHOCK MODEL 
A. Assumptions and Basic Equations 

The radiation-dominated shock model is based on the general 
formalism of Section II, with the following additional assumptions 
and restrictions: 

1) The pre-shock Internal energy is negligible compared to 
the shock energy. 

2) The effect of electron-positron pairs is not crucial. 
3) The ions and electrons move together with velocity v, 

and thus have the same density n. 
4) The effective photon approximation is valid. (Note that 

this Includes the assumption T - T •) 
5) The principal dissipation mechanism is radiative heat 

conduction. 
6) Except at the leading edge of the shock, radiation 

pressure dominates matter pressure. 
The validity and self-consistency of these assumptions in the 
context of the shock structures they generate is considered in 
i V.D below. Using them, the shock structure equations, (2.13) -
(2.20), can be recast in the particularly simple form; 

V T " VomH (V v> ( 5 J> 

cv d l n v e J 2 2 
4 V"A ' fe ~ 3 ^ " "oVH ( V V ),Z ( 5- 2 ) 

d(n v) A dn . . « 
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n„v„ 
n = ~ ^ (5.4) 

zVo 35 — 9 i 57 + V i 'dx' ( 5 - 5 ) 

v „ n „ z A i 
+ (-F> 04/2 3(v 9 i> 

9 e 

where 6 = WW kT = 
Y 10 y 

A- e , m„ is the mass of a hydrogen atom, 
and A, and A, are defined in 5 1II.C and by equation (3.45) 
respectively. Note that the plasma momentum conservation equa
tion (5.1), Is now algebraic and describes a linear relationship 
between radiation pressure, n e , and v. Equation (5.i!) is the 
plasma energy conservation equation, while (5.3) and (5.4) des
cribe photon and matter particle continuity, and (5.5; is the 
ion heating equation. Due to its small coefficient, ion heat 
conduction has been neglected in equation (5.5), with the re
maining terms on the right-hand-side describing congressional 
work, viscous heating, and electron-ion coupling. 

For future convenience, we defin 
energy per nucleon in the shock frame 

1 2 For future convenience, we define E ; 5 ™ H V O ' t h e ' n 1' t i a 1 
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B. Analytical Solutions 

By differentiating equation (5.1) and using i t to eliminate 

9 and n from (5.2) , we obtain a decoupled equation for v: 

d v (7v-v 0 ) (v 0 -v) 
d* " -°cVo *Tc ( 5 - 6 ) 

Using the boundry condition that the velocity gradient vanishes 

at x=+» , we immediately obtain the expected post-shock conditions: 

v, = v(+») = v Q/7 (5.7) 
Z 

n, H n(+») = 7n 0 (5.9) 

Equation (5.6) can then be integrated directly to find x(v): 

2 l 5 < . n „ v , , c o o 

<yy> 7 

infyj)7} ) (5.10) 

where we have taken v = 4v /7 at x=0. 

Thus the velocity profile of the shock is independent of the 

details of radiative equilibration (see Figure 5.1). Near the 

upstream limit (v->v ) , and using (5.1) and (5 .6 ) , we see that the 

energy In the radiation f i e ld , 3n e , e-folds in a length 

A = c/(38 n v ) . I n t h e downstream limit (v ->• v Q / 7 ) , the 

residual directed momentum in the ions e-folds in a length A / 7 . 

A characteristic shock is then •VA or >vcoj/3v B. pre-shock 

Thompson lengths. 



To calculate the peak 1on temperature occurring in the 
shock and thus the expected amount of nucleosynthesis, it is 
still necessary first to solve the photon continuity equation 
(5.3) and then the ion heating equation (5.5), which in general 
must be done numerically. Some analytic insight can be gained, 
however, by using (5.6) and (5.1) to change the variable in 
(5,3) from x to v, yielding: 

o , d n , dn 
(7V-V 0) Z(V 0-V) 2 -j-jft • 8(7V-VQ) (V 0-V) 2 ^ 

+ 6(7v-v 0)(v 0-v)n Y 
12vc Qeff n n v n 5 r

 W Y 
(5.11) 

Note that by doing this we have explicitly exhibited the singular
ities in the photon continuity equation by moving them from ±» 
to v = v 0, v 0/7. 

Equation (5.11) can now be solved analytically for the case 
of a near equilibrium radiation field (i.e. f £ « 1, where f E is 
the radiation equilibrium parameter defined by equation (3.10)). 
T and n then become: 

10n ov om H(v o-y) 
9kb(l-fE) 

-,1/4 
(5.12) 



48 

\ s < l ° V o ' V V v ) / 9 k ) 3 / 4 M l - f E ) ) 1 / 4 (5.13) 

For small f^ and v 0 < c/2, e will always be less than 50 keV, 
and so only the non-relat1v1st1c bremsstvahlung photon source 
term will be Important, Setting the O - f g ) 1 ' 4 terms 1n (5.12) 
and (5.13) equal to unity and using (5,il) together with (3.10) to 
solve for f £ yields: 

- 1/8 1 m H 7/8 a.b 7/8 
f E ( v ) = 777?78 HfcJ mzr v <v v > 

lnoV ° 
•{7v-v Q} 2 (g^x))" 1 (5.14) 

where, using equation (3.2), we have defined a brerasstrahlung 
emission coefficient J Q = 5.692 x 10" 1 Z ° K 1 / Z cm 3 sec"1 and 
combined Gaunt factor 9?M = g,(x) E]M. The neglect of 
derivatives involving (l-fE) in deriving (5.14) is a good 
approximation except for v £ 2v 0/7 where the shock is very close 
to equilibrium and all gradients are small. 

An approximate criterion for the consistency of our assumption 
of a near-equilibrium shock can be established by requiring that 
the maximum value of f~(v) be £ 1/2 (with * held constant), and 
can be written in the form: 

0 1/15 /g ?(x)\ 8/15 E„5 .71 (IJQ) -f MeV (5.15) 



where n ? 0 = n Q/10 cm" , and we have taken o = a~ since the 
resulting equilibrium temperatures are « m c . 

To determine \, we note from equation (4.9) that for an 
equilibrium shock 

s av ar + v - -§- ( 5 J 6 ) 
3n„v„o„ T o 0 c y 

while the photon e-fold1ng length, *. , is i * t, the temperature 
2 

e-folding length, and using (5,10) we f ind that for v £ j v Q : 

*!2 " - § * - * (5.17) 
1 T " ^ 

implying: 

T"» H *«v»«i = — M ! (5.i8) 
d 4 Y Y 9 W ( v „ * v ) 

and: 

e d " 3 - 6 *e e x P ( - f <£> i V o f v v T 1 ( 5 - 1 9 ) 

20 -3 For E = 1 MeV, n. = 10 cm , and o c = a T > we have at mid-shock 

(v = | v 0 ) that « d = .31 keV ( e e = 1.32 keV); or for n 0 = 1 0 1 7 cm"3 

that e r f = .51 keV (e = .23 keV). The corresponding inverse 

bremsstrahlung cutof fs are .54 keV and .15 keV respect ively, 
-4 -5 

while those for screening are 6.4x10 keV and 2.0x10 keV. 
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We thus find A = ,41 ar.d ,6 yielding g 2.U) = 1,65 and 1,47 
respectively, Criterion (5,15) thus becomes E 0 £ ,52 MeV and 
E„ % ,31 MeV for n 0 = 1 0 Z 0 on" 3 and 1 0 1 7 cm' 3 respectively. 
Thus shocks with E 0 ;$ 1 MeV will be reasonably close to black-
body equilibrium over this density range. 

The temperatures of such shocks will remain £ T e q , the 
final equilibrium temperature, given by: 

Teq = ^ { n 2 0 E 0(MeV)> 1 / 4keV (5.20) 

The final equilibrium photon density will be: 

n* q =1.22 x 1 0 2 3 (E0(MeV) n ° Q ) 3 / 4 cm - 3 (5.21) 

Evaluation of the terms in the ion heating equation (5.5) shows 
that for temperatures of a few keV and the velocity gradients 
given by (5.6) that electron-ion coupling dominates, and thus 
requires 8, % 6 . 
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C. numerical Solutions 
The photon continuity equation (5.3) can be solved in a stable 

faslon numerically, by using double-side boundary conditions and 
an appropriate back substitution algorithm. The details of this 
method of numerical solution are given in Appendix B. These 
details are important since several straightforward ways of 
differencing (5.3) lead to unstable results. 

The boundary conditions are taken as n (x 1 = n s and n (x,) 
= n e q . The points x and x, are then moved toward -» and +« re
spectively until the solution stops changing significantly. The 

s -2 3 
value of n is typically chosen either as 10 n or bT where 
T is defined below, and the resulting shock structure is found 
to be quite insensitive to this choice provided n s « n . 

Once n is known, the analytic equations (5.1) and (5.10) serve 
to determine v and e , except at the leading edge of the shock 
where matter pressure becomes important. In addition, at tempera
tures below a few keV, Compton scattering becomes less and less 
effective in maintaining T * T . These points are discussed in 
more detail below, but in fact the shock structure is reasonably 
insensitive to where the upstream (i.e. x •* -« ) boundary on n 
is taken. In view of this, it is convenient to use the following 
procedure for choosing the upstream boundary point. 

The matter-pressure terms are re-inserted into the expression 
for the radiation temperature (see (2.13)) with the assumption 
T

Y * T e = V yielding: 
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T - W H ( V V ) (5.22) 
Y " (.9kny+2novok/v) 

The upstream boundary point Is then chosen so that the resulting 
temperature, T , Is sufficient to ensure that Compton scattering 
will result in rapid temperature equilibration of newly created 

s -2 
photons. Typically T is taken i. 5 keV and n = 10 n for 
E £ 10 HeV. The peak shock temperatures that result are found 
to agree within •* 1% with calculations where T is chosen such 
that n « b u ^ .1 n . For E < 10 MeV, adequate Compton ther-
mallzatlon can occur for T, £ 1-2 keV while at lower temperatures 
the number of near thermal bremsstrahiung photons emitted over a 
characteristic shock scale 1s sufficiently great to insure a near 
equilibrium photon number (although the spectrum will probably be 
distorted). Such shock calculations are started using the 
nv * b T s % - 1 no ""d"1*1'0"' 

Given the temperature and velocity, the ion heating equation 
(5.6), can be solved by taking aAx ) * 8p(" 0) and Integrating 
downstream. The appropriate difference equation is given in 
Appendix B. 

The Bose-Einstein radiation-dominated shock structures that 
result from the present model are shown in Figures 5.1 and 5.2 
for typical values of E. and n . The abrupt rise of n and 
corresponding fall 1n T apparent 1n some of these shock structures 
near the downstream boundary (e.g. 5.2(a)), is due to numerically 
forcing the shock to come to final equilibrium at a point, x-p not 
sufficiently far downstream, and is done so the shock can be zoned 



and plotted on a reasonable length scale. Test calculations show 
that this has essentially no effect on the structure of the shock 
outside the "flared" region. Figure 5.3 plots the peak tempera
ture reached in the shock as a function of E over the range 1-100 
HeV/nucleon, and shows explicitly the effect of the various sources 
of radiation, as well as various characteristic temperatures. In 
these models o = a,-, which is a reasonable approximation consider
ing the temperatures involved. The effect of decreasing o is to 
somewhat lengthen the shock width and thus somewhat increase 
the degree of radiative equilibration (note that inverse Compton 
scattering involves o-, not 5 ). 

Before discussing the details of these results and the impli
cations of the relatively low temperatures involved in these shocks 
for nucleosynthesis, it is necessary to determine under what con
ditions our model is valid. This is undertaken in the next 
section. 
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D. Self-Consistency of the Radiation-Dominated Shock Solution 
Sufficiency of Dissipation by Radiative Heat Conduction 
We wish to derive the value of the ratio of the radiation to 

matter pressure, c = P y/PL, below which radiation heat conduction 
ts insufficient to prevent a shock discontinuity in the absence 
of viscosity. To this end, we introduce matter thermal energy 
and pressure terms Into the equations of momentum and energy con
servation, (5.1) and (5.2), and utilize the variable n = 7 - , 

0 yielding: 

Pm + PY " W o 1 1 ^ ' (5-23' 

I np

m

 + 4n(V - sjfo 5 - = W o 2 * 1 - " 2 * ' 2 < 5- 2 4> 
where P » n e and P m = 2n„kT_/n. and where Tl is the average of Y Y Y m o m ' m * 
the electron and ion temperature. To determine if these equa
tions can have a simultaneous solution, we note from substituting 
(5.23) Into (5.24) that: 

Cn , _ Y = (7n-,lip + (£n-I) P f 5 «* 
0 0 c 

dP 
and thus -zjf- > 0 (for "v 1n the positive x direction) in the 
range 1 > n > TU. Here ni is the postshbck value of n (I.e. the 

dP n for which -ijL | = 0 a n j n < 1). From (5.25), we see ni must S satisfy the Hugoniot relation: 
l-4n, 
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resulting in 4-fold compression across the shock in the absence 
of radiation (sdii) = 0) increasing toward 7-fold compression as 

On the other hand, differentiating (5.23) with respect to x 
yields: 

1 —1 - (2n-D+ne / dm 2k d T m ,- ? 7 l 

where for a physically realizable shock we require 37 * 0 (i.e. 
that the matter velocity decrease monotonically). Thus to be 

dP consistent with the requirement derived from (5.25) that ~r^- > 0, 

the right hand side of (5.27) must be positive in the range 
1 > n > o,. Physically this requirement amounts to the observa
tion that conservation of energy [(5.24) and (5.25)] requires 
energy transport by radiative diffusion in the -x direction (and 

dP v thus -!-*• > 0) while the conservation of momentum (5.23) determines 
the relation between P and n. As long as -j^-< 0, the required 
magnitude of energy flux can be obtained by adjusting -£ , but 

dP v this is no longer possible in a region where -gJ- > 0, and thus a 
discontinuous jump in density and velocity will occur across such 
a region in the absence of other dissipation mechanisms. (See 
Zel'dovich and Raizer (1966, p. 477) for analogous arguments con
cerning electron heat conduction.) 

To evaluate the right-hand side of (5.27), requires some 
<iTm o"rm assumption about -g- . If -gjri 0, then a sufficient condition 

that no discontinuity exists is; 
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« L ~ for 1> n > n r (5.28) 

This condition is most stringent when n + y Using the 

Hugoniot relation (5.26) we find that In this case (5.28) 

becomes: 

5 , i 2 + / 5 = 4.45. (5.29) 

It is interesting to note that for n > 1/2, essentially no radia
tion is required to prevent a discontinuity. However, if the 
amount of radiation is small, the gradients needed to obtain the 
necessary energy flux will become very large, and eventually other 
dissipation mechanisms will become important, even if they are 
not strictly needed to prevent a discontinuity. This situation 
will be considered in the next subsection. 

• d T m It remains to consider the case when -g-j2- > 0. The Bose-
Einstein model we are considering assumes T <• T , while we have 
found T, % T . The range of validity of this assumption 1s con
sidered below. Within this range, we take T a T , observe that 
dT_ dT Y dPy 
-fij1 > 0 implies -g^- > 0, which implies that if -gx * °' t h e n 

dn v 

-jjJ- < 0. However, the character of the photon continuity equation 
(5.3) and Its associated boundary conditions preclude -gj*- from 

eff being negative as long as Or remains positive, which is the 
physical case of interest. Thus no discontinuities arise In this 
case. 
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Thus, within the framework of the present study, equation 
(5.28) is a generally sufficient criterion for no shock discon
tinuities to arise and is plotted in Figure 5.3 as T c rJ t- It 
might be noted that (5.28) and (5.29) are consistent with previous 
treatments [(Belokon' 1959), Zel'dovich and Raizer (1966, p. 543)] 
of the occurrence of discontinuities in shocks where the radiation 
field is assumed in equilibrium. 

As has been pointed out by Zel'dovicli and Raizer (1966, p. 
546) a more intuitive, if less rigorous, approach to these ques
tions is to note that ion-ion collisions can only substantially 
influence the shock when the ion sound velocity (at n "̂  n-i) is 
above the velocity of the shock front relative to the post-shock 
material, i.e. when [using (5.23)]: 

f * K J = h M v° (5-30) 

or 

5 < *; (5.31) 

which is in good agreement with the previous results. 
Numerical shock models In which both ion viscosity and 

radiative diffusion are taken Into account are discussed in 
Sections VII and VIII and shown to be consistent with the above 
analytic results. 
Non-Radiative Dissipation Mechanisms 

If the velocity or temperature gradients in a radiation-
dominated shock steepen to the order of a few electron or ioi. 



mean-free-paths, non-radiat1ve dissipation mechanisms such as ion 
viscosity and electron heat conduction will become important. 

Quantitatively we shall consider that 1on viscosity plays a 
significant role In determining the shock structure when the 
viscous stress, P y, becomes greater than g- the radiation pressure, 
corresponding to the level at which matter pressure becomes import
ant. This criterion can then be written: 

p

v • Az 9 i / 2 |o7 |»K" i w t f v > <5-32> 

Using (5.6), (5.1) and the main Coulomb term in (3.37), this 

criterion can be re-written as: 

el" 2- 2 (7v\- ) &*& H e V ( 5' 3 3 ) 

v 
Taking ~ - 7/4 as is typical near the peak shock temperature, 
"Q * aj, enA = 10, and T •<> T^, we find that viscous effects can 
only become important when e K 0.8 HeV. (Note, however, the 
limiting effects of nuclear scattering for 6* K 1 HeV.) This 
criterion is plotted 1n Figure 5.3 as T . The exception to this, 
of course, Is when the radiation to matter pressure ratio falls 
below 4.45 at this temperature, causing the shock to steepen 
until viscosity generates the needed dissipation. 
Charge Separation 

If the 1ons are stopped exclusively by the action of an . 
electric field, the maximum electric field occurring 1n the shock 
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will be given approximately by t . * E /(en) where fl is the * max o 
characteristic shock width. Taking a = c/(3n v J F ) and using 
Poisson's equation, we find the net charge density, p, to be: 

i g p «•' * JO" 1 9 C ^ ) 2 n", Eg (HeV) (5.34) 

Thus the maximum required charge separation is quite small, and 
using (5.4) we see that the difference between the ion and electron 
velocities is also negligibly small. As discussed below, however, 
the presence of electron-positron pairs can cause substantial 
differences between these velocities. In addition, if ions with a 
different charge to mass ratio from hydrogen are present at levels 
typical of Population I stars, the electric field is not sufficient 
to ensure that all species remain co-moving. As will be shown in 
Section VIII, however, viscous forces acting between ions serve to 
keep the resulting velocity differentials small. 
Consistency of the Effective-Photon Approximation 

One expects the effective photon approximation to be valid 
provided A d = s./e « 1. Examination of the numerical solutions 
shows this to be the case for temperatures "v. 1-5 keV, depending 
on the shock energy. Temperatures < 5 keV are typically found only 
near the leading edge of the shock and in the final post-shock 
equilibrium region for shocks of low density and energy. Numerical 
sensitivity experiments show, however, that the bulk of the shock 
structure 1s little effected by conditions in these extreme 
regions. 
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The principal error involved in the effective photon approxi
mation arises from the specification of the time available for 
photon thermalization, T,. By taking t, as the smallest relevant 
shock scale, we neglect soft photons which are thermalized only 
after times longer than i,, but still in time to help cool the 
downstream portion of the shock. The sharp increase in photon 
density across the shock, however, will tend to dilute this effect. 
In addition, this error toward lower photon density is consistent 
with the policy we have used in resolving uncertainties in the 

eff 
evaluation of Q (see Section III.A), and results in the temper
atures in radiation-dominated shock models being in fact approxi
mate upper limits on the actual shock temperatures. 

Since the electrons serve principally as intermediaries in 
transferring energy between the hot photons that have diffused 
upstream and newly created subthermal photons, we expect that their 
temperature will be a good measure of the effective photon temper
ature and thus T„ % T . 

e Y 

Pair Effects 
From the results of Section III.B we note that the number of 

electron positron pairs will become significant somewhere in the 
regime e g = 60-100 keV. The substantial changes these pairs make 
in the shock structure is the topic of Section VI. The critical 
temperature T t derived there for the onset of the changes is 
plotted in Figure 5.3. 



E. Discussjon 
Comparison of the radiation-dominated shock structures pre

sented in Figures 5.1 and 5.2, and summarized in Figure 5.3, with 
the results of Section V.O shows that throughout the range of our 
calculations, radiative heat transport provides sufficient 
dissipation to mediate the shock transition, and moreover does so 
over scale lengths sufficiently large that viscosity never becomes 
an important dissipation mechanism, and serves only to mildly heat 
the ions. It is evident that while not required to avoid a viscous 
shock, inverse Compton scattering provides the dominant mechanism 
for cooling the electrons and thus reducing the peak shock temper
atures by more than two orders of magnitude from those that could 
occur in a hot-ion shock. 

The density dependence of the peak shock temperatures is due 
primarily to the density dependence of the inverse bremsstrahlung 
cutoff, tp defined in equation (4.5). This cutoff has the most 
effect in determining the effective photon emission rate at low 
energies where it is not usually dominated by the thermalization 
cutoff, TJ, and this behavior is reflected in Figure 5.3. In the 
shock calcualtions where inverse Compton processes are neglected, 
the only residual density dependence is due to the factor f E, 
defined in (3.10), which allows for inverse processes near 
radiative equilibrium, and the very small density dependence of 
the Coulomb logarithm (see eq. (3.28), (3.30), and (3.45)). The 
treatment of inverse Compton scattering used in the present study 
is substantially more accurate than the approximate treatment used 
1n Heaver and ChapHne (1974), primarily due to the use of the 



variable Gaunt factor g,M (see eq. (3.*)) in place of a constant 
"averaged" one (g, = 2.71). This results in a reduction of the 
peak shock temperatures by 5-50% from the previous work, for the 
case where inverse Corapton scattering is Included. 

The ion temperature is determined primarily by viscous heating 
and electron-ion coupling (see eq. (5.5)). For e £ 25 keV the e-i 
coupling is sufficiently strong to keep T. essentially equal to 

-3/2 T e, while at higher temperatures the T dependence of this 
coupling together with the T?' dependence of the ion viscosity 
allows moderate temperature differences to develop. Since radiative 
heat transport serves to convert the kinetic energy of the ions 
directly into electron and photon thermal energy, T. tends to lag 
T in the upstream portion of the shock where the velocity gradi
ents are small and thus viscosity is negligible. The viscous heat
ing that occurs near the center of the shock (x=0) is usually 
sufficient to make Tj > T there, a difference which is then 
quickly relaxed in the post-shock region (e.g. see Figure 5.1(g)). 
For T K 300 keV, however, T^ lags T so much in the upstream 
region that the ion temperature never reaches the maximum electron 
temperature (see Figure 5.1 (h)). The i', curve 1n Figure 5.3 
summarizes this behavior. 

As predicted by the near-equilibrium analytic shock models 
of Section V.B, the shocks are close to equilibrium near tQ = 1 
MeV, particularly In the upper part of the density range; where 
fewer photons per electron are required for equilibration (see 
Figure 5.1(a), 5.3, and eq. (5.21)). 
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Comparison of the T + and T curves in Figure 5.3 shows that 
pairs become important for radiation temperatures i< 60-70 keV and 
shock energies <\. 30-50 HeV/nucleon. The general effect of this 
transition is to increase the degree of radiative equilibrium and 
thus lower the peak shock temperature relative to the radiation-
dominated model. At the same time the source of dissipation is 
expected to shift from radiative heat transport to ion-lepton 
Coulomb friction. The calculations leading to these conclusions 
are given in Section VI. 

We thus conclude that the ion temperature remains below ^400 
keV for shock energies up to 100 MeV/nucleon, and below 
•v! 100-200 keV when the effect of pairs is taken into account. 
Since spallation thresholds (Z > 1) are «& HeV/nucleon, the amount 
of nuclear spallation that will take place in these shocks is quite 
small, and thus essentially no deuterium will be produced. Indeed 
the ni products characteristic of the temperature peaks of these 
shocks (where T is the time duration) are only of the order of 
1 0 , 5 - 1 0 1 7 cm" 3 sec, which for Ji 5 loo keV will only suffice to 

burn whatever deuterium, tritium, and perhaps He , that might have 
17 -3 been present originally. For T, •>• 400 keV and nt * 10 cm sec, 

some lithium, beryllium, and boron burn up will also occur. 
Before accepting these conclusions, it is desirable to inves

tigate whether other self-consistent shock structure solutions can 
be found (especially one corresponding to a high temperature 
viscous shock), and indeed, whether the self-consistency of the 
low-temperature radiation-dominated solutions is stable against 
perturbations. To do this it is necessary to explicitly include 
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the effects of viscosity in our calculations. This is done in two 

stages. Section VII treats one-fluid viscous shocks and their 

alteration by simple radiation f ield models. Having thus established 

workable methods of solution (in particular—efficient, stable 

numerical approaches), the treatment is generalized in Section VII I 

to a multi-species, multi-temperature model with a realistic 

radiation f ie ld. 
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Fjjjure 5_.J_ - Radiation-dominated shock structures fo r 

n Q = l O 2 0 cm" 3 . Here V = v - v Q / 7 , EO = E Q , QNO = n Q , TO = T,., 

QNGS = n 5 , NG = n , and T = T . 
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Figure 5.2 - Radition-domlnated shock structures for EQ = 30 

HeV. (See Figure 5.1 for notat ion.) 

i 



(a) n Q = 1 0 1 5 cm' 3 

(b) n Q « 1 0 1 7 cm' 3 
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Figure 5.3 - Peak and characteristic shock temperatures. The 
curves labeled NRB, RB, and RB+2C show the peak radiation tempera
ture reached in the shock where only non-relativistic bremsstrahlung, 
relativistic bremsstrahlung, and relativistic bremsstrahlung and 

radiative Compton, respectively, are included in the calculation 
{and the average thermalizable bremsstrahlung photon energy is 
conservatively taken as j kT ). These curves are plotted for density 

?0 -3 
n = 10 cm ; but except near equilibrium, the density dependence 
is quite weak. The curves labeled T (10 -10 ) are the peak 
radiation temperatures reached in a shock of the indicated density 
(in cm ) when all radiation effects including inverse Compton 

22 
scattering are included, whfle the curve labeled Tf (n = 10 } shows 
the peak ion temperature associated with T (10 ). T, m a x is the 
ion temperature that would occur If all the shock energy were 
transformed into ion thermal energy; T j* is the temperature 
(near the rear of shock) below which photon diffusion can mediate 
the shock; T is ion temperature above which ion viscosity is 
important; T, is the temperature at which the number density of 
pairs equals n ; and T 1 * 1S the final equilibrium temperature at 
n 0 = 1 0 1 5 on - 3. 
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VI. EFFECT OF ELECTRON-POSITRON PAIRS ON SHOCK STRUCTURE 

The number density of pairs created 1n a characteristic 
radiation-dominated shock width, j — ^ | , by photons moving 

l3v„n„5. with velocity \ o o c 

v y *• -£ is: 

where we have made use of (3.16); and 

t = -j,y- . From Section III.B, we have that the number 
density, n", of electron-positron pairs in relative equilibrium 
with a Bose-Einstein distribution with photon density, n , 

n* ̂  .50 #' K, (») n v —=> .63 * i f d e ' \ (6.2) 

and, for example, n* ^ .04 n at kT » 100 KeV. Combining 

(6.1) and (6.2) and assuming v. ^ v (see below), we find 

that Y-Y pair creation wil l cause the pair density to be in 

relative equilibrium for: 

£0(HeV) i 1.62 x 104 ( i - j p ) 4 3 / 2 e"* O+0.782/O 7 / 2 



For B = 50 keV, and o c = <rT, we find the pairs will be in 
< "v 

relative equilibrium for EQ * 23 1 Q ^ n HeV; for e e = 75 keV, for 
Eo * 4 3 S TSoiT H e V : a n d f o r ee = 1 0 ° k e V ' f o r Eo * 1 7 5 ° TOorTMeV-o o 
Thus for the energies of present interest, (I.e. E0 <<> 100 HeV), the 

pafrs can 6e consfdered to 6e fn relatfve equfHfirftmr whenever 

their density Is at al l significant (I.e. * nQ). 

By combining (5.1) and (6.2) we can derive the condition for 

n ± * n 0 as 

E0 (HeV) I 0.95 *~5/Z e* (6.4) 

where * is evaluated at ̂ - = 4/7 (I.e. essentially at the peak 
v o 

shock temperature). Since the density of pairs is extremely 
temperature-dependent for 8„ * 200 keV, the temperature, T , at 
which n + * nfl (derived from (6.4)), 1s a good criterion for when 
pair effects can become Important, and is plotted in Figure 5.3. 

A principal effect of the pairs is to support a current 
tending to short out the shock electric field and thus weaken the 
electron-Ion coupling, lengthen the shock scale and allow more 
time for radiative equilibration. At the 4ame time, however, the 
presence of pairs increases the opacity as well as the photon 
production rate, which tends to reduce the scale of the shock, 
while leaving the degree of equilibrium unchanged. Which effect 
dominates depends on the pair conductivity, and on the magnitude 
of the direct 1on-lepton coupling via Coulomb friction. 

While accurate solution of the resulting shock structure 
seemingly must be done numerically, and will be the subject of a 
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later paper, a fairly plausible pair-dominated shock can be 
sketched out. 

Using the facts that the total current t ough the shock must 
vanish and the fractional charge density must be exceedingly small 
(i.e. Debye length « shock width), we find that: 

v e • v, (1 - 5 ^ - ) (6.5) 
O 0 

where J v = en+ (v.-v +) is the current due to the presence of pairs 

and v t and n+ are the positron velocity and density. Approximately 

adopting the classical plasma conductivity given by Spitzer (1962) 

to a pair gas by multiplying i t by a factor </l n+/n -, we find: 

^ - ^ 3 . 5 6 x l O - S f ( k e V ) E 0 ( H e V ) ^ £ & £ (6-6) 

where t is the electric field, n̂ ., the total e" density, and 

L „ the maximum electric field that can occur in the absence of 
nidx 

pairs (see V.D.). He see that for flg K 60 keV, EQ £ 30 MeV, 
n* •*• n„. and l % r „ that «L/en„v,. 1s K 1. Since the ve loc i t i e s + e max ± o o 
in (6.5) cannot be negative, a self-consistent solution of (6.6) 

will be reached 1n which £„<£„,„ and J\/en„v„ % 1. Physically, 
A ntaK I u o 

one expects that without the aid of a strong electric field the 
electrons will be approximately comoving with the radiation field, 
and most of the shock dissipation will occur via resistive heating 
of the pairs and Coulomb friction between the ions and leptons. 
The relative contribution of these effects can be estimated by 
calculating the ratio of the classical Coulomb stopping distance 



lei ( d e r 1 v e d f r o m Spltzer 1962) to the distance over which the 
reduced electric field can stop the ions. This ratio 1s given by: 

\r fMnV) 1 ° 
uc 

'V" 0 " ' L r v e °T 

10 no h 
i n A n e ^max 

(6.7) 

For J^/en„v„ = 1 appropriate when z « r „ „ • we find from (6.6) ± o o max 
that: 

"ei .35 (6.8) 

It thus appears that electron-Ion Coulomb friction will provide 
the dominant dissipation when more than a few pairs per nucleon 
are present. The scale of the shock, A + . is then t • with 

.7 •-« e» 10 (6.9) 

which holds when —• » 1 and -£-*• < 1 and provided the classical e +e 
w n'e v 

conductivity and stopping lengths assumed above are applicable. 
Two stream instabilities between the ions and electrons or 

the electrons and positrons may, however, lead to anomalously 
small values of t ^ and the plasma conductivity. Idealized 
linear theory (Stringer 1964) predicts the existence of stable 
counterstreaming for |Vj-vJ < 1.2 (ee/»>e) "ben T

e = T t. 



Fore > 6 0 k e^ where pairs become important, we thus require 
E > 160 HeV to reach an unstable regime for Wj-vj = v_. o — ' 1 e' o 
Further, McKee (1970) has shown in one-dimensional numerical 
simulations that the e-i two stream Instability leads to heating 
=m l vf- vJ which is a factor mjm too small to mediate a 
collisionless shock. Thus classical two-stream instabilities do 
not appear to play a crucial role in the shock structures of 
present interest. 

Returning to equation (6.9), we see that due to the rapid 
rise in pair number with temperature below ZOO keV, the absolute 
size of the shock will be smaller than it would have been without 
pairs, decreasing to a minimum of 1,.2/s at 100 keV and then expand
ing. Uhen the size of the shock 1s measured in Compton lengths, 
however, the shock width with pairs increases monotonically and 
always remains more than that of a shock from which pairs have 
been artificially excluded. The pair shock's radiation field 
will thus be seemingly better equilibrated and reach a lower peak 
temperature than the pairless shock, although one must solve the 
problem self-conslstently, allowing for the sharp decrease of 
pair number with temperature. The probable outcome is that the 
temperature will remain below i, 100-200 keV for E < 100 MeV/ 
nucleon. Using the criterion of section V.D we see that this is 
too low a temperature for ion viscosity to become important even 
over the reduced shock scales. In addition, ion viscosity will 
be dumped by ion-lepton collisions. 

/ We are thus led to the overall picture of a pair-dominated shock 
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where a relatively cool rad1at1on-pa1r field stops the Incoming 
electrons fairly abruptly near the front of the shock while the 
ions are stopped gradually by the pairs, heating and regenerating 
the radiation-pair field 1n the process. This scenario Is in some 
respects similar to the equilibrium pair-dominated shocks suggested 
by Colgate (1969) to occur in the mantles of compact supernovae 
(n Q -v, I 0 2 8 cm" 3, T *, 500 keV, E Q > 16 HeV) and to be involved in 
cosmic ray production. 



VII. SHOCK MODELS WITH VISCOSITY 

A• One Fl u 1d.Viscous Shocks Without Radiation 

Specializing the shock structure equations (2.13)-(2.20) to 
the case of a single fluid containing no radiation or pairs, we 
obtain after some rearrangement: 

V o k T " " v S7 = m n o v o ( V v ; o v < 7 1 > 

" V o k T " «ax " I m V o ( V v ) ( V v + 2 e o V rtoPovo ( 7 - Z ) 

n = n

0

v

0 / v (7-3) 

Here P and » are the pre-shock pressure and spe;ific heat 
coefficient, e s ' V ™ v', and the species identifying sub
scripts have been dropped. 

Models of the type represented by (7.1)-(7.3) have been 
studied by reveral authors (cf. Zel'dovich and Raizer, 1966). 
For clarity and continuity, and to develop methods applicable to 
the more general shock problem, we shall Independently derive 
some of the properties of this model, for the case of constant 
v and *. 

It is convenient to first cast equations (7.1)-{7.3) into 
the dimensionless form: 

T - " « - j r * n ( 1 - n ) + n £ o ( 7 - 4 ) 

O T - qT = ?0-")(l-n+2V * V o < 7' 5 ) 



whore: 
. v 

n = 1 n 0 n 

. V*. . - ° ° T - S i 
T = — 2 

niv 

(7.6) 

(7.7) 

The Hugoniot relations governing conditions on either side of 
the shock are obtained as usual by setting the gradients in 
(7,4) and (7.5J to zero. By construction the pre-shock solution 
is n=n 0 > n°l» T=e 0. For the case of constant a, the post-shock 
conditions {denoted by the subscript "1") are found directly to 
be (independent of the constancy of v and <)•• 

1+5E„ ,. 3 

„ Jffl'K. * 2 J7.8) 
1 2a+l I 1+8E„ 

-^2. a » 3 
,(l+5c0;(3-c0) 3 

a - w (H2(Ha)c0)(Z«. "») 
' 1 • (2a+l)Z 

n l . 
" o " 

. 1 

i r 
j (»+fle0)(6.E0) 

«9 

(7.9) 

a = 3 

(7.1») 

For non-cpnstant a, the Hugoniot relations M n be solved quadra-
tically and then iterated to find n, and ̂ , 

For the special case <s= l/(a+l) (a constant), equations 
(7.4)-(7,(5) can be solved analytically. (This was first shown 
by Becker 1922). ihls Is a not unreasonable approximation for 



single species gases or single component plasmas. Indeed S -.36 

for the latter case, although y and K are then highly temperature-
dependent. Adding (7.4) to (7.5) and making the above substitution 
we find: 

(a+l)t + \ n Z- ^ ^ [ ( . t l l T +|-n 2] = U + l ) E o
 + f (?•") 

1 2 Making the substitution h = (O+1)T •> j TI , we see that (7.11) is a 
standard first order differential equation having the solution: 

h = h Q + D e ( a + 1 ) ? (7.12) 

1 where h„ (O+1)E + s- is the upstream value of h, and D is an 
undetermined constant. Unless D=0 the exponential term 1n (7.12) 
will blow up at the downstream limit, while the Hugoniot relations 
show h to also be the correct downstream value of h. We there
fore conclude that h=h throughout the shock. Using this result, 
we find from (7.4) and (7.8) that: 

_dn „ Q-nHn-n, )(&»•!) = ( a + 1) d T 

"dc 2n n d? (7.13) 

which can be integrated to find ?: 

a-(l+o)e in O-n) 
(n-n,)" 1. 

+ E (7.14) 

where c is a constant fixing the location of the shock. 
Asymptotically: 

1-n * eKp[(a-(l+a)e 0k] 



n-n,i- exp[-- (a-H+a)eJc] c -• +» (7.15) 
1 H] u 

Equation (7.14) is singular for E = a/(l°Hs) which is just the 
point where v. equals theinitial adiabatic sound speed, c_, and 

C 5 

retracing our steps we find g-3 = 0 as expected. In general, the 
upstream Mach number, H, is given by: 

v, o . r _ 2 _ _ i V 2 M^En^r-]'" (7-16) ;
 co • l r n ^ 

I t is interesting to note that the velocity profile given by 

(7.14) is identical to that in the radiation-dominated shock model 

when E « 0 and a = 3 (see(5.10)), although the relation between 

T and n is different. 

Taking another special case, we can investigate the role of 

viscosity by setting 6 = 0 and seeing i f continuous shock solu

tions can be obtained. Differentiating (7.4) and using (7.5) to 

eliminate P- we find: ds 

l+e 
This solution is singular for n c

 a -g-^- and we thus expect a 

shock discontinuity unless q. > r\ . This occurs only for weak 

shocks with; 

'.> 13 «"• « [ { E f W (7.18) 

For a = i , this criterion becomes H < /S75 = 1.34. 
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Thus ordinary heat conduction is usually insufficient to 
mediate a strong shock and some other dissipation mechanism 
(typically viscosity) is required to prevent a discontinuity. 
Note, however, that no discontinuity occurs foro< i, a case 
which might correspond to a highly Fermi-degenerate medium. 
This fact, together with the large heat conduction coefficient 
typically associated with such media, might dramatically increase 
the scale rf the shock relative to a viscous mean-free-path 
estimate. The possible implications of this for carbon-detonation 
supernovae are being investigated. 

In general, the physical content of criterion (7.18) is that 
in the absence of viscosity, relatively little increase in the 
energy density near the back vrwii) of a shock is required to 
provide pressure balance Iscales as (1-n) from (/.4)), while the 
material there is being rapidly compressed (*— ). For strong 
shocks, this usually results in a negative temperature gradient 
and thus the inability to provide the required heat flux toward 
the front of the shock. Weak or Iowa thermal conduction shocks 
are possible because they are not sufficiently compressed to 
encounter this difficulty. Also, as we have discussed analytical
ly in Section V.O and will treat numerically in the next subsec
tion, strong shocks with sufficiently high radiation pressure 
may be mediated solely by radiative heat conduction, basically 
since the radiation field floes not take part in the final sharp 
compression. Note also that the radiation field can transport 
energy against a temperature gradient if a sharp enough gradient 



86 

in photon number exists to compensate. 
Returning to the radiationless case at hand, we wish now to 

solve the basic viscous shock equations, (7.1)-(7.3), numerically 
in the case of arbitrary 6 (but constant y and K, and o = j>-

This can be done in a stable and convenient fashion by differenc
ing (7.1) and (7.2) in the manner given in Appendix C and solving 
the resulting equations simultaneously for v 1 and T 1 at 
point x 1 in terms of the variables at point x 1. The form of 
the special case solution (7.12) suggests that such an integra
tion will be stable only if carried out in the -x direction, i.e. 
from the back to the front of the shock, for otherwise the 
unwanted exponential solution will exponentiate off the noise 
inevitable in any finite difference scheme. This is indeed 
observed to be the case. 

In order to begin such an integration, one needs an 
asymptotic solution for the downstream limit for T in terms of v. 
To obtain such a solution, we make the substitutions E = n - n-| 
and E = T, - T in equations (7.4) and (7.5). Using the 
Hugoniot relations (7.8) - (7.10) and neglecting terms higher 
than first order in E and e , we obtain: 

T 

The form of these equations and the methods of nonlinear 
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mechanics (cf. Hinorsky 1917) suggest trying exponential solutions 
in the form: 

e = B eXc- e T = C e H (7.21) 

where B,C, and X are undetermined constants. Making these 

substitut ions and solving for C/B y ie lds: 

IT. 1 
c " 4' [ ( l - 3 E o « n i « ) 2 - l e T j S ] 1 ' 2 - 1 -3{n,«-c 0 ) (7.22) 

The shock integration is then started by choosing c = e « 1 
at x = 0 and then finding e from (7.22). Numerically, we find 
that using this asymptotic solution leads to the appropriate 
upstream boundry conditions. 

The results of such numerical integrations are shown in 
Figure 7.1 for the case of strong shocks with various values of 6. 
Note that the majority of the velocity change takes place over a 
few viscous lengths (A 2 " ., ) near the back of the shock u mn 0v 0' 
while thermal conduction has preheated the incoming material 
over a distance X = -U . The analytic solution for the special 

K O P 

case 6= A agrees precisely with the numerical calculation. It is 
also clear from Figures 7.1 (a) and (b) that heat conduction does 
not play an essential role in the formation of a viscous shock. 
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B. Viscous Shock Models with Specified Radiation Fields 
To study the effects of radiation on viscous shocks, we 

reintroduce the radiation pressure, energy density, and heat 
transport terms into equations (7.1)-(7.2), yielding: 

(l+xn)n0v0kT - wv ̂  = mn 0v o(v o-v)v + P Qv (7.23) 

(5+3vn)n„vkT - x„n„vkT $L . K - j j I = inn v (v -v)(v -v+2e„vJ 2 A ' o o o o dx dx 2 o o o o o o 

where: 

and: 

P = U + x j n kT 
0 ' A 0 ' 0 0 

+ a o V o (7.24) 

0 " v o n o a c 
17.25) 

3/2 + 3 X o 

1 + X 
*o 

(7.26) 

Here x 0 is the pre-shock value of x,and the specific heat coef
ficient for the matter has been taken as 3/2. In addition, our 
assumption of constant u and K will be retained, 

in dimensionless form these equations become: 

(1+xnh - n« jjjj.= n(l-n+c0) (7.27) 

(\ * 3 X „ ) T - A m {j* - (1+xnA) ̂ - = ^l-n)(l-n+2c 0) *»„£„ (7.28) 

where A = r̂ - . In the present section, we shall assume x(x) is a 
K 

known function. 
The main analytic result of this model, the ability of 

radiation to mediate a strong shock, has already been discussed 
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in a slightly different form in Section V.D, and we will concen
trate here on the methods necessary to obtain specific numerical 
solutions. 

As is obvious from the radiation-dominated shocks shown in 
Figure 5.1, the photon number gradient, -£ , will not in general 
vanish at the same downstream region as the velocity and pressure 
gradients. Instead, an extended radiation relaxation region will 
typically occur after the shock-proper, in which increasing 
photon number balances a declining temperature to maintain 
constant pressure. It is numerically convenient to separate 

these two regions by choosing an x = x such that g^l « 1. 
[xs 

For the purposes of calculating the structure of the shock-proper, 
the downstream radiation conditions are taken as x s = x U s ) and 

dx 
xs = d;'x. ; and &•) ^ is assumed to become- negligible. 

Pseudo-Hugoniot relations can then be obtained by first 
assuming jr-*0 in (7.27). Differentiating the result we find 
immediately that 52- also •* 0, where n = 0+xn)T. We then find 
the pseudo-downstream conditions {denoted by subscript "1") to 
be described by the relations: 

O + X ^ H , = n-jO-^+e,,) (7.29) 

(§ + V i > T i • "iTi"i i+x^T = ^ ( 1" ni ) ( 1""i + Z eo ) 

« V o ( 7" 3 0 ) 

The second term in (7.30) represents residual dissipation 
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occuring at the relaxation layer interface and is typically 
small. Indeed, if this term becomes too large, meaningful solu
tions of (7.23)-(7.30) forn, and T ) do not exist, implying that 
our arbitrary association of shock ana radiation field by our 
choice of x was nonphysical. Typically, however, reasonable 
values of t, and x, are readily found by using (7.29) to eliminate 
T-, from (7.30) and then iterating. 

To find pseudo-downstream asymptotic solutions, we proceed 
as before, except that instead of E we introduce the expansion 
variable e = n. - n where fl, = U+x,n,K, • We obtain the 
relation: 

{f-)2 Au, + ̂ L . [A^O-Zri^) + A U ^ T , + 1,6(0,-I,1CK)] 

+ [(l-Zn^EoJA^x,!, - n,5(l-n, %-n,C K)] = 0 (7.31) 

where: 
W**W Hx,n,A AQ-,,) 

°1 = 1 + x,n, Ml 8 A(l+Xln,) c * s T ^ r x l ( 7 , 3 ? ) 

This relation can be readily solved quadratically with the 
positive value of the square root term being physical. E is 
then related to e and c by the expression: 

. -^3211 l7.33) 
T 1 +Xin, 

We can now quantize our earlier specification of x by 
choosing n(x ) = n,+e where E « 1 and is typically taken 10 . 
We can then find T(X ) by making use of (7-33), and thus have a 
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starting point for the numerical integration of the shock model 
equations (7.23)-(7.24). 

The difference scheme adopted for equations (7.23)-(7.24) is 
given in Appendix C. Due the change in character of the shock equa
tions as radiation pressure becomes dominant, most straightforward 
difference schemes are either intrinsically numerically unstable in 
one or more limits or require an exceedingly fine x-mesh to be con
vergent. The method adopted, however, appears to satisfactorily 
resolve these difficulties. 

Figure 7.2 shows the shock structures that result from assum
ing that the radiation/nvtter pressure ratio U E xn) remains con
stant across the shock, while Figure 7.3 shows the results when 
x is taken to be an exponentially increasing function of x given 
by: 

x(x) = x 0 + ( x r x 0 ) e 3 x A o (7.34) 

The t rans i t ion from a viscous to radiation-dominated shock is 

seen to occur for x = 3-5 ( in the region of the maximum veloci ty 

gradient) , in agreement with our analyt ic l i m i t s . Spec i f i ca l ly , 

the scale of the veloci ty gradient undergoes a t rans i t ion from 

i* to •vx n/3. In addi t ion, the shocks with exponential radiat ion p o 

f ie lds already exhibi t the temperature maximum typical of the 

non-equilibrium radiation-dominated shocks of Section V. 
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Figure 7.2 - Shocks with constant radiation/matter pressure 
ratios. Here, and here only, XI = xn> ITOT is the total number of 
zones; and the remaining notation was defined in the caption to 
Figure 7.1. Note that A E A A is equal to the ratio of the 
radiative diffusion length to the heat conduction length in the up
stream region and is •>. 7 times this ratio in the downstream region. 
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Figure 7.3 - Shocks with exponential radiation f i e l ds . Here 

XI = X i . and the remaining notation i s unchanged. Note that as 

x, is varied from 0 to 50, a hot viscous shock is transformer1 into 

a cool radiation-dominated shock with a characterist ic temperature 

peak. 
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VIII. GENERAL EFFECTIVE PHOTON SHOCK MODEL 
A. Formulation of the Model 
We are now in a position to consolidate our results into a 

model containing both explicit viscosity and a realistic treatment 
of the radiation field based on the effective photon approximation. 
We shall refer to this as the general effective photon shock model, 
and base it on the general assumptions of Section II, while in 
addition assuming essentially comoving ions and electrons, the 
absence of crucial pair effects, and the validity of the effective-
photon approximation. 

The shock structure equations (2.13) - (2.20) then take the 
form: 

(1 + rR + xn) n 0v QkT - uv ̂  = " V o ( V v )
 v + P ( jv (8.1) 

(f xR • a e • 3X„) V o k T - TO V " T ? " «' 37 <8'Z> 

= F m V o ( V v > ( V v + ! V o ) + V o v o 

VAQ dn 
d x l V "dxC"T" dT J " "Y ( V ' - d - x t ^ ^ ' € ' (8-3) 

|n v k ^L = . V o k T dy. + . ( f c .5/2 (dv,2 
2"oV dx v K , i dx ft2VKI1' (dx' 

n„v„ , A, 
H r ^ 372 3MT-T,) (8.1) 

n v 
n = n e = n i = -f5. ( 8 . 5 ) 



103 

where T R H -*-> and 

P 0 = (Z+xJn„kT„ a„ = -^zr- (8.6) < * V n o k T o ao : 

3(1%) 
2 t *o 

Ke + " W o " (8.7) 

As before, we have neglected ionic heat conduction due to its 
small coefficient, and since as was shown in Section VILA, it 
has little effect on the velocity profile and only moderately 
{& £ .36) broadens the temperature profile of a viscous ion 
shock. 

To cast equations (8.1) - (8.2) into dimensionless form, 
it is convenient to introduce 5'=,-.where X is an arbitrary 

A x x 

constant length. (Note that the heat conduction length, A , is 
5/2 no longer suitable because of its large (MkT) ) temperature 

dependence.) We then obtain: 

0 + t R + xn)r-n«'3^=T,{l-n+c 0) (8.8) 

(f T R • a e • 3xn) T - A'nx & , - SK %. 

•£ { l -n )0 -n+2 t 0 ) + V o 

where 
,« - V A-- ° K* 

(8.9) 

(8.10) 
" n n o V x \ K V o M x 

(8.9) 

(8.10) 

Final Hugoniot relations are then found by setting all 
gradients to zero and requiring the radiation field to be In 
equilibrium, yielding: 
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2 T f • x q V f 4 = "f^-W ( 8 J 1 ) 

(a e f+|) t f + 3 n f x q T f
4 = i(1-n f)(l-n f+2 E o) + a 0 E 0 (8.12) 

mv, 2 where v = fn jp (-f—) and the subscript "f" denotes a final 
downstream value. (The subscript "1" will be used below to 
denote pseudo-downstream variable values.) These relations can 
be readily quadratlcally Iterated to find T- and n f, and 

*f = Vf 3 • 
Pseudo-Hugoniot relations are obtained in the same manner 

as described in the previous section, with the definition of 
n generalized to n = (1 + T R + xn)i, yielding: 

n = n(l-n + e 0) (8.13) 

an - (l-u')A'm j[|> = \ (l-n)(l-n + 2e„) + V o (8.14) 

where: . 

" " A - ( 1 + T R • x n] a = l * t H » x n ( 8 - 1 5 ) 

By construction, these conditions describe any point, in the 
radiation relaxation region characterized by g p , jja, £ 0, and can 
be solved iteratively if g£-,x, and *D a r e known at that point. 
Her, the relatively small amount of dissipation arising from 
the slow variation of T R 1n the relaxation layer due to e - 1 
relaxation, and of n due to the change in a during radiative 
equilibration, has been neglected. 
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To fix the location of the shock we shall choose a particular 
point x = x near the upstream boundary of this region, by spec
ifying that the true value of n (x s) differ from the va'.^e deduced 
from pseudo-Hugonlot relations (8.13) - (8.15) by a small amount 
c s. We find T(x) and v(x) by using equations (8.1) - (8.2) to 
Integrate upstream and equations (8.13) - (8.15) to find conditions 

values for T R ( X ) and n f x ) . Once values for T(x) and v(x) are 
found, equations (8.3) and (8.4) are sequentially solved to find 
new values for T„(X) and rL(x). The whole process is then iterated 
until it converges. 

To begin the upstream integration to find T and v, we still 
require an asymptotic starting solution. Following the same 
procedure as before we find e can be obtained by quadratically 
solving the relation: 

s 2 
A'u,' + ~M • [A 'P , - ( l - 2n , + e 0 ) + A-ppc,^ 

nl*l' V V K J + [< ' - Z n l + £ 0 ) A *WlV, 

- 1 ^ , ( 1 - 1 , + E 0 - i i ,c;> = o 

where\ A-o^m f w 3 ^ 

(8.16) 

(8.17) 
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Here TII ru, and related "1" subscripted quantities have been 

obtained from the pseudo-Hugoniot relations at point x5- We 

then find: 

"-- - ' '8.17) 
TR^lnl 

The photon cont inui ty equation (ti.3) and ion temperature 

equations (8.4) are solved by methods very s imi lar to those 

used fo r the photon-dominated model, except that gj- Is evaluated 

e x p l i c i t l y from the preceding solution for v (x ) . The photonic 

boundary conditions ( n Y = -S n x* = "Y a s x * ™ an& n Y = b T o 

or 10 n as x •* - °°) are taken at points far enough upstream 

and downstream as to have negl igible e f fec t on the bulk of the 

shock. The ion heating equation is integrated from upstream 

to downstream star t ing from the condition TR = 1 • 

The exp l i c i t dif ference scheme used for equations (8.1) -

(8.4) is given in Appendix 0 . Typical ly, runs Involving % 1000 

mesh points converge i n 10-15 overall i t e r a t i o n : . 
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B. Effect of Non-Hydrogenic Ions 

The envelope of a normal population I star contains * 25% 

by weight of helium and •>- 21 higher-Z mater ial . Since these 

ions have d i f fe rent Z/A rat ios from hydrogen, a given e lec t r ic 

f i e l d is not su f f i c ien t to keep a l l species comoving with the 

electrons. Instead, the e lec t r i c f i e l d w i l l act to keep an 

"average" ion comoving, while individual ion species develop 

d r i f t ve loc i t ies whose magnitude is l imi ted pr inc ipa l ly by 

ion-ion co l l i s ions . 

Quant i tat ively, we f i nd that to maintain pseudo-charge 

neut ra l i ty . 

L "i z i • £ "K " e \ (8.19) 

and assuming the e lec t r ic f i e l d to be the dominant force 

accelerating the ions, we f i n d : 

e o -E 1 1 1 0 dx (8.20) 

where nj is the pre-shock density and Z„ the number of protonic 
charges in component j. DifferentUting (8.19) by time and 
using it to rewrite (8.20) gives: 

EA i d V i 

Pi 
n 1 v e d v 1 

" ° e v i 
dx 

dv e 

v e a 3 T * * .. & v8.21> 
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where A., s ra./mH 

To use our present model to estimate the magnitude of the 

ion d r i f t veloci t ies and resultant ion heating, we i ha l l r es t r i c t 

our at tent ion to a hydrogen-helium plasma, and assume that the 

helium d r i f t ve loc i ty , VJ„ . -«> re la t ive to the protons, is in 
dv dv. j 

approximate steady state t t - e . gs r = g j r = 37) and v d r , f t K < „ . 
0 

(This latter assumption is founi to be self-consistent over a wide 
range of parameters). This allows us to approximate the insensitive 

(8.22) 

From Burgers (1960) and Section III.D we find that the force on 
the ce-particles, F , due to collisions with the protons is given 

a 
factor <7» , as: 

4-
i 

by: 
F

0 p * f V p v d r i f t (8.23) 

where in cgs uni ts : 

f = 8.23 x 1 0 " 4 9 Jlni. ( k T 1 ) " V 2 (8.24) 

provided v d r t f t < v} , the ion thermal velocity. Requiring the 
Coulomb drag force to compensate the differing electric forces on 
the o's and p's sufficiently to give them roughly equal acceler
ations, we find: 
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eVx - fVJdrift . 2 e V* + f V c , v d r i f t , „ 2 5 , 

V p " V . 

and solving fo r v d r i f t > we have: 

. eK - \K ^H v dv 
M r i f t f ( n jn + m n ) " n + 2n f dx p p o a p a 

(3.26) 

The rate of ion heating from Coulomb d iss ipat ion, H , i s then 

given by: 

2 ° 
n n„ 4muv'~ / . ,2 

Inserting H on the right-hand-side of the ion heating equation 
n v 

(8 .4) , and re lat ing n = —-p to n In such a way as to keep the 

i n i t i a l mass density constant ( i . e . n = n - 4 n a ) , we can approxi

mately include helium effects in our shock model, without extensive 

modif ications. The price we pay for th is convenience is to s l i gh t l y 
n<> 

( for small xup - ~TT) underestimate the electron-ion density r a t i o . 

The resul t ing apparent over-estimate of photon creation ra tes , i s 

almost exactly compensated for by the fact that per-par t ic le 

bremsstrahlung rates are (Z II ) - 4 times larger for alpha 

part ic les than fo r protons, which we do not include in our 

calculation of radiat ive emission. 

For E > 1 MeV, the f i na l equil ibrium temperature 1s high 

enough to keep the high-Z atoms su f f i c ien t l y stripped so that 



no 

bound-bound and free-bound emission processes do not become 

important, Csee t5.20l and Clayton 1968, p. 224], 
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C, Results and Discussion 
The shock structures that result from this model are shown 

in Figures 8.1 - 8,3 ror various values of n. and E . The 3 o o 
calculations involved were started "hot" with essentially no 
radiation in the region of the shock. As can be seen, they have 
in all cases relaxed to radiation-dominated shocks very similar 
(typically within 3-5%) to those calculated in Section V. and 
the discussion of the salient features of these shocks given in 
s V.E still applies in detail. 

Figure 8.4 explores the effects of the presence of helium 
for a 40 MeV/nucleon shock, and is seen to result in only modest 
ion heating even for a 50X mass fraction (x„ = .25). For lower 
energies, electron-ion coupling and ion-ion Coulomb friction are 
sufficiently strong that there is virtually no effect. At higher 
energies pairs become important, and as we have seen, all species 
will be decelerated principally via ion-lepton Coulomb friction. 

To search for stable "hot-ion" shocks of the type predicted 
by Colgate (1975), runs were made in which radiation emission was 
reduced by a factor of 100, resulting as expected, in hot viscous 
shocks. When these had converged, the radiation emission rate 
was returned to normal and the structure allowed to relax. This 
always resulted in reaching the same radiation-uominat.ed shock 
structures obtained above. An example of this process is shown 
'n Figure 8.5. Note, in particular, that when the radiative rates 

* in ly ort 
Specifically, runs were made for ng = 10 , 10 , 10 , and 
1 0 2 2 cm" 3 and E Q = 1, 10, 30, 50, 100 HeV. 
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are returned to the i r f u l l values, radiation diffuses forward and 

changes the shock structure in such a way as to allow increased 

d i f fus ion . Tne ensuing radiation di f fusion wave engulfs the hot-

ion shock, broadening and cooling i t into a radiation-dominated 

shock. Figure 8.6 shows some of the typical intermediate hot-ion 

shocks. Note that even with emission reduced by a factor of 100, 

the residual amount of radiat ion is s t i l l suf f ic ient to keep 

T « Tj near the center of the shock. In roost cases, reducing 

radiat ion emission by a factor of 10 i s not suf f ic ient to cause 

a hot-ion shock. 



Figure 8.1 - Strong shock structures including viscous effects 
on "i 

for n = 10 cm . Note the close s imi la r i t y of these shocks to 

the radiation-dominated model shocks of Figure 5 .1 . Here V = v; 

XIO = x 0 . the upstream value of x;Y is the helium mass f rac t i on ; 

u is the i te ra t ion number; and the remaining notation is common 

to the previous figures. 
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Figure 8.? - Strong shock structures including viscous effects 
for n Q = l O 1 7 cm" 3. 
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Figure 8.3 - Strong shock structures near the onset of electron-
positron pair-dominance (See Figure 5.3). 
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Figure 8.4 - Effects of the presence of helium (E Q = 40 MeV; 
20 -3 n - 10 cm ). Note that except for a moderate increase in ion 

temperature near x = 0 , the shock structure is only very slightly 
effected. 
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Figure 8.5 - Relaxation of a hot-ion shock to a radiat ion-

dominated shock. (E = 30 MeV, n Q = 1 0 Z 0 cm" 3 , and Y = .25). 

frame labeled J = 1 shows the i n i t i a l shock configurat ion. 

In frames 2-11, the radiat ive rates are reduced by a factor of 100, 

and the i n i t i a l structure is seen to relax to a hot-ion shock. In 

frames 12-25, the radiat ive rates are restored to normal, and the 

hot-ion shock is rapidly transformed into a radiation-dominated 

shock ident ia l to that of Figure 8.2(c) ( including axis labels) 

except for a very s l i gh t l y higher ion temperature at x = 0 due to 

the presence of helium. 
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Figure 8.6 - Typical hot-ion shocks (radiat ive rates reduced 

100-fold). 
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IX. DISCUSSION AND ASTROPHYSICAL IMPLICATIONS 

A. Prospects for Deuterium Production in Supernovae 

In the previous sections, we have shown under fairly general 
15 22 assumptions that strong shocks in the density regime 10 -10 

_3 
cm and energy regime 1 to % 40 MeV/nucleon will be non-
equilibrium radiation-dominated and reach peak temperatures 
below °* 70 keV, while low temperature (& 200 keV) pair-
dominated shocks are likely to prevail in the <v, 40-100 HeV/ 
nucleon energy range. As we discussed in Section V.E, the 
limited nucleosynthesis that can occur in such shocks will 
tend to burn up rather than produce deuterium and other light 
elements. We conclude that 1f light elements are produced in 
supernovae. It will be under circumstances and physical conditions 
other than those we have assumed. With this 1n mind, it is useful 
to review both our general assumptions and the context in which 
the shocks have been set. 

Energy and Density Regime 
The density regime was chosen to be that typical of the 

envelope of a red giant star, but there seems no basic physical 
reason why our models can't be extended upward in density until 
the onset of Fermi degeneracy, the breakdown of the assumption 

2 
that the inverse bremsstrahlung cutoff be « m c , or the onset 
of sufficiently relativistlc electron temperatures that the 
physical parameters calculated in Section III become quallta-

2 22 \ 
tlvely suspect (I.e. 0 » m c ), Above n Q = 10 cm , however, 
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the f ina l post-shock equil ibrium temperature is £ 10 keV for 

E > 3 MeV, so any deuterium produced is l i k e l y to be burned 

up before the post-shock region can be su f f i c ien t l y cooled by 
12 expansion over typical red giant length scales (e.g. for a 10 

25 cm radius and a .1c expansion veloci ty, we have m = 2x10 

cm" 3 sec while <ov^, 0(10 keV) = 1.2x l0" 1 8 cm + 3 sec" 1 and 

<tiv>pp (10 keV) = 1 .6x l0" 2 3 cm3 sec"1 (Fowler, Caughlan and 

Zimmerman 1 9 7 4 ) ) . 

Again, while no basic physical approximation breaks down 
at n = 10 cm" , initial length scales of £ 3x10 cm are 
required at that density to even approach the assumption of 
reasonable optical thickness (e.g. see Figures 5.2(a)), and 
distance scales i< 10 cm are required for such a region to 
contain a solar mass. Such large red giants are observed to 
be far from average, and indeed far less than .1 solar mass 
of such low density material is believed to be contained in a 
more typical red giant (Iben 1973). 

For en'"gies below 1 MeV/nucleon, little nuclear spallation 
will occur ev*.n in a hot-ion shock, while shock energies > 100 
MeV/nucleon must of energetic necessity occur only in a small 
mass fraction of a supernova. Physically, very low energy 
shocks are likely to be in radiative equilibrium (in part 
due to bound-bound and bound-free processes) and to eventually 
become viscosity-dominated when the equilibrium radiation 
pressure can no longer satisfy criterion (5.29). At ei.ergies 
above 100 MeV/nucleon, higher radiative transfer moments 
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(e.g. radiative momentum transport) become important since 
v is no longer « c, and 1n addition relatlvlstlc kinematics 
must be employed (Johnson and McKee 1971). 

Optical Thickness 
The assumption of optical thickness for shocks giving rise 

to a cosmologically significant amount of deuterium can be 
shown to be reasonable by noting that the radius, R, beyond 
which a shell 30 Thompson lengths, JL-, wide and containing 
.01 H 9, where M e is the solar mass, 1s given by: 

R = [ T 2 W J =l.Sxl01 4cm (9.1) 

Since: 1) 30 il- is a greater distance than radiation can diffuse 
in a shock passage time for E £ 1 HeV; 2) R is considerably 
larger than the radius of typical red giants and thus presumably 
pre-supernova stars; and 3) for a galactic Type II supernova 
rate of .03 year" , a galactic age and mass of 10 years and 
10 1 1 M 0, and a current D/H ratio of 1.4xl0"5 (Reeves 1974), a 
mean supernova event must produce 5x10 H of deuterium and 
thus involve the processing of ̂  .01 H (even for Y = .5) of 
material to T, £ 10 HeV; we conclude that significant optically-
thin deuterium production is unlikely in supernovae. Such 
production is not ruled out, however, in supermassive stars 
of the type discussed by Hoyle and Fowler(1973), although no 
evidence of the existence of such objects has been found. 



133 

Assumgtion_ of Steady State 

Similar arguments can be made to qualitatively justify the 
assumption that the density regime through which the shock 
propagates is sufficiently wide that the shock has reached a 
near steady state condition. This follows since 30 JU, 
equivalent to ^ 90 v /c characteristic radiation-dominated 
shock lengths, is a more than adequate distance to recreate 
all the radiation in the shock and thus probably to relax any 
significant structural transients. 

Sensitivity to Radiative Rates 
As noted in Section VIII.C, a 10 to 100-fold reduction in 

radiative rates is required to produce a hot-ion shock. Numeri
cal sensitivity experiments suggest, however, that the present 
treatment of the radiative rates is accurate to within a factor 
of two, with most of the uncertainty arising from the specifica
tion of the dynamical cutoff, T ., due to inverse Compton scatter
ing, in Section IV . Note that the most conservative reasonable 
assumption was made there. 

A multigroup treatment of the radiation field in the form 
indicated by (2.20) is probably required for more accurate 
results, and is being undertaken in connection with the neutron 
star accretion problem (See S IX. B). It is evident, however, 
that the present level of accuracy is sufficient to settle the 
deuterium production question. With respect to errors in the 
relativistic corrections to the bremsstrahlung rate, we note 
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that the use of Gould's (1974) quadrapole e-e bremsstrahlung 
rates instead of those given by Maxon (1972) typically makes 
only i- 2% difference in the calculated shock structures. 

Navler-Stokes Treatment of Dissipation 
Since radiation-dominated shocks typically extend over 

several Compton lengths, sources of dissipation that are non
linear 1n the gradients of the physical parameters are unlikely 
to become important, and so a kinetic or Honte-Carlo treatment 
of the shock structure does not appear necessary. It is 
interesting to note, however, that strong hot-ion viscous 
shocks occurring over 1-2 ion-ion mean-free-paths can show 
several interesting nonhydrodynamic effects. In particular, two 
dimensional Honte-Carlo calculations of shocks made up of hard 
spheres (Bird 1967) show that such shocks are a factor of 1.5-2 
broader than predicted by the Navier-Stokes relations, have 
higher longitudinal than lateral temperatures, and show a 
secondary peak in the high energy tail of the longitudinal velocity 
distribution corresponding to particles that have been back-
scattered against the general flow while approximately retaining 
the absolute magnitude of the flow velocity. This last effect, 
though probably diminished in a realistic plasma due to the 
usual (I.e. non-nuclear) predominance of low-angle scatters, 
may have interesting implications for nucleosynthesis if 
circumstances are found 1n which hot-ion shocks can occur. 
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Hot-Ion Shock Nucleosynthesis 
Calculations of shock-wave nucleosynthesis (Epstein, 

Arnett, and Schramm(1974)) based on the hot-ion shock model 
of Colgate (1974) show overproduction of Li, Be, and B relative 
to deuterium, While the details of these results depend on 
the initial composition, and the revised hot-ion shock 
structures recently proposed by Colgate (1975) may reduce 
some of the abundance discrepancies, no natural resolution 
has yet emerged. 

Such problems with hot-ion shock nucleosynthesis are, of 
course, completely consistent with the cool, radiation-dominated 
shocks found in the present study. 

Conclusion 
The conclusion thus seems reasonably forced that the 

production of a cosmologically significant amount of deuterium 
does not occur in supernova shock waves. The only currently 
viable and "non-exotic" means for the production of the presently 
existing deuterium appears to be U s formation via the p+n-*D+Y 
reaction in the primordial Big Bang (Gott et al. 1974). As is 
well known, such a process requires a low density and thus open 
universe If subsequent deuterium burn up 1s to be avoided. 
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B. Other Astrophysical flppJ_Lciti°.nA 
While the shock structures in this study were calculated 

principally to evaluate the prospects for supernova deuterium 
synthesis, the concepts and results can also be applied to other 
astrophysical situations involving strong shocks. 
Supernova Cosmic Ray Production 

Colgate and Johnson (1960) have postulated that cosmic rays 
are produced as the shock formed in the envelope of a Type I super
nova explosion is accelerated to extreme relativistic energies as 
it transverses the steep density gradient near the surface of the 
compact star (̂  10 cm in radius) thought to be involved in such 
an explosion. The composition of these cosmic rays is clearly 
critically dependent on the temperatures reached in such relativ
istic shocks. The initial calculations were made under the assump
tion of complete radiative equilibrium and resulted in tempera
tures i 500 keV. 

It was in this context that the original suggestion was made 
that sufficiently strong shocks would very probably exhibit a high 
temperature "precursor", either in the form of a hot-ion viscous 
shock, or more probably a non-equilibrium radiation-dominated 
shock, (cf. Weaver et al 1974). While a detailed treatment of 
the relativi'.tic shock structure is beyond the scope of the pre
sent study, naive extension of our non-relativistic results leads 
to temperatures greatly in excess of 1 MeV. Indeed a preliminary 
pair-dominated shock model yields a peak temperature of >' 100 MeV 
for a shock with a relativistic r of 15, despite the bootstrap 
operating between pair-production via the n •• e e" reaction and 
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radiat ive Compton scatter ing. (Multiple radiat ive Compton 

scattering and multiple bremsstrahlung, however, were not i n 

cluded and may served to l i m i t these temperatures.) Even i f the 

peak radiat ion temperatures remain * 1 MeV, both pair and radi 

ation-dominated models predict that the ions w i l l stream though 

the radiat ion/pair f i e l d so that a typical photon w i l l appear to 

have an energy of ^ 3Y MeV. Thus, the survival of high-Z nuclei 

in at a l l r e l a t i v i s t i c cosmic rays appears doubtful . More de ta i l 

ed calculations are c lear ly needed to confirm th is conclusion, 

however, and w i l l be the subject of a later paper. 

In such calculat ions, time dependent effects related to the 

breakout of the radiation f i e l d and the shock thickness becoming 

of the order of an atmospheric scale height are l i k e l y to become 

important. One interest ing point in th is respect i s that the 

presence of pairs in the high temperature "precursor" w i l l serve 

to "dam i n " the post-shock rad ia t ion, and thus allow the shock 

to propagate to a lower optical depth than would otherwise have 

been the case. The magnitude of th is ef fect is uncertain, and 

indeed i t is possible that Rayleigh-Taylor i n s t a b i l i t i e s w i l l 

ensue. 

Accretion onto Neutron Stars 

The deceleration of material accreting onto a neutron star 

at energies •>. 50-100 MeV/nucleon has been studied by several 

authors (Zel'dovich and Shakura 1969; Alme and Wilson 1973; 

Shapiro and Sal peter 1971), and is proposed to involve either 

electron-ion coulomb f r i c t i o n or strong plasma i n s t a b i l i t i e s . 

A key question in 'iuch a process is whether or not a standing 
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accretion shock forms in the infalling material above the surface 
of the neutron star, following which the post-shock material is 
adiabatically compressed up to its final surface density. The 
results of this study, suggests that a ri'diation-dominated shock 
of this type could be formed fairly readily, especially if 
accretion is occuring at near the Eddington limit. Indeed, if 
the accretion shock lies £ 30 Compton lengths deep in the 
accreting material, the shock structures calculated in this study 
should be directly applicable. In the more likely case of a less 
optically thick shock, a multigroup treatment of the radiation 
field in terms of flux-limited diffusion (see Section III.C) and 
allowing for higher radiative moments such as momentum transport 
is required, and is currently being pursued. In such a shock, 
radiation loss will compete with reduced inverse Compton cooling 
to determine the shock temperature and thus the characteristics 
of the emitted radiation spectrum. 
Formation of Proto-Galaxies 

Shock compression arising from collisions between perturba
tions in the early universe is thought to be important in the for
mation of regions sufficiently dense to resist being dispersed by 
the general expansion of the universe, and thus become proto-
galaxies (Silk 1974). If the perturbations involved are optically 
thin, the radiation loss rate and thus the structure of the shock 
will be important in determining the velocity and extent of its 
propagation. The shock structure treatment being developed for 
neutron star accretion shocks appears applicable to such cases. 
If the shock energies and resulting temperatures are sufficiently 
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high, the possibility of nuclear processing, including light 

element formation, should not be overlooked. 



REFERENCES 

140 

flijramowitz, M., and Stegun, I. A., ed., 1964, Kundbook of 
Hathematical Functions (Washington: U.S. Government). 
Alme, M. L. and WHson, J. R, 1974, Ap.J., 186, 1015. 
Becker, R. 1922, Z. Physik, 8, 321. 
Belokon1, V. A. 1959, Soviet Phys. - JETP, 9_, 235. 
Bird, G. A., 1967, J. Fluid Mech., 30, 479. 
Bond, J. W., Watson, K. M., and Welch, J. A. 1965, Atomic 
Theory of Gas Dynamics (Reading, Mass.: Addison-Wesley). 
Burgers, J. M. 1960, 1n Plasma Dynamics, F. H. Clauser, ed. 
(Reading, Mass.: Addison-Wesley), pp. 119-186. 
Chapllne, G. F., and Stevens, 0. 1973, Ap.J., 184, 1041. 
Ch1u, HTY. 1968, Stellar Physics (Waltham, Mass.: Blalsdell). 
Clayton, D. D. 1968, Principles of Stellar Evolution and 
Nucleosynthesis (New York: McGraw-Hill). 
Colgate, S. A. 1969, Proc. 11th International Conference on 
Cosmic Rays. iBudapestJT 

. 1973, Ap.J. (Letters), 181, L53. 

. 1974, Ap.O., 187, 321. 

. 1975, Ap.J., 195, 493. 
Colgate, S. A., and Johnson, M. H. 1960, Phys. Rev. Letters, 
5, 235. 
Cooper G. 1971, Phys. Rev. D. 3_, 2312. 

. 1974, J. Quant. Spectrosc. Radiat. Transfer, 
11, 887. 
Drummond, J. E., 1961, Plasma Physics (New York: McGraw-Hill), 
p. 319. 
Epstein, R.I., Arnett, U. D., and Schramm, D. N. 1974, 
Ap.J. (Letters), 190, L13. 



141 

rediushin, B. K. 1952, Zh. Eksp. Teor. Fiz, 22,' 140. 
Fowler, W. A., Caughlan, G. R., and Zimmerman, B. A. 1974, 
preprint. 
Gould, R. J., 1974, preprints. 
Hoyle, F., and Fowler, W. A. 1973, Nature, 241 384. 
lben, I., 1973, 1n Explosive Nucleosynthesis, Schramm, D. N. 
and Arnett, W. 0., ed,, p. 115 (Austin: University of Texas Press). 
Jackson, J. 0, 1962, Classical Electrodynamics (New York: Wiley). 
Jaffrin, M. Y., and Probstein, R. F. 1964, Phys. Fluids, 2, 1658. 
Jauch, J. M., and Rohrlich, F. 1955, Theory of Photons and 
Electrons, {Cambridge: Addlson-WesleyTI 
Johnson, M. H,, and McKee, C. F. 1971, Phys. Rev. D, 3, 858. 
Landau, L. D., and Lifschitz, E. M. 1959, Fluid Mechanics, 
(London: Pergamon Press). 
Handl, F., and Skyrme, T. H. R. 1952, Proc. Roy. Soc. Ser. A, 
215, 497. 
Haxon, S. 1972, Phys. Rev, A5, 1630. 
McKee, C. F. 1970, Ph.D. Thesis, University of Calif., 
Berkeley. 
Minorsky, N. 1947, Introduction to Non-Linear Mechanics (Ann 
Arbor, Mich.: Edwards Brothers), pp. 9-23. 
Quigg, C. 1968, Phys. Fluids, j j , 461. 
Ram, M., and Wang, P. Y. 1971, Phys. Rev. Letters, 26, 476. 
Reeves, H., 1974, Ann. Rev. Astron. Ap., JJ2, 437. 
Shapiro, S. L. and Salpeter, E. E., 1974, preprint. 
Shklovsky, I. S. 1968, Supernovae (New York: Interscience). 
Silk, J. I. 1974, 1n Confrontation of Cosmological Theories 
with Observational Data, M. S. longair, ed., p. 175 (New York: 
Reldel). 
Spitzer, L. 1962, Physics of Fully Ionized Gases (New York: 
Interscience). 



142 

Stone, S. 1971, "Compton Scattering at High Material Temperatures", 
UCRL-73424, Lawrence Livermore Laboratory. 

. 1973, "Compton Scattering from Isotropic Electrons 
of a Single Energy", UCRL-75101, Lawrence Livermore Laboratory. 
Stone, S., and Nelson, R. G. 1966, "Compton Scattering from 
Relatlvistic Electrons" , UCRL-14918-T, Lawrence Livermore 
Laboratory. 
Stringer, T. E, 1964, Plasma Phys., 6, 267. 
Weaver, T. A. and ChapHne, G. F. 1974, Ap.J. (Letters), J92, L57. 
Heaver, T. A., Chapline, G. F,, Wood, L. L., and S1lk, 0. I. 
1974, Bull. APS 6, 274. 
Weynmann, R. 1965, Phys. Fluids, 8. 2112. 
Zel'dovich, Ya. B., and Ralzer, Yu.P. 1966, Physics of Shock 
Waves and High-Temperature Hydrodynamic Phenomena (New York: 
Academic). 
Zel'dovich, Ya. B., and Shakura, N. I. 1969, Soviet Astron. -
AJ_, 11, 175. 



113 

APPENDIX A 

Rela t iv is t ic Distribution-Averaged Reaction Rates 

We wish to f ind the Lorentz Invariant rate per uni t volume, 

R 1 2 > at which part ic les of type 1 and type 2 interact to make 

part ic les of type 3. In any given observer frame, the reactants 

are assumed to have a d is t r i bu t ion of the form n^f^p^) where n̂  

Is the tota l number density of part ic les of type 1 and f ^ P ^ ) 

is probabi l i ty that a given par t ic le w i l l have momentum p-. 

For convenience and c l a r i t y we w i l l t reat f i r s t the case where 

the masses of the interact ing par t i c les , m, and m 2 , are non-zero, 

and la ter relax th is res t r i c t i on . 

Part ic le-Part ic le Reactions; 

In the specif ic case when the type 1 part ic les are a l l at 

rest and the type 2 par t ic les are a l l moving in a beam at re la t ive 

veloc i ty , v R , the reaction rate can be given d i rec t l y 1n the 

famil iar form: 

R12 £ n l n 2 VR ° ' V W 

where this re lat ion serves to define the laboratory cross section, 

o ( v R ) . 

To f ind R j 2 for more general d is t r ibu t ions , we consider 

the specific momentum groups, n j f j f p j ) dj^ and n 2 f 2 ( p 2 ) d p 2 , i n 

the observer frame; transform to the rest frame of the 1-group 
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to calculate the i r contr ibution to the reaction rate; use the 

R 1 2 Invariance to transform back to the observer frame; and 

then integrate over p, and p 2 to f ind the to ta l reaction ra te : 

R12 = T T T f 7 j J { n l n 2 < J ( v R ' v R V , f r a m e f l ( P l ) f 2 ( P 2 ' d P l < 1 P 2 <A Z> 

where 6^ 2 i s t n e Kronecker delta which has been Introduced to 

compensate fo r the fact that interact ing pairs have been counted 

twice when part ic les of type 1 and 2 are ident ica l . To evaluate 

{n ,n 2 >* consider the invariant scaler product of the 4-vector 

currents, J 1 = ( n ^ n j t j ) and j 2 = ( n 2 , n 2 £ 2 ) : 

j , • J"2 = f , n 2 ( l - * , • tz) = i n , ! ^ o r ^ frame ( A 3 ) 

Here, ta - •£- where as usual 7. 1s the velocity of particle 1 

and c is the speed of light. In a similar fashion the scaler 

product of the 4-vector velocities, ( Y ^ Y ^ ) gives the relation: 

Y 1 v 2 0 - ? 1 • t2) = Y R invariant (A4) 

2 -1/2 where Y 1 = 11 - 6̂  1 and Y R and B R are now specifically 
understood to be measured 1n the rest frame of the 1-type 

particle group. 
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The expression for R, 2 thus becomes: 

If we now restrict our attention to distributions that are 
Isotropic in the observer frame and consider any specified jj. 
to be fixed along the z-axls, (A5) reduces to: 

R i 2 = 2 (?" 2 o / / / V»»i>W S«(«> R »
 dudPidP2 

it o o - i ' ^ 

where u = cose = ̂  2 and f,-^) = 4 ^ . fjfPj) 

so that 7" f 1(p i)dp 1 = 1. 

Ut i l i z i ng re la t ion (M) to eliminate u in favor of p„ 

Y_BRm,c we obtain R,, in the convenient form: 

' "Mips 

<A6> 

R12 " TT^fif^ / VW^PR^R (A7) 

where: 

F<PR> - s a i 
f , ( P l ) 

2 Jo »|T7 

T~) 
f2 (P2> , v 
- s — § - d p 2 l d P l (A8) 
8 2 Y 2 

^ R | B r B R h 2 c 

To fur ther simpli fy the expression for F (p R ) , i t Is 

necessary to know the forms of f 2 ( p 2 ) and/or M p i ) . We treat 

f i r s t the case where f-j<p-j) is a rb i t ra ry , while f 2 ( p 2 ) Is a 
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relat lvist ic Maxwell-Boltanann distribution (RMB) given by; 

f z ( p 2 ) X 
p 2

2 e'tPz c + m Z c 3 " V W Z 

(A9) 
2 "tnV-

m2 c kTgKgt-jff-

where T ? 1s the temperature of the 2-type particles. Kg Is the 

second order modified Bessel function of the second kind, and k 

1s Boltzmann's constant. We then find: 

f%) WR 
f l arb. _„, r l / , m 2 e y 
f 2 RMB c c K l 2 

-exp 

-bfirfoV * « 
1/2 m2c2 1 

kTT~l 

-c^ca, V • i)] ^ dp. (A10) 

In the case where f j tP j ) is also an BMB, use of symmetry 

and hyperbolic substitutions allow the Integral to be done, 

resulting 1n the relatively simple forms: 

F(PB) 
Y R

2 B R

2 (m^ /kT , ) 

fjRMB 
f?RHB 

"Z T~ 
m,c ii)2c 
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¥§rfr2 + 2 «v i> , / z 3 
(a* + 2aY„ + 1) 1/2 

and 

(Alia) 

( n l V o b s foi'/"-!) 
^ I f , RHB *F*£T - CZ _ c 2 

I f 2 RHB 
iV. I lip l_ 

K 2 ( TsT^" ) K 2 ( l f f J " ) 

2 nuc 0 
_4 f _ t - V R V » ( B R ) K 1 [ ^ - ( a Z * 2 . T R t 1 ) ^ 2 3 

(a Z t Z o Y R t l ) " Z 

dp„ (Allb) 

m.T 2 

j jpp and K, is the f i rs t order modified Bessel function where 
of the second kind. This last result can be symmeterized into the 
relatively simple form: 

"12 
f 2 RHB 

1 + « 1 2 KgU^I^Ug) 
o(x)x M * ) 
— 5 T75- d* < A l l c ) 

where: 

^ kT, YR BR 

and * = (*/ + 2*,^ ( x
2 + l ) 1 / 2 + + 2

2 J 1 / 2 



148 

In the case when T. = T, = T, we note kTv is just the center 
of mass energy of the two interacting particles. In the limit 
when all energies and temperatures of interest are non-relativistic, 
(lib) reduces to the familiar form {cf. Clayton 1968): 

R 12 
n.n„ m»nu 3/2 

4* t?*kfm.T_+m-T.0 " T+s7, w L2*k(» 1T.*,T,) f, NRHB u \ i- c \ '1 
f 2 NRMB 

" 7 e " 2k(m,T2 t m ^ J o(v R)v R
3dv R

 ( A 1 Z ) 

Particle-photon Interactions: 
The assumption of massive reactants made in the previous 

section can easily be relaxed in the case when m- = 0. (For 
notational convenience in considering this case, we shall discuss 
photons (i.e. 2-ty) though no loss of generality is implied.) 
The analogous expression to (/K) is then: 

p y. O-Bjcose) = p* invariant (A13) 

where p' is the momentum of the photon 1n the rest frame of 
ffi • P V + + particle 1, and cos6= ' ' » u where J, and e are measured in 
$1 BY ] T 

the observer frame. Expressions (Al), (A2), (A3) are changed 
only in that 2+y, vR-»c, o(v R)* a(p'), and «,, " °» a n d s 0 f o r 

general distributions, we find: 
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R ly = (VyW fffA)fAl 7-fa "̂ ^OfV (A«) 

and for isotropic d is t r ibu t ions , we f i n d : 

p - 1 i f 'OPS 
R l y 2 ~ HL V h ^ > y^Py'^Pl^y (A15> 

where 

R l y = C V y > o b s / c " (P ; ) F y (P Y > d P T 

(A16) 

f 4 i ! <ipY) dp, wi7> 

2 j ° Py2 J l P P 
Z P P' I Y *Y 

f i ( P i ' \ 

m,c V , 

We now take f (p ) to be a r e l a t i v i s t l c Bose-Einstein y r y 
d is t r ibu t ion (RBE) given by: 

f ( p ) = 8 j P. ' 
y "y h 3n p y c / k T y , 

" "y Ce Y Y -1 

(A18) 

where h 1s Planck's constant, T 1s the photon temperature and 

C Is a dlmenslonless degeneracy parameter which Is equal to 1 

for a blackbody d is t r ibu t ion and goes to i n f i n i t y in the non-

degenerate l i m i t , n and C are related by: 
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16TT(KT Y ) J I 1 
c%° n=1 n"C" 

c(3)n" 

n°/C 

where ?{3) I i.-.. 2021 i and n 

C=l 

C — 

16^(kT) 3 

(A19) 

V " c 3 h 3 

For th is case, we f i n d : 

F (P') 
Y Y 

n° p- c 2 

f , arb 2 \ ( k T y ) 2 

f RBE 
Y 

n = 1 n c n in « 
, ( P l ) 

e,Y, 

e " Y l P Y n c / k T

Y s l n h ^ p - B ^ c / k T )dp 1 (A20) 

For the case when f | is an RHB, while f is an arb i t rary 

isotropic d i s t r i b u t i o n , we f i n d : 

W If, RMB m i c Z in 
f arb 2 K - ( - M ° 

r ' kT, 

, p p- m,c 
f(pY) - j t f V h ^ -
— * - e 2 p

Y

 P

Y

 k T l dp^ 

(A21) 

Finally, when fj is an RHS and f is an RBE, we find R. to be: 

„0\ A 

f, RHB 
("l^ObS <? Y. L 

f RBE 2 ' k V K2'kT7"^ Y I 

m,c Z n^l C" 
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m,c p' T, , . , 

- X _ l x 1 3_J£ d p - (A22a) 

HI \. 

or in more convenient notat ion: 

R i 1Y 
t"i"Y°)obs c*i f i_ r i ^ w 

f , RMB ' i^Tf fT n = 1 c-

f RBE 
Y (A22b) 

where: 
P'c 2 

; = j ^ - and f - = ( ^ + Z ^ c ) 
Y 

1/2 

The sum involved here is rapidly convergent, and vanishes in the 
non-degenerate limit. 

In the limit when the energies and temperatures of interest 
are nonrelativistic (except in the the case of the inherently 
relativistic photon where we require p' « m,c), (A22b) reduces 
as required to: 

D r p' a(p')dp' 
• "i= fy f y

 P - C / E T T

 y < A 2 3 > 
f , NRHB n Jo C e Y - 1 

In the non-degenerate case, expressions (A13)-(A23) can also be 

obtained as the l im i t s of the equivalent massive par t ic le forrns 
2 

when T„ •» p'c/m,c and m, -» 0. 
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Photon-Photon Reactions 

The above fbnralism is s t i l l not in a suitable fonm to treat 

reactions between massless par t i c les , since i t is impossible to 

transform to a massless par t i c le 's rest frame. I t i s therefore 

necessary to generalize the de f in i t i on of the cross-section. 

This could be done by d i rec t ly assuming that the de f in i t ion in 

(Al) holds in a general reference frame (Stone and Nelson 1966), 

but th is resul ts in a generalized cross-section that i s not 

Lorentz invar iant . I t is more conventional (Jauch and Rohrlich 

1955) to define the cross-section by the invariant re la t ion : 

n,nz(l-B,M32) [ ( P , / ^ ) 2 • m l V c 4 ] V 2 

(A24a) 

l l i 2 

m2„2„8 
n ,n 2 [ ( l - B r B 2 ) 2 - ^ j £ - ] 1 / 2 Co (A24b) 

E 1 E 2 

(n ^ g d - B ^ ^ j B p C a for m1 ,m 2 = 0 (A24c) 

f> 1 n 2 ( l -B 1 'B 2 )co for m1 or m2 =0 (A24d) 

where P, • Pjj i s the scaler product o f the 4-momenta of part ic les 

of type 1 and 2 (assumed to be in beams) and Ej i s the to ta l 

energy of par t ic le i . Equation (A24c) can be interpreted as 

defining the cross-section as the ra t i o of the reaction rate to 

the proper par t ic le f l u x , and reduces to (Al) in the rest frame 
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of one of the particles; while (A24d) reduces to the natural 
result, R = n,n22ca, in the center of momentum frame for two 
massless particles. 

The case of reactions between distributions of massless 
particles can now be treated in a fashion analogous to the 
massive particle case, except that a transformation to the center 
of momentum frame is used. The invariants analogous to (A3) and 
(A4) are then: 

n^n^n-cose) = Z n ^ n ^ (A25) 

and 
P Y 1 ° Y 2 ( 1 - C 0 S 9 ' = ZP^i = 2p*| = 2p* 2 (A26) 

where p , and p , are the magnitudes of the momenta of two 
specific photon groups and e is the angle between them, while 
n .j is the photon number density of group i. The superscript "*" 
denotes measurement in the center of momentum frame. Here again 
the trivial but convenient specialization to the photon case has 
been made. 

The reaction rate for general distributions can then be 
written: 

R™ = <«Y

2>obsc ffcww p^ir2 -(Rf)* T i# Yz <A27> 

and for isotropic distributions, we find: 

2 f 
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Where: 

JO Pyl p * Z / p y l Py2 

Specializing to a r e l a t l v l s t l c Bose-Einstein photon d i s t r i bu t i on , 

we f i nd : 

(n°) 2c 6 

Y Y l R B E (kT. 
— _ ) }_ — 1 — _ f CT(P*)D*4 

• ) 5

 n=i .=i m c n + £ J ^ V P T 
Y 0 

2p*c 
• V - f e T - 7 ^ ] d p* ( A 3 0 ) 

V, =K>2<£ I 
IRBE " - 1 i _ 1 

o(c)C 4 K 1 (2*^€)dC (A31) 

where % = p*c/kT and , as before, the sums are generally 

rapidly convergent. 

In th is case also, the non-degenerate form of (A30) can be 

obtained as the l i m i t of (Allb) i f a transform from lab to center 

of momentum coordinates 1s made and the Invariance o f the cross-

section 1s used. 
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APPENDIX B 

Numerical Solution Hethods; Radiation-Dominated Shock Model 

The photon continuity equation ('5.3) can be written in the 
form: -

d n dn n 
D l T / + ° 2 - 0 f + D 3 n

Y = - ^ 1 - n f q ' «"> 

where: 
2 ? v -8v„v+v„ n = . c v n - o o 

1 3 V o \ 2 " 6 v 

(7v-v )[v n-v) 
D3 • 2?c ° " o V c «*> 

, Q e f f 

••«, - - e Q - T ^ T T i - (B3) 
^ Y eq 

n„„ s br 

Utilizing a three point difference scheme on an unequally spaced 

mesh of points x 1 (1 = 1,N), (.61) can be differenced in the form: 

J [A * 1 " 1 ' 2 (n]+1 - n]) - « t + " 2 (nj - n]"'H 

+ ̂  [ lax'"" 2) 2

 c „ i + l . n t , + t f i x i + V 2 ) 2 t „ i . „<-!,., 

< < 3n! , 4n! 
+ 03„j = -QJ . 1 ( 1 + - ; T M _ ^ _ ) CB4) 

e t t j - l e t » j -1 



1S6 

where "i" superscripts denote eya.lu3ti.0n at point x and "i" 

subscripts, evaluatton at the J tteration; and where; 

^t-1/2 . xf . ,1-1 ttW/Zpj.t+1.,1 t B 5 ) 

A1 = 6XW'Z ^t-1/2,2 + U 1-V2 ^ f l / Z j Z t B 6 ) 

The form of the factor multiplying q l , was derived by linearizing 

/" \ * / n \ ' 
- * - about h r M making use of C5.1). 

Solving (B4) and n! we f ind: 

n +lr_J 2 -, + n i - l I _ J 2 3 
n i . J $2 - *_ 

+ Q1. . (1 + 3nt_,V ) 
+ ^U<^ 

and define for convenience the coefficients p], P^, and C , so that 

n] ̂  P'n] + 1 + Pjnj - 1 + C l (B8) 

Now let: 

nj - ,]n] + 1 * »J CB9) 

http://eya.lu3ti.0n
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" J " 1 = °J'X + "j"1 CE10) 

Here the o] and g] are termed back-substitution coeff ic ients and 

can be found recursively by substi tut ing (B9) and (BIO) into (B8) 

in the form: 

p\ , P V - 1 + c1" 

A - i i 1 *) = t 4.1 IB") 

with the boundary conditions that: 

0C2).p(2> B W . p ( Z ) n O ) + c(2) ( B 1 2 ) 

where we have assumed a l l quanti t ies are known at x . 

Having found a l l the back substitut ion coeff ic ients for i=2, 

N- l , we can then use (BIO) together with the assumed known value of 

n' ' to recursively solve fo r the unknown n l . Since Q] , and 

"1™ r e 1 y o n previous knowledge of n] , . we must begin our calculat io 
" j - 1 * 

by assuming i n i t i a l values for the photon density d is t r ibu t ion ( n L ) , 

and then i te ra t ing the back subst i tut ion procedure described above 

un t i l the results converge. Typically 400 mesh points and 20 

i terat ions are su f f i c ien t to achieve an accurate, converged solut ion. 

The ion-heating equation (5.5) can be rewri t ten in the form: 

TDT " W i + H v f s c e 1 / 2 + « B 1 < V 9 1 > 0"3> 



1 

where; 

H - i 1 (iv M _ 2 A2 fdv,2 «._- - 3 7 3x "vise " I n~v7 w cotnp o'o 
(BU) 

H - 2 V o J|l 

with °gj-follovsing analytically frw> (5.6), and 9 e from the solution 

of the photon continuity equation. Explicitly differencing CB13) 

and linearizing the e?' term gives the difference equation: 

^i+T/2 l e t ' "vi-sc l2Ti T V corap L ^ ' 

where e l * 1 ' 2 = i t e l + e l ) . This car be solved directly for 

B { + 1 . yielding: 

B 1 + A > , 1 ' + 1 / 2 ^ 1 + V 2 / e 1 l 5 / 2 + JH* + 1/2 B1 + H i + l / 2 f a i + l / 2 1.1, , 
B i + 1 = 1 ^ v i s c l e i ' + rcomp 8 1 + "el l 9 e I 8 ! " 

1 7- Ax i +V2rlHt +1/Z f f l 1 ) 3 / 2 + Lj< +V2 . Lji+1/21 

(B16) 

Given e ^ ' ' , (B16) then y ie lds the remaining e j - The integration i s 

stable provided e | ' i s taken at the upstream boundary of the shock 

(X*x 0 ). 
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Numerical Solution Methods: Simple Viscous Shock Models 

Equations (7.1) - (7.2) are differenced in the form: 

Ti + Ti+1 i v i + 1 - v 1 

V o k — 2 — " »» ^ F W = m V o * 
i J+l vV i i+1 

•[(V2V1) \ + -T"] + P0
 ( 1 ± ? — ' ( C 1 > 

n v , T V * 1 T H 1-T 1 I „ 
a V o k — 2 K T̂+l72 " 2"Vo ' 

•[(v1-^)*1*1 + v^-v 1)] + .0P0v0 

+ K»o Z«„ C2v0-v1-v,+1] («) 

where the notation of Appendix B has been adopted. T and 
v are then readily found provided T and v are known. The 
integration is started by means of the asymptotic solution derived 
in 5 VILA, and must proceed from downstream to upstream to be 
stable. 

By multiplying (7.23) by a = (| + 3Xn)/(l + xn). and 
substrarting the result from (7.23), we derive an equation for 
the required shock dissipation in the form: 



*»v&- V k T no&-*'a7*Kv 

[v0-vCl+2al + 2 a+° l c 0v 03 Iv 0-v3 
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+ e 0 Cs0-a]lOnoV0

3 (C3) 

Equations (7.23) and (C3) are then differenced as: 

1 »™'W+Vi n 0v 0kT - 2 „ v - ^ + T 7 T 

• m V o ^vo + v < + 1 v o " 2 y t v l + 1 + z " \ ^ < C 4 ) 

- 2 t K ' ) 1 ( T J v I } • m V o r v v 1 + 1 ( 1 + 2 o , 1 ) 

AX 

+ 20+a 1 ) c o v 0 ] [ v ^ 1 ] + 2e {^-a 1 ) m n ^ 3 (C5) 

Since x is known at all points, these equations can be readily 
Integrated starting from the downstream asymptotic solutions 
derived in s VII.B. 



Appendix D 

Numerical Solution Methods: Effective Photon Shock Model 

The difference equations used to solve equations (8.1) -
(8.2) are given by: 

0 

-..V t v ^ V 1 ) . m y [ v is!!Vi. v v + 1 ) 
4 3 i

t + V 2 o v o L V o 2 v v j 

+ P V (D1) 0 

9 i 1„1 v -v , „ „ L / T * + U T ' I f iX \ 1 + VZ 2 a u v 7 > W " V o v k ( T + T > (dx> 

i+1 "i 

AX 

+ 2 (1+a1) c 0V 0: rv 0-V 1J + Z£0(a0-J) m n ^ 3 (02) 

i I + t R + xn where - ; 1 (D3) 
' e * z V 3 x n 

As in Appendix C, we have first transformed the energy 
conservation equation (8.2) into an expression for the required 
shock dissipation before differencing. These equations are then 
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integrated upstream by the method described in Section VIII. 
The photon continuity equation (8.3) ts solved In the 

manner described In Appendix B, except that the D* coefficients 
In equation (Bl) are defined in more general form: 

D 1 = T V D 2 v +X(d7' 3 W (D4) 

The ion-heating equation, ( 8 .4 ) , 1s differenced as: 

3 . v j a - f l / 2 ^R 1 + 1 - TRD + | n v _ ( & W / * 
- T O O 7+W 2 W W 

t + W 1+1 
C i _ P _ ) . . V o ^ k THl/2 ^,1+1/2 cZR_Jl5lj 

+ A< ( k T 1 + V 2 ) 5/2 
l dx' 

1+1/2 
« 1 

6/2 

fn0v0 \ 2 3A{ f h. R + T R J 

• CxR *SJW bji 3/2 
(05) T R "op' t T R 

and Integrated from the upstream to the downstream U n i t wi th the 

boundary condition that u » 1 a t the upstream boundary, 

The i t e r a t i v e solut ion of these equations requires that the 

zoning be s u f f i c i e n t l y f i n e that only a small change in the variables 

takes place across a zone. I t I s thus sometimes convenient, though 

not necesiiry, to limit the ratio of a l \ (typically to K 10"3) in 



order to reduce the number of zones required. 
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APPENDIX E 
List of Symbols 

The principal symbols and subscripts employed in this study 
are listed below with their units and defining equation where 
applicable. Notation peculiar to the Appendices or figure cap
tions, as well as briefly used notation, is not included. 
Symbols 
A - Ratio of radiative to matter heat conduction lengths 

A* - Mass of species i in proton mass units 
A- - * y * x 

3/2 3 -1 A, - (erg ' cm sec ) - Electron-ion coupling parameter (3.45) 
A 2 - (erg" 3 / 2 cm" 3 sec) - Viscosity parameter (= ^(kT,)" 8' 2) 
b - (20.3 cm °K ) - Radiation equilibrium number density 

constant 
C - Radiation field degeneracy parameter (see (A19)) 
c - (cm/sec) - Velocity of light 
C R - see (7.32) 
c- - see (8.17) 
c° - (cm/sec) - Pre-shock sound speed 
0 y U ) - (em2 sec" 1) - Radiation diffusion coefficient 
i »2 -1 

E' - (erg cm s e c ) - x energy component of stress-energy tensor 
l Q ' (Hev) - Initial shock energy (= w H v 0/2) 
ly - First order exponential Integral function 
E - (erg cm ) - Total radiation energy density 
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E1"' - (erg era sec ) - Energy transfer rate from species j to i 
3 1 E*. - (erg cm s e c ) - Non-electrical energy transfer rate from 

ions to electrons 
e - (erg ' cm ' ] - Protonic charge 

f E - Equilibrium parameter (3.10) 
f J - Electron-ion coupling relativistic correction factor (3.46) 

g, - Bremsstrahlnng Gaunt factor defined by (3.3) 
g 2 - Combined bremsstrahlung Gaunt factor (a^M - 9-]0>l E^C*)) 
HaD ~ '~rs s e c" )- C o ul°" , D friction heating between protons and alphas 
h - (erg sec) - Planck's constant/2ir 

3 1 1 (cm sec" erg" ) - Non-relativistic bremsstrahlung emission 
spectrum 

J Q - (= 5.692x10" 1 2 ° K ^ 2 cm 3 sec" 1) - Bremsstrahlung emission 
coefficient (see (3.2)) 

J + - (erg ' cm ' sec ) - Net current density in the pair 
fluid ( = en +(v e-v+)) 

J e - (erg ' cm ' s e c ) - Current density due to the electron-
positron fluid 

Kj - Modified Bessel functions of the second kind of order i 
k - (erg °K ) - Boltzmann's constant 

*c - (cm) - Compton length (= l/e cn e) 
t ej - (cm) - Stopping length for ions in an electron gas 
& T - (cm) - Thompson length (= l/<rTn ) 
JMA - Coulomb logarithm (3.30) 

,NR 
Jei 
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II - Mach number - see (7.16) 
\ - (g) - Solar mass 
m - (g) - Mass of shocked particle species, usually nu 
roe, m H, m., ra , m^ - (g)-Electron, hydrogen, ton, proton, helium mass 
n - (cm ) - Common electron, proton number density 
i 3 n - (an 3 - Number density of component i 

"e* "V V "a* "+' ne-' n ± " t™ ' " M u m b e r density of electrons, 
ions, protons, alphas, positrons, negatrons, and pairs, 

n. - (cm ) - Pre-shock number density 
n20 _ n o / 1 C | 2 0 cra"3 

n (e J - (cm e r g ) - Number density of photons with energy e 
per unit energy 

n ^ - ( c m ) - Equilibrium photon number density (5.21 J 
n^ - (cm" } - Upstream starting photon density 
nr - (cm sec) - Number density - confinement time product 
P m - (erg cm ) - Hatter pressure 
i 1 

P' - (erg c m ) - xx pressure component of the stress-energy tensor 
P 0 - (erg cm J - Pre-shock pressure 
P - (erg cm ) - Radiation pressure 
P - (dyne cm J - Momentum transfer rate from species j to i 
pei "" Wyne cm ) - Non-electrical momentum transfer rate from 

ions to electrons 
3 1 1 

<L(e )-(cm sec" erg ) - Photon emission rate at e per unit energy 
Q(E c»e e! - (cm sec 3 - Total photon emission rate down to an 

e = e cutoff 
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Q^ f - (cm" sec" 1) - Effective photon emission rate 
Qjjlj. Q R C B , Q R C - (cm" sec"') • Effective photon emission rates 

due to non-relativistic bremsstrahlung, relativistic 
corrections to bremsstrahlung, and radiative Compton 
scattering. 

Q" - (cm" sec" 1) - Pair production rate due to the YY-*« e" 
reaction 

-3 -1 Qt - (cm sec ) - Total pair production rate 

i"0 - (cm) - Classical electron radius 
2 1 S 0 - (erg cm" s e c ) - Pre-shock internal energy flux 
2 1 S

Y ~ ( en) cm" sec ) - Total radiative energy flux relative to 
the electrons 

S (E ) - (cm s e c ) - Radiative energy flux relative to the electrons 
per unit photon energy at e 

T - (°K) - Common radiation and electron temperature 
T e, T., T , T_(°K) - Electron, ion, radiation, and mean matter 

temperatures 
T S ' To* Teq " ^ ° K ' * u P s t r e a , n starting, initial and final equilibrium 

(5.20) temperatures 
T , T + - Critical temperatures for the onset of viscous and pair 

effects 
t-k - (sec) - Transport collision period (3.27) 

v - (cm/sec) - Common electron and ion velocity 
v 1 - (cm/sec) - Velocity of species i 
v e, v^, v +, v - (cm/sue) - Electron, ion, positron, and effective 

photon velocities 
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v d r i f t ~ ^ e l a t ^ e velocity between a's and protons 

VJ - (cm/sec) - Thermal velocity of species j (3.25) 

v - (cm/sec) - Starting velocity for shock integration 

v. - (cm/sec) - Pre-shock f lu id velocity in the shock frame 

*C?. W„4, Ha„ - (erg cm" sec ) - Energy loss rates due to non-
SI CI 66 

relativistic bremsstrahlung, relativistic e-i bremsstrahlung 

corrections, and electron-electron bremsstrahlung 

w - (cm/sec] - Velocity of a particle 

x - (cm) - Spatial coordinate 

x - (cm) - Starting value of x for shock integration 

x , x, - (cm) - Upstream and downstream boundary points 

V - Helium mass fraction 

Z. - Number of protonic charges contained in particle f 

a - Ratio of energy density to pressure; fine structure cr—tant 

oQ - Pre-shock value of a 

«-> <*< - Ratio of energy density to pressure for electrons and 

species % 

r - Relativistic Y = ( l - v W ) " 1 ' 2 

A - Characteristic radiation-dominated shock width (H C«.C/3V 0) 

A+ - Characteristic pair-dominated shock width (6.9) 

s - Ratio of viscous to matter heat conduction lengths (7.7) 

c - Dlmenslonless velocity difference (2 n-i^) 
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c c - (erg) - Low energy cutoff for effective photon emission 
C B ' csc* cd " ^ e r 9' " R a d i a t i ° n emission cutoff energies due to 

inverse bremsstrahlung, screening, and dynamical 
considerations 

c - Starting value of e 
2 c - Dimensionless pre-shock pressure (= P 0 / m n

0 v Q ) 
e . e - Dimensionless pressure differences (e s T,-I> C = n,-jr) 
T H T I 11 I 
c - (erg) - Photon energy 

<; - Dimensionless distance (= x/\ ) 
t* - Dimensionless distance (H X/* ) 

n - Dimensionless velocity (= v/v.) 

« e. Oj - (erg) - 3 kT e, kT i 

o y - (erg) - B 0.9 kT y 

K - (erg cm" sec" °K ) - Heat conduction coefficient 
K' - (erg cm sec" °K) ~ Heat conduction coefficient 

including radiative processes (7.25) 
< , K, - (erg cm sec" °K ) - Electron and ion heat conduction 

coefficients 

A - Low energy radiative cutoff parameter (= c-/O 
xD - (cm) - Debye length (; (e e/4»n ee 2) 1 / z) 
a. - (cm) - Transport raean-free-path for species j - see (3.26) 
Ajk " (cm^ " T r a n s B o r t mean-free-path for species J with respect 

to species k 
Van " Maximum cutoff parameter (4.11) 
*x - (cm) - Convenient scale length 
» 0 - (cm) - Radiation diffusion scale length (7.25) 
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* - (cm) - Matter heat conduction scale length (= </kn y ) 
A - Can) - Viscous scale length {= ji /mn v ) 

v - (erg cm sec) - Viscosity coefficient 
» e > MJ - (erg cm" sec) - Electron and ion viscosity coefficients 
Vi - (erg) - Chemical potential of species j 
n, - see (7.32) 
v' - see (8.15) 

E - Ratio of radiation to matter pressure 

n - Dimensionless pressure (s (l+xnh) 

p - (erg ' cm ' ] - Net charge density 
p - (erg ' cm ' ) - Charge density of the electron- positron 

fluid 

£„ - (erg cm" ' ) - x component of electric field 
z m*. " (erg , / Z cm" 3 / 2) - Maximum shock electric field (= E„/(e4)) 
o - (cm ) - Reaction or scattering cross-section 

2 
o Ac ) - (cm) - Compton transport cross-section at photon energy e 

2 
5. - (cm ) - Mean Compton transport cross-section 

2 2 <JT - (cm1) - Thompson cross-section (8nrQ /3) 
3 -1 

«rv> - (cm sec ) - Density normalized reaction rate 
T - Dimensionless temperature (7.7); also T H 9 e/m ec fn 5 ITI 
T^ - (sec) - Dynamici' time scale 
T R - Ion-electron tenperature ratio (2 T^/T) 

* - s m ec 2/kT 

x - Oimenslonless radiation number density (3 0.9 n /n 0) 
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"He " H e ^ u m " hydrogen number density ra t io 

Subscripts and Superscripts.: 

0 - Pre-shock value 

1 - Post-shock or pseudo-downstream value 

ER - Extreme r e l a t i v i s t i c 

e - Electron value 

f - Final post-shock value 

i ,p - Ion or proton value 

NR - Non-re la t iv is t ic 

Y - Photon value 


