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ABSTRACT

A consistent thecry of the shell and magic oscillations of
the masses of spherical nuclei is developed on the basis of the
Fermi liquid concept of the energy spectrum of nuclear matter,
A "magic" relationship between the system's dimensions and the
limiting momentum of the quasi-particle distribution is derived;
an integer aumber of the de Broglie half-waves falls on the nuclear
diameter. An expression for the discontinuity in the nucleon
binding energy in the vicinity of a magic nucleus is obtained.
The role of the residual interaction is analyzed. I& is shown
that the width of the Fermi-surface diffuseness due to the residual
interaction is proportional to the squared vector of the quasi-
particle orbital angular momentum. The values of the corresponding
proportionality factors (the coupling constant for quasi particles)
are determined from the experimental data for 52 magic nuclei.
The rapid drop of the residual interaction with increasing nuclear

size is demonstrated.



1. INTRODUCTION

The nucleus was initially studied as a macroscopic body by
Wei.zs'zicker.1 His semiempirical equation, refined by Bethe2 and
Fermi.3 allowed a fairly accurate description of the total binding
energies of many nuclei. This, however, led to many digressions
from his original equation, & problem that has arisen repeatedly in
one form or another during the past 35 years. The most plausible
explanation for the departure from WeizsHcker's equation is that the
protons and neutrons can be added to a2 nucleus only in whole numbers,
The geuneral belief, however, that the so-called magic and shell dis-

. L. . . by5
crepancies are not macroscopic in origin *

is more a dogmatic asser-
tion than a fact directly following from experiment. Theoretical
study of the macroscopic properties of a substance, which is closely
connected with experimental observation of the thermodynamic proper-
ties, allows effects such as the phase transition to be observed and
carefully analyzed. The specific property of a nucleus is its
direct accessibility to absolute zero temperature (the ground state),
and its energy, i.e., nuclear mass, is the most important thermo-
dynamic value. Judging from the experimental data shown schemati-

cally in Fig. 1, the characteristic features of interest apparently

are “kioks," i.e., discontinuities in the derivative of the energy

‘of the particles. The sluggish, almost horizontal part of the

curve represents the region of nonspherical nuclei and the Curie

point corresponds to the phase transition analyzed by Nosov,17 which
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changes in particular the equilibrium shape of the nucleus. Figure 1
alsoc shows the magic "cusps" of spherical nuclei, downward pointing
spikes whose peaks contain appropriate magic nuclei. Note the differ-
ence between this characteristic feature und the ordinary Curie poiat.
A qualitative difference between the phases - different values of the
chemical potential - can occur only near such an "isolated" transition
point. At some distance from this point, however, one phase could not
have a characteristic that the other lacked. Since the solid itself
shows no evidence of a discontinuity (on the macroscopic scale; see
next section), it could be said that in some respects we have a second-
order tramsition.

The traditional explanation of magic numbersa’5 uses the concept
of fermion occupation of the 2j + 1 degenerate, single-particle levels
in a spherically symmetric potential well. After a shell has been
filled, the next nucleon apptoaches the lower edge of the continuous
spectrum, and the nucleon binding energy ¢ (the chemical potential of
opposite sign) decreases accordingly. The weakness of this inter-
pretation is that an analogous situation should occur after each indi-
vidual level, rather than a specific group of levels, has been filled.
In contrast to the spacing between the neighboring shells, the level
spacing within eack shell cannot always be small, since such a small,

dimensionless parameter cannct be obtained. Specific calcula:tions of
single-nucleon ‘evel schemes confirm the validity of tais assumption
(see, for example, the neutron energy-level diagram in Ref. 8), We

should observe a whole series of cusps corresgonding to each level.
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In fact, in Fig. 1 medium weight nuclei beyond the magic number 28
exhibit cusps that correspond to much less frequently occurring
true magic numbers.

Furthermore, only some of the characteristics of the well of
interest can be clearly determined: the location of the well's
boﬁtom is not a strict quantitative concept because of the strong
attenuation of the deep-lying quasi particles. This theoretical
assumption has been confirmed by experimental data on the knockout
of the deep-lying protons from mxclei.9 The difference between the
real Fermi liquid and the simple Fermi-gas model in an external field
is schematically shown in Fig. 2. In both cases we deal with the
quasi-particle energy if it is measured from zero kinetic energy of
the free outer nucleon. At the Fermi distribution limit this value
reduces to the chemical potential € = =6, where ¢ is the nucleon
binding energy. Furthermore, in the example shown in Fig. 2a the
energy ¢', which is measured from the potential well's bottom, deter-
mines the limiting momeatum pf = kfkﬁhéz-(k is the radius of the
well). However, noninteracting quasi particles can exist in the
nuclear Fermi liquid (see Fig. 2b) only in the immediate vicinity of
the Fermi level, and cé drops out. The concept of limiting momentum
nonetheless remains ifmportant. Theoretically we could estimate the
value of pf from the wave function of the last quasi particle. The

theory developed in the next sections is based on the crucial assump-

tion that the limiting momentum Pg is de¢ ~rmined by the total number




of particles N:

N =N ) @

(the specific function can be found in Sections 2 and 5).

The total energy of the nucleus vs. pf (or N) undecrgoes oscilla-
tions because of the density oscillations of the single quasi-particle
states near Pge The lattef are ultimately dependent on the conser-
vation of the orbital angular mcmentum £ in spherical nuclei, and the
eigenvalues ¢ = kR can be graphically represented by points on the
plane £,p. Figure 3 clearly shows their grouping in the region of

intermediate orbital angular momenta for

f.» 1. | (2)

Here the Regge trajectories constructed according to the 2n + £ = p
rule (n is the principal quantum number and p is the number of the
trajectory) are situated near the peak, where their shape is deter-

mined by

Af:-——(—g—;-o—at—)a (3

(see Appendix).
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The spacing between the curves, equal to n/2 along the Y axis,
*
is the spacing between the neighboring shells in the p scale. Let

us assume that the Fermi level

£e5 ©

advances, say, upward. After exhausting the levels of the last Regge
crajectaéy at the point of tangency (see Fig., 3), the density of states
dN/dp (ﬁ is the number of single quasi-particle staves situated below
the g level) decreases rapidly. In a more formal sense, this can be
attributed to the oscillating parc'ﬁl(p) of che'ﬁ(p) function (see

Ref. 1l1), whose period is determined by the spacing between the tra-
jectories in Fig. 3. Thus, the oscillating part El of the total energy
E = E, + E1 of the nucleus (Eo is the part of the energy depending on

pf) is given by

E ) =-eN (p) ®

In connection with Fig. 3 it is interesting to point out a simple
experimentally confirmed corollary: each nuclear shell contains
either one s- or one p-state, and the single-particle levels of
similar energy are situated near the end of the closure of this
shell. Spatially inhomogeneous atomic structure in this respect

i8 more complex and has no similar theorem; see, for example,
Ref. 12,
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where the factor of proportionality e is the first variational energy

derivative of the distribution functlonlS'la

or, in other words, the
energy of a quasi particle near the Fermi level.

The oscillating part'ﬁl(pf) can be determined by calculating the
nunber of single quasi-particle states occupied by fermions, according

to the Poisson equat:i.on15

) P = Low) jwn) dn +): S( e+ &5 ) ot dn.
n=9 -] ¥t O

The dominant contribution to the last oscillating termcomes from quacgi
particles nearest to the Fermi distribution level (graphically crepre-
sented in Fig. 3). In fact, the oscillating integral under the
summation over v would be too small for a smooth ¢(n) functiom.
However, in calculating the thermodynamic functions of the Fermi
systems, ®(n) should contain in the form of a multiplier the statis-
tical distribution of quasi particles, which changes sharply in the
neighborhood of the Fermi level. An example of such an oscillating
characteristic in "ordinary" Fermi systems is the de Haas-van Alphen

effect in metals.16’17

The finite size of the nucleus appareuntly
cannot be canonically transformed to such quasi particlés, for which
expression (4) for an ideally sharp, stepwise Fermi distribution
would hold. This is commonly known in nuclear physics as the "resid-

ual" interaction between nucleons. Ihe diffuse Fermi level rasulting

from it will generally suppress the oscillations. However, only a
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certain type of diffusc Fermi level qualitatively corrvesponds to

experimental data. For cxample, the statistical temperature distri-

bution

W, = —=
T PR (7)

T + ’

yields an analytic expression for'ﬁl(nf) without magic cusps.*
What quantities or functions charvacterize the residual inter-
action? We can imagine, of course, a case in which the residual
interacticn between quasi particles is described by a specific
Hamiltonian: one such model is calculated in Section 3. However,
we should consider that, although because of the interaction the
energy of the iudividual quasi particle, strictly speaking, is no
longer a precisely defined quastity, Eq. (5) cdan still be used for
the approximation of iaterest. Suppose the region of the diffuse
Fermi distribution determined by the residual intervaction has the
wvideh é¢ « this of course can be considered the uncertainty inm the
quasi particle's energy of the same order of magnitude. On the
other hand, in the p scale (see Fig. 3 and next section),§p charac-
teristic of oscillations is of the order of unity. Therefore, in

the region of oscillations, 6¢ =~ {de/dp)6p = e/pf. Taking into

*
This remark can be considered as the corollary of a more general

theorem. It is clear that continuous disteibutions of quasa
particles with respect to the states, which are independent of
4, exhibit no cusplike characteristics. The dependence of the
width of the diffuse Fermi distribution on the quantum number 4,
compatible with the experimentally observed magic cusps, is
determined in Sections 3 and 4.

v R o it e
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account Eq. (2), we get

fe«e, 8

i.e., the first factor on the right-hand side of Eq. (3) can be
detemined with sufficient accuracy. In other words, the redistri-
bution of quasi-parcticle states as a result of the residual inter-
action should be determined in principle from the minimum energy
of the nucleus. The oscillations can then te calculated, neglec-
ting the additional energy of interaction between quasi particles.
The specific example in Section 3 illustrates this curious feature.
The so-called dynamic approach - here we mean the specific
Hamiltonian for interaction between quasi particles - is highlj
ambiguous. Since a canonical transformacion giving a sharp Fermi
level [Eq. (4)] does not exist, we cannot choose unambiguously a
transformation for a new, quasi-particle Hamiltonian. According
to Eq. (8), the residual interaction can be more adequately
described by the distribution function for quasi particles. If
we consider this function w(p,{) a primary concept in a certain
sense of the word, it would seem passible to use its siﬁple single-
parameter approximations. In this case, it would be possible to
observe such a characteristic feature as a rapid decrease of the
residual interaction with increasing nuclear size. The problems

considered here will be discussed in the fina} sections of this
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paper, and the theory in which the residual interaction is neglected,
i.e., one with a sharp Fermi level [Eq. (4)], will be discussed in

the next section.

2.  SHELL STRUCTURE OF A SPHERICAL NUCLEUS IN THE ABSENCE OF
RESIDUAL INTERACTION

An asymptotic expression of the function N = N(nf) for large
pf‘s [see Eqs. (1) and (2)] must be terminated after a finite number

of termms:

/V(fg) = -57'_3593 -Sp +9p. (9

T N

In fact, the £ifth term of the expansionwn;1 would add physically
meaningless fractional parts to the particles. A macroscopic
approach apparently requires that the fourth term describing the
"single-particle effect" be also dropped (see Introduction). All
nonmacroscopic terms such as 92 = 1 will henceforth be dropped.

The third term in Eq. (9) may also seem incorrect, siace 20 + 1 ~ P
partiéles would populate a single level in a spherically symmetric
field (see Introduction). However, the zero-point osciilations of
the deformation ¢ have a scale Mo =~ p;z, which is also the order of
. magnitude of the relative shift of the quasi-particle energy (this
effect was pointed out by Rainwaterla). As a result, the degener-

ation of energy diminishes to a sufficient degree, but such small
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deformations do not violate the conscrvation of the intepral of
motion 4L (sce Ref. 19). Thus, the N(pf) function implicit in

Eq. (9) averages out automatically in the actual situation. Taking
into account additional spin doubling, the coefficient of the first
term on the right-hand side of Eq. (9) corresponds to the volume
contribution to the cells in the phase space; i.e., it is equal to
the specific expression for the ideal Fermi gas.*

The surface term sp? and the "cuyrvature term" P, take into
account the structure of the transition layer at the nuclear surface,
the spin-orbit coupling within the nucleus, ete. The numerical
values of the coefficients s and q must be determined experimentally
{see Section 3)}. .

We shall initially calculate the oscillating part'ﬁl(pf) of the

single quasi-particle levels in a rather straightferward manner by

using the modellg

for the gas situated in a well with a constant
potential (this physically corresponds to a homogeneous spatial
distribution of matter within the nucleus). To calculate ﬁl(pf),

one must sum over £ and n the quantityf

@f,n) =2 (20+1) w,(6,n). (10)

* ~
Only in this volume approximation can N(pf) be identified with
the number N of true particles. This apprfoximation, however, is
too crude for nuclear physics.

t

Because of the macroscopic character of the effect being studied,
the spin of the nucleon is determined by simple doubling. Note
that at this step of the calculation the principal quantum number
» should be numbered from zero rather tham unity. For example,
n =0 is assigned to the 1s state. This will make it possible to

use Eq. (6) in summing over both quantum numbers [see Eq. (14)
below].



- 11 -

Quwing to the eigenvalues g = Opn the Fermi distribution

w; (6n)= T wher G <f, (11)
o Q0 when f%n )f%

depends on the same quantum numbers., The eigenvalues can be deter-

mined by using the Bohr-Sommerfeld quantization rule 12

R .
S”(é("”f? =T(R+)), a
a

where the intevnal turning point r = a is determined by the centri-
fugal barrier and y < 1 determines the additional phase that depends
on the boundary conditions. Integral (12) need not be recalculated
because the wave functions (spherical Bessel functions) and their

quasi-classical asymptotic behavior are well known. Confining our-

selves to notations used in Ref. 19, we get
plsinp ‘ﬁﬂﬂjﬁ):f([ﬂ_!._g_)'
A
/B= a/LC €05 £+zr Jﬂ&/{: &'{E_g[na/g/ld_
/7

(13)

—

{£

A double summation of function (10) according to Eq. (6) yields
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) ) gt =fp0) + ST( @ g9 (e n)dldn +
=0 &0 y=1 ©
+§:Q SS (e‘zw e ) (,0(€,fz)a’€a’n s
i o |
E{?ﬁp(@n)c{n +Z S(eizrcwz . e'izmn)‘P(O,R)a/n} R s
¢ y={ 0
%{T(P(g,o)a(g + Piosa(eiarkt’ . e-izﬁt\f)sa(fﬂ)c{{} -’-F(P(g,fl)t/?c/ﬁ*
0 Ml o 0
ffg[eczt()&m) e—(Zu(AE-erl) QLZT(AE-M) e“z'“ (8- vn)]w )J&!n .
=1 V=1 @

Equation (14) contains two radically different types of integral.
Although those that depend on almost the entire range of values
0<p=kR< e of a particle's wave number cannot be generalized
cote real Fermi liquid, they depend smoothly on Pe and can be
dropped. The integrals oscillating as a function of p £ rapidly
converge at p a p. and can be generalized to the Fermi liquid,
The importance of the lower part of the scale of angular momenta,

where g «~ nf2, is evident from Fig. 3 (see Introduction). There-
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fore, the additional angle should be introduced for convenir« ce:

~

/6 =5 - /8 (1;‘:)

Nl

All the terms on the right-hand side of Eq. (14) can now be easily
classified according to the criteria defined above. The nonmacroscopic
character of the first term is evident; after integration, one can
see that the second term also lacks macroscopic characteristics,
After integration according to Eqs. (13) and (15) and summation over
A, We can see that the third term, equal to pflﬁn, depends smoothly
aon the limiting momentum. This also applies to the two following
pairs of terms enclosed in braces.

The oscillations are described by the double summation over i
and v Tthe last term in Eq. (14)]. The integral under the summation
sign has essentially the same structure as the second term on the
right-hand side of Eq. (14); i.e., it is nomnacroscopic. However,
for a specific relationship between A and v, a saddle point yielding
a macroscopic contribution will accur at the lower edge of the momen-
tum axis (i.e., at'B = Q; see also Fig. 3).

Taking Eqs. (13) and (15) into account, we can write the expansion

of the argument of the exponential in powers of'E up to the quadratic

" tems:

2&(M +vn) = ~TA = 3TV +2yp +TE2A-V)pf +Vpf’

(16)
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The linear term (the condition for the existence of the saddle at‘E = 0)

vanishes at

V=2A. an

Thus, using (10), (11), (13), and (15), we get

0 cortAé=vn) (il !
“ear pir n)dldn =4 f:)ooé‘ ( fi FJP £t /\2('183

0 o .a

Addition of a complex conjugate expression and summation over the only

remaining free index yields

— oo
N - B\ cosyvp (19)
toor V-1 Ve

For the oscillating part of the energy of the nucleus El’ we use Eq. (5):

Eo=-eking. @
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Thus, when the quasi particles have a sharp, steplike Fermi level
(this occurs in the absence of residual interaction between them;

see Introduction), the shell effects are described by a universal

periodic functionm,

(g) =

Vef

cos IVF
V2

s (21)

whose plot is shown in Fig. 4. The derivative of this function is

discontinuous when the values of its argument are

k,k'—'— Z’:-L-,O, /D = 2,3,4,5..., (22)

which correspend to the magic cusps. Since Pe =™ corresponds to the
1s state (the doubly magic nucleus 2He§ can be used as an example),

*
the magic numbers p should begin with number 2.

The definition of the effective nuclear radius R implied in Eq. (22)
pertains to its intergsl structure. Since we are using a model with
an impenetrable wall,™ we must imagine it to be at the point where
the wave function of a given quasi particle extrapolated from the
ilnner region vanishes. In other words, the effective nuclear sur-
face can always be treated in such a way that the additional phase
arising from the Bohr-Sommerfeld rule 2" will have the value v = 3/4
for the dominant quasi particles, in accordance with Eq. (13) (see
Introduction). In close connection with this fact, the equations
expressing the shell oscillations in terms of p_ are universal and
do not depend on the spin-orbit interaction or ghe structure of tne
surface layer. On going to the N-scale, however, this universality
is lost [see Eq. (%) and its explamation]._
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We can see that the right-hand side of Eq. (21) is a Fourier
series for the elementary function which we explicitly write in a

form valid for the two periods adjoining the magic nucleus p:

M(ﬁ)=6£2"2751ﬁ"£/0, //(ﬁ - ”LP) (23)
Etp-11<p<E(pen),

The absolute-value symbol indicates the nonanalyticity of the
function at the magic cusp. Using the symbols + and - to dis-
tinguish the values of the discontinuous function on the right-hand

and .left-hand sides respectively, we have

4 e e

And now, returning to (20), we obtain an expression for the discon-
tinuity in the derivative of the oscillating part of the energy of

the nucleus:

t/ff lo(é- +-) Z'DE (25)

To proceed from the limiting momentum to the true number of particles

[Eq. (1)]. both sides of the cquation must be multiplied by dptldN.
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Note that the smooth component EQ has no singularities at the cusp,
so that Eq. (253) actually glves the discontinuity in the derivative

of the total energy E:

dE | _ 7 dF° (26)
Agw)=E9%-

This relation can also be considered the equation for the discontinuity

of the nucleon binding energy e¢ = -dE/dN,

. ="g/ﬁa (27)
A€ Ec//V

in the vicinity of the magic nucleus. Thus, we can assume that Ag¢ =

A(dE/dN) = ¢_ - ¢
3. SIMPLE MODEL OF THE RESIDUAL INTERACTION

In choosing a model Hamiltonian we should remember that the spin
of an even-even mncleus in the ground state is equal to zero and,
within the limits of the shell-model representation, the spin of the
odd nuclei always hac a single particle value (see, for example,

Ref. 12). We therefore have

l.i _ + + 28
m,m'>0 -

—
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for the interaction between quasi particles in the same j-level.
Here, a; and a are the quasi-particle creation and annihilation
operators with a z-momentum component equal to m. The Hamiltonian
(28) is diagonalized exactly (see, e.g., Ref, 20); the eigenvaluzs

are given by the well-known Racah-Mottelson equation,

E:t::*G/é(QJ—é +[)‘ (29)

where X2 = 2§ + 1 is the total number of vacancies, bj is the number
of interacting quasi-particle pairs with i, = 4m at the jch level.

For the nucleus, we minimize the sum
E =) legh-G4,(0,-5, -]
d

over j-levels (ej is the initial energy of the quasi particle) at

zero point variation of the quantity
Mo
N =Y 26 an
J
é

This additional condition can be easily determined by the intermedi-

ate lagrange multipliers. Taking into account the Pauli exclusion
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principle (i.e., the condition 0 < bj < Qj). we determine

! &-& <= S1(0;-1),

W= _& _)6i(0+1)-2(-8)
1) eg,

0 &-& >SL(0;+1),

where (Y is thz chemical potential. We should also take into account

'MC(Z f),\'c C<G(_p +1) (32)

the interaction energy (29) corresponding to the equilibrium division

[ -G & -6 <~ (-1),

) T
G,(Q%) HEES -§ (0 l)<£-—é,< L0 +1),69

/
é.i.tt =

A

In a macrosceopic analysis used here, Qjﬁl is replaced by Qj = j+ 1/2,
the quasi particle’s orbital angular momentum { is substituted for its
momentum § to within the same accurscy, and the spin-orbit interaction

is omitted. Let us consider more appropriate variables (13) and (15):
~e

.Qa-psfnﬁ'agf. /‘:‘=azcm)§. Fetsl,

4 (3)
=%lg

it is azsumed herc that the small 'B‘: are euentul for oscillationc.

In this limit the §§ dependence of the coupling constant is exponential:

-

5" ! ' (35)
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In the variables p andﬂé distributicon (32) has the form
( e K
! PR<ERF,
‘ 7Y {_ P—B ek ~K
WPz e 1 AN <FpF, oo

\ o Pt 58"

{see Fig. 5). On the basis of the results of the preceding section,

we conclude that

N=J (W +/77),

v Iid Cvzh'.(&'lu-?; ; J{J ~ 37
=\le -2(2&1) um.',n) n (37)
U S“ vrr, FPP

in the general case. After simple integration over §, we get

”K-I

N S ;véff( ngﬂ -mep ) Jﬂ (38)

%a vz

To determine the values of the power of k compatible with experimental
data, we should coneider the extreme case in which the convergence of
the integral (38) is determined maihly by the term proportional to g
in the exponential. After expanding the other exponential function
e"“zpt%z in 8 series, we confine ourselves to the first two terms and

substitute them in Eq. (37); taking Eq. (5) into account, we obtain an

—
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expression for the oscillating part of the energy (the energy of

each quasi particle is assumed to be squal to ~e; see conclusion

of this section): 2_1 oo . )
E E,_«E_&{(?Fﬂ) X jsmyaﬁlz cas#/ﬁ .
-1 K¢ g y2-% Y&

a 4 ¥xf (39)

Oy

| -2 sinuds R4V &-1
“(’Zyﬁ) “ S;f_gifz 5;':2+ %ﬁ} ' y»ﬂa .

e Yuif :
Expression (39) is distinguishatle by its trigonometric series, which

can be easily analyzed., A cusplike singularity (i.e., finite discon-
tinuity of the derivative dE/dpf; see Fig. 1) is capable of yielding
ouly an even cosine series with respect to t = l+pf - 2mp. At k<2
we have 4/k » 2, and the derivatives converge uniformly according to
the Weierstrass convergence test. Thus, at k < 2 there are no cusps;k
and at k » 2 they are pronounced. To verify this, we shall analyze
the derivative of the series of interest,which has the form giinvt/va,
where ¢ < 1. Near the singular point we have sinvt = vt upv;o the
limit v= v ™ 1/it]. Substituting integraticn for summation, we

determine

oa v :
sénvlt (1= g, o, maed (40)
Z o ¢ 5 vl ~ VT~ .
Vo 0 I

In the special case of k = @, the absence of cusps is clearly
evident.
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Consequently, at k » 2 and ¢ = % - 1< 1, the derivative of the first
term in Eq. (39) has an infinite discontinuity at t = 0 [Eq. (40) is

consistent with the rigorous mathematical theorems; see, for example,

Ref. 21}. Thus, only

X
1
™

(41)

is compatible with the experimentally observed magic cusps. To
eliminate g »» 1 bounded from below for the coupling constant, we

shouid substitute (41) in (38) and integrate. Finally, we obtain

E =- fﬁ{’(a)ﬁff/’) +£(9) Ngi} oo

where

5=kt 72,

(43a)
f when X ?'61

f(x)=
.é(.?) _ 7 9(,7 7). 0 wien X<0 @)

are the functions whose plots are shown in Fig. 6. Here we also have

the function
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e
) =Z Sin9vg, )
}/2
Y ,

characteristic of oscillations in the presence of a residual iater-
action. This function approaches zero at the cusp. Differentiating

(42), we obtain the discontinuity

AE ﬂ/fo )( 7 (45)

for the nucleon binding energy in the nucleus. According to (43),
this discontinuity approaches infinity as g -~ 1. Physically, this
is attributed to the fact that at g = 1 one of the boundaries of the
interaction region II [see Eq. (36) and Fig. 5] is superimposed on
the Regge trajectories [see Eq. (3) and Fig. 3]. However, such a
sharply defined region of intermediate occupation nﬁmbers is not
likely to exist. In fact, the coefficient of the m(pf) function
presumably should nowhere become infinite. Note that a simble inter-
polation equation can be obtained for the fl(g) function. Since

£, =1 as g = 0 in the absence of residual interaction [eq. (2n)],
and in the asymptotic region (g = 1) according to (43) £ = 1/g2,

we get

SERPTESEPV T LS
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g

The discontinuity (Ae)0 in the absence of residual interaction [see

Eq. (27)) differs from that in Eq. (45) by

(see also Ref. 1l). For acrude interpolation (46) this value is
expressed directly im terms of the msidual interaction constant.
It is more practical, however, to use the analytic or nearly analytic
expressions for the w(pﬂg) distribution function. One such example
is analyzed in the next section.

We now can analyze the assumption made above that each quasi

particle has a specific energy e, distinct from the energy [Eq. (33)]

int ~
1

epzta ¢ after a simple calculation of its oscillating part. Thus,

of interaction between quasi particles, from which we get E

the contribution of the interaction energy to the oscillations is
not macroscopic and hence can be ignored. Since this is not an
isolated case, it should in no way be considered a characteristic

feature of this model. This problem hias already been analyzed in
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the Introduction from & general and physically more lucid point of

view,

4. ANALYTIC DISTRIBUTION FUNCTION

Since the contribution of the interactionfenergy ta the oscilla-
tions is negligible (for a given quasi-particle distribution function),
the problem can be reformulated as outlined in the Introduction: the
oscillating energy of the ground-state spherical nucleus is determined
by the w(g:g) function (for the quasi particles of'interest, it is the
diagonal part of the density matrix). Strictly speaking, we cannot
describe its form, although we can say that it obeys physically obvious
general limitations. In the asymptotic regions it must rapidly
approach zero and unity; therefore it is hard to imagine this function
to be nommonotonic. Moreover, the analysis in the preceding section
fsee Eqs. (41> and (42)] suggests that only the quadratic dependence
on the orbital angular momentum of the diffuse Fermi-distribution width
can be reconciled with the experimentally observed magic effects for
any intensities of the residual interaction. In fact, it can be easily
shown that for any distributions of the type w(p-pffaz) the oscillating
part of the energy El can always be reduced tc a linear combination of
m(pf) and n(nf). We'should therefore use the ordinary Fermi distri-

bution function [Eq. (7)] with the modulus quadratically dependent on

the angle ?3'
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wip,f)= PF 1 ' (48)

Calculation of the oscillating part of the energy E1 according to

Eqs. (9) and (37) yields

E=-{Fq i) £ @A}

-y Ssm;gﬁ J
= o ‘ < u' (49)
/L;(g) 2rq J Sg_g-_

(it is assumed here that ¢ = 1/4gpf; the advantage of this designa-
tion will become clear later). The plots of the Fl(g) and Fz(g)
functions are shown in Fig. 7. As in examples (36) and (41), the
term with the n(pf) function is dominant in the vregion g >> 1 of

strong residual interaction; this function has the coefficient

F(g) 5,

We chose the normali:ed coupling constant g (see above) so that

g»l

Eq. (50) would coincide with Eq. (43b). Continuing this analogy,



we note that in the nonanalytic model (42) and (43) the term with

n(pf) is absent when g << 1. In our case, however, this corresponds

to a small exponential value in the case of weak coupling between

quasi particles:

E(f) = % e"gz' g‘« 1 (51)

Note that, in a more formal sense, the asymptotic behavior of (51)

confirms the presence of a singular point at g = 0. It is possible

that the limiting case g - 0 of the sharp Fermi level has a general

character.

The m(pf) function is solely responsible for the magic charac-

teristics (cusps). Let us write the equations deseribing these

characteristics:

_rdpt
ac=¢ /‘/I’(g) (52)
_(AE) -f = {

Flg g

As can be seen in Fig. 7, the Fl(g) function has a maximum in the

w =

regiaﬁ of intermediate values of the coupling constant. Thus, the

effect of interest depends nomwonotonically on the intensity of the

residual iniecraction.



5. COMPARISON WITH EXPERIMENT
As shall use the particle scale after detemmining from experi-
mental data the numerical values of the coefficients s and q in
Eq. (%) for the Fermi liquid. Let us construct curve (9),
(1) through the magic numbers 50 (p = 5) and 82 (p = 6);
(2) through the magic numbers 82 (p = 6) and 126 (p = 7); and
(3) through the magic numbers 28, 50, 82,'and 126 by the least=-

squares method. We thus obtain three sets of parameters s and q:

(1) s =1.0 q=5.2
(2) s =1.1 q= 6.8 (53)
¢(3) s=1.0 q=5.6

The values of s and q calculated according to Eq. (9) are compared
in Table 1 with the known magic aumbers. Except for the very light
magic nuclei, a good fit seems to begin at N = 28. However, a
macroscopic analysis of magic effects is nonetheless useful in the
case of light nuclei. At N and Z < 28 the observed shell correction
E1 is described by discrete points, through which a continuous curve
cannot readily be drawn (see, for example, Ref. 6). The criteria
for finding the magic cusps apparently disappear when c;ndition (2)
is violated. 1In this respect the magic numbers 2 and 8 can be
thought of as an extrapolation to light nuclei of the rule given

in the footnote on p. 5 [ser also Eq. (22) and Fig. 3j. Note that



- 29 -
the agreement of the proton and ncutron magic numbers indicates that
the paramcters s and q are practically the same for both components
of nuclear matter. This is actributed to the relative swmalilness of
the effccts that distinguish a proton from a aeutton §in the aucleus,
such as & "Coulomb curve" (radisl dependence of the electrostatic
potential within the nucleus).

Since nuclear matter has twe constituent parts, the oscililating
term can be described by the sum of expressions {(49) for the neutron

-
and proton quasi particles

Fnz)=s g e Faie )] -<.L

Lli

AV RN

(%4}

1t would be of great theoretical interest to determine the energy
E{N,2) at the location of the doubly magic nucleus. The terms pro-
portional to m in Eq. (54) represent the surface EI(N.Z) as a pyramid
of rhombic cross section with its axis directed vertically down. The
terms proportional to n, however, yield a more complex shape.*

Let us qualitatively compare the discontinuities A¢ of the nucleon

binding energy. The values for the residual interaction constant were

Aczording to Eq. (44), the N(t) function approaches zero at the cusp
according to the law tin|t| (t = 4pg-2np). It is not absolutely
clear yet whether the small term proportional to n exceeds the
accepted macroscopic accuracy. This, however, has no effect on the
magic jumps in the nucleon binding encrgy.
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determined from the dats of Rel. 22 for %2 wapte nuelei. The second
set of parameters s and ¢ was used for the ﬁ{pf} function {aee Eq. {53)].
According to the interpolation of (46} and {47), fu gives the wost crude
characteristic of the resfdual interaction. The cowpling constant &'
vas caleulated aceording to Lqs. {43) and (45) and g, its countorpar:
in the analytic case (a4d), wvas detetwmined trom Eqs. [ 3) and (52). The
sverage values corresponding to the magic numbecrs 28, 50, 82, and 126
ave given in Table 2.

For the shell oscillations, the dependence of the diffuse Fermi

distribution width can be contrelled only up to the angles
& (55)
Rf ~1

after which the integrals (18) and (37) describing them converge

vapidly. According to (48), the characteristic wideh in the p scale

is given by

5= J,Z g. (56)

7
i
~

R
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e
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o

We now turn to the energy scale

,73 » 8

R o 6/ { t«? r3 (57,
.¢géi = ;;é%‘}-$k7 = Z?E aéz. .EZ.



Let us assume that
R=12 10" A" . )

and that the effective mass m* of the quasi particle is equal to that
of a free nucleon. The §¢ widths in megavolts ave given in the last
column of Table 2.

The wideh §e¢ of the diffuse region is different for specific
values of the orbital angular momentum, since it is a quadratic
function of %. Taking (55) into account, we confine ourselves to
the medivm values of'z characteristic of the shells of interest. The
results are given in Table 3.

The characteristics of the residual interaction in the tables,
itrespective of their refinement and the choice of scale, consistently

show that its intensity decreases rapidly with increasing size of the

nucleus.

6. DISCUSSION

The shell oscillations calculated in this paper proved to be a
fine tool for analyzing the quasi-particle distribution near the Fermi
level.  Of particular iaterest is the dependence of the residual inter-

action on the quasi particle's orbital angular momentum:




ngi’gz(f+é)z. (59)

Only the Lz dependence of the width of the diffusc Fermi distribution
turned out to be compatible with experimental data. This is as it
should be in some respects. Since we are dealing with a scalar
effect, it must be expressed in terms of the scalar square of the
momentum vector.

According to Eq. (55), relatively small angular momenta have an
important role. In this respect Eq. (59) can be considered the first
term of the expansion in powers of'z/pf. But why is the zero temm
of the expansion, which is independent of {4, missing in this case?
Could this mean that the residual interaction in a nucleus with finite
radius depends on the additional, apart from energy, integrals of
motion of the quasi particle? Unfortunately, a final answer cannot
be given to these questions yet. It would be desirable, nonetheless,
to point out the difficulties that would presumably arise in attempting
to reconcile the current situation with the Cooper effectla’23 in
nuclear matter. In fact, this effect is characterized by the constant
width of the statistical distribution's transition region, which is

identical for all quasi particles near the Fermi level. It is easy

to show, however, that the presence of this constant component in the
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transition repion's widih would climinate the experimentally obactved
magic cusps. Thercfore, the available experimental data favor more
simplc and natural hypotheses of the encrgy spectrum for infinite
nuclcar matter. [t secme that it is an ordinacry Fermi liquid with
a sharp Fermi level for quaai pnrticlcs.lz'la

The type of residual interacticn described by Eq. (59), however,
is associated with spherical auclei with a finite radius. Experi-
mental data create the impression that this type of residual inter-
action gradually decreases with distance from the magic nucleus and
finally somehow rvearranges itself. The thermodynamic aspects of the
transition were investigated by Nosov.’ The fact that the nucleus
ig no longer spherical as a result of residual interaction of the
phase Cransitiun* should not be surprising. It was shown earlier
(see Ref. 19) that in a simple scheme without interaction the region

is completely unstable in the case of any number of particles.

We would like to thank V.D. Kirilyuk, V.P, Kubarovsky, and
V.I. Lisin for calculating the Fl(g) functicn on the computer. We
also thank I.I, Gurevich, L.P, Kudrin, G.A, Pik-Pichak, V.P., Smilge,

and K.A. Ter-Martirosyan for useful discus: ions.

The critical decrease of the residual interaction having the
structure (59) probably occurs when very few quasi-particle
states reach the diffuse Fermi distribution region [for example,
interaction zone II in the case of the Racah-Mottelson model
(28) and (36); see Fig. 5].
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APPENDIX

In the caiculations above we used & model with a wall impcnetrable
to quasi particles, situated at a distance R from the center of the
nucleus (sce Ref. 19). The roots in Fig. 3 of the wave equation for
the free motion of a particle in the spherical vegion correspond to
the samc boundaty condition. We shall show that this is not connected
with any constraints imposed on the gencrality of the results for the
shell oscillations of the energy of a spherical nucleus.

In the Bohr-Sommerfeld quantization rule (12) for determining the

eigenvalues, the integrand is given by

ko=/k- £ v

Because of the uniformity of nuclear matter the wave number k is
constant in the inner region. The additional phase y depends on the
properties of the actual structure of the transition layer at the

nuclear surface. We shall use the dimensionless variable kr = p':

P

1{- c/lo' =T(n+y), (A2)

l'\}
b o
]

The Regge trajectories responsible for the oscillations are charac-

terized by the correlation
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Zn 'i‘f;P- P =2, 3 4, 5004y (A3)

between the quantum numbers (see Introduction and Fig. 3). There-

fare

_’{f‘l;-i. '_t{fggg (A4)
de 2 17

Let us differentiate (A2) along the trajectory:

1-L AP arresl o Edf,

rn—

}°c/€ P2

It follows from this that the derivative dp/cﬁf vanishes at § = 0

[the last term on the right-hand side, which is determined by differ-
entiating the phase correction, does not affect the result; see

Eq. (A7) below]. In the second differentiation of the Bohr-Sommerfeld

equation the vanishing terms are dropped:

(A6)

SaaE
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We now take into account the fact that the y phase is determined

by the specific cuclear interactions in the immediate vicinity of

the upper limit of integration. Here, any characteristics

influencing the result depend on the momentun £, only in combination

with -232 . Therefore,

iif ‘jJ ﬂ: mel- A7
ZoIEt Ipclrp g @

Hence, at T = 0 of the maximum we get

.‘_/i :—___L, (AB).
e P

if the terms :al/pz are neglected. Thus, Eq. (3)

l+%
S,

is independent of the specific structure of the nuclear surface

(A9)

Let us now determine the ordinates of the successive trajec-

tories. At ¥ =& + 1/2 = 0, according to (A3), n = p/2 + 1/4.

Substituting it in (A2), we get



po-sfer) o

[ . - . =
where y' = y + 1/4. Substituting kfR pf for pmax we can see that

(A10) coincides with the quantization rule (22) (see footnote on

p. 15) for the magic values of this parameter (see Ref. 11).



-38-

Table 1

Theoretical and Experimental Nucleon Magic Numbers

Ntheor:'

[+ N
(1) (2) (3)
2 2 11 15 12
3 8 18 22 19
4 28 30 33 30
5 50 50 52 50
6 82 82 82 81
7 126 129 126 127
8 184(?) 195 187 191
9 281 270 276
10 392 376 386
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Table 2

Characteristics of the Residual
Interaction Between Nucleons
(Quasi Particles) Determined From
the Magic Cusps (6¢ is in MeV)

Neutron magic numbers

Proton magic numbers

PpiN,Z — —

Jo g' g o&e | /o g g be
47 2812.4 2.7 3.3 5.2(1.8 2.2 2.6 3.8
5} 50;1.6 2.0 2.3 3.3;1.5 1.9 2.2 2.6
6; 8211.4 1.8 2.0 2.6}1.0 1.5 1.6 1.6
7112611.1 1.6 1.7 1.9




-40-

Table 3

The Values of §¢ (in MeV) for Specific 4

5 7
€ ¢ € € .
neutron proton neutron proton neutron proton neutron
Q 0.4 0.3 0.14 0.08
1 1.9 1.5 0.8
2 10.2 1.5 3.5 2.1
3 10.2 8.1 4.3
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Fig. 1

The smooth part of the mass described by Weizsdcker's
equation has no characteristic features; it is taken
as the origin of the shell effect schematically repre-
sented here. A more detailed and precise plot would
contain all the curves corresponding to the different
chemical elements (see, for example, Ref, 6). The
mass curve exhibits analogous and equally pronounced
characteristics, depending on the number of protons 2.
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Fig. 2 Since the increase (2b) in attenuation (width) of the
gsingle-quasi-particle states in a real Fermi liquid
precludes a correct determination of the location of
the potential well's bottom, case (b), in contrast to
case (a), has only the quasi-particle energy, which is
measured from zero kinetic energy of the free nucleon.
In this highly schematic diagram the quasi-particle
levels are discrete. In fact, the main results in the
following sections [see, for example, Eqs. (19) and
(20)] were obtained in a "macroscopic" approximation

in which the energy spectrum of the quasi particles is
continuous.



AR

A

)

/j

I 4

e r 2 X ¥ 5§ é T 2 4 RIS BN

Fig. 3 The zero-points of the spherical Bessel functions j_(p)
are on the 1,p plane (see Section 2 and Introduction).
The guasi-particle attenuation (see Fig. 2) was not
taken into account. The shell oscillations are deter-
mined by the nearest neighborhood p =~ p_. of the Fermi
level where the corresponding width is negligible.
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Fig. &4 P!st of the m(pf) function [see Eqs. (21) and (23)].
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Fig. 5 The Racah-Mottelson model [Hamiltonian (28)7 for the
nucleus. The particle-state distribution is given
here for a fixed value of 7 (or §). The w(p,f)
distribution function has a characteristic feature
at p = p. and B = 0 [see Eqs. (36) and (41)], which
is difficult to depict on a plane graph.
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Fig. 6 Plots of the fl(g) and fz(g) functions [see Eq. (43)].
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Fig. 7 Plots of the Fl(g) and Fz(g) functions [see Eq. (49)].
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