
RECEIVED BY. TIC MM & w01975
BNL-TR-597

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Adminuxutian, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, mpkes any
warranty, express or implied, or assumes any lego!
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

THEORY OF MAGIC NUCLEI

V.G. Nosov and A.M. Kamchatnov

The Kurchatov Institute of Atomic Fnergy

IAE-2286

Moscow, 1973

Translated by S.J. Amoretty
Technical Information Division
Brookhaven National Laboratory
Upton, L.I . , New York 11973

DISTRIBUTION OF THIS DOCUMENT UNLIMITED^



ABSTRACT

A consistent theory of the shell and magic oscillations of

the masses of spherical nuclei is developed on the basis of the

Fermi liquid concept of the energy spectrum of nuclear matter.

A "magic" relationship between the system's dimensions and the

limiting momentum of the quasi-particle distribution is derived;

an integer number of the de Broglie half-waves falls on the nuclear

diameter. An expression for the discontinuity in the nucleon

binding energy in the vicinity of a magic nucleus is obtained..

The role of the residual interaction is analyzed. It is shown

that the width of the Fermi-surface diffuseness due to the residual

interaction is proportional to the squared vector of the quasi-

particle orbital angular momentum. The values of the corresponding

proportionality factors (the coupling constant for quasi particles)

are determined from the experimental data for 52 magic nuclei.

The rapid drop of the residual interaction with increasing nuclear

size is demonstrated.



I. INTRODUCTION

The nucleus was initially studied as a macroscopic body by

1 2
Weizsacker. His semiempiricai equation, refined by Bethe and

3

Fermi, allowed a fairly accurate description of the total binding

energies of many nuclei. This, however, led to many digressions

from his original equation, a problem that has arisen repeatedly in

one form or another during the past 35 years. The most plausible

explanation for the departure from Weizsacker's equation is that the

protons and neutrons can be added to a nucleus only in whole numbers.

The general belief, however, that the so-called magic and shell dis-
4 5

crepancies are not macroscopic in origin ' is more a dogmatic asser-

tion than a fact directly following from experiment. Theoretical

study of the macroscopic properties of a substance, which is closely

connected with experimental observation of the thermodynamic proper-

ties, allows effects such as the phase transition to be observed and

carefully analyzed. The specific property of a nucleus is its

direct accessibility to absolute zero temperature (the ground state),

and its energy, i.e., nuclear mass, is the most important thermo-

dynamic value. Judging from the experimental data shown schemati-

cally in Fig. 1, the characteristic features of interest apparently

are "kinks," i.e., discontinuities in the derivative of the energy

of the particles. The sluggish, almost horizontal part of the

curve represents the region of nonspherical nuclei and the Curie

point corresponds to the phase transition analyzed by Nosov, which
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changes in particular the equilibrium shape of the nucleus. Figure 1

also shows the magic "cusps" of spherical nuclei, downward pointing

spikes whose peaks contain appropriate magic nuclei. Note the differ-

ence between this characteristic feature t.nd the ordinary Curie point.

A qualitative difference between the phases - different values of the

chemical potential - can occur only near such an "isolated" transition

point. At some distance from this point, however, one phase could not

have a characteristic that the other lacked. Since the solid itself

shows no evidence of a discontinuity (on the macroscopic scale; see

next section), it could be said that in some respects we have a second-

order transition.

4 5
The traditional explanation of magic numbers ' uses the concept

of fermion occupation of the 2j + 1 degenerate, single-particle levels

in a spherically symmetric potential well. After a shell has been

filled, the next nucleon approaches the lower edge of the continuous

spectrum, and the nucleon binding energy s (the chemical potential of

opposite sign) decreases accordingly. The weakness of this inter-

pretation is that an analogous situation should occur after each indi-

vidual level, rather than a specific group of levels, has been filled.

In contrast to the spacing between the neighboring sheila, the level

spacing within each shell cannot always be small, since such a small,

dimensionless parameter cannce be obtained. Specific calculations of

single-nucleon "evel schemes confirm the validity of tnis assumption

(see, for example, the neutron energy-level diagram in Ref. 8). We

should observe a whole series of cusps corresponding to each level.
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In fact, in Fig. 1 medium weight nuclei beyond the magic number 28

exhibit cusps that correspond to much less frequently occurring

true magic numbers.

Furthermore, only some of the characteristics of the well of

interest can be clearly determined: the location of the well's

bottom is not a strict quantitative concept because of the strong

attenuation of the deep-lying quasi particles. This theoretical

assumption has been confirmed by experimental data on the knockout
Q

of the deep-lying protons from nuclei. The difference between the

real Fermi liquid and the simple Fermi-gas model in an external field

is schematically shown in Fig. 2. In both cases we deal with the

quasi-particle energy if it is measured from zero kinetic energy of

the free outer nucleon. At the Fermi distribution limit this value

reduces to the chemical potential cf ~ -c, where e is the nucleon

binding energy. Furthermore, in the example shown in Fig. 2a the

energy e', which is measured from the potential well's bottom, deter-

mines the limiting momentum p. = kfR
Mve' (R is the radius of the

well). However, noninteracting quasi particles can exist in the

nuclear Fermi liquid (see Fig. 2b) only in the immediate vicinity of

the Fermi level, and el drops out. The concept of limiting momentum

nonetheless remains important. Theoretically we could estimate the

value of df from the wave function of the last quasi particle. The

theory developed in ths next sections is based on the crucial assump-

tion that the limiting momentum p f is d& -mined by the total number
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of particles N:

N*N(pt)

(the specific function can be found in Sections 2 and 5).

The total energy of the nucleus vs. ef (or N) undergoes oscilla-

tions because of the density oscillations of the single quasi-particle

states near pf. The latter are ultimately dependent on the conser-

vation of the orbital angular momentum I in spherical nuclei, and the

eigenvalues p = fcR can be graphically represented by points on the

plane -t,p. Figure 3 clearly shows their grouping in the region of

intermediate orbital angular momenta for

(2)

Here the Regge trajectories constructed according to the 2n + K, = p

rule (n is the principal quantum number and p is the number of the

trajectory) are situated near the peak, where their shape is deter-

mined by

y,.l£±lf

(see Appendix).
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The spacing becween the curves, equal to n/2 along the Y axis,

Is the spacing between the neighboring shells in the p scale. Let

us assume that the Fermi level

(4)

advances, say, upward. After exhausting the levels of the last Regge

trajectory at the point of tangency (see Fig. 3), the density of states

dN/dp (N is the numbei of single quasi-particle stares situated below

the p level) decreases rapidly. In a more formal sense, this can be

attributed to the oscillating part 1L(P) of the^(p) function (see

Ref. 11), whose period is determined by the spacing between the tra-

jectories in Fig. 3. Thus, the oscillating part E, of the total energy

E = E + E. of the nucleus (E is the part of the energy depending on

P_) is given by

(5)

In connection with Fig. 3 it is interesting to point out a simple
experimentally confirmed corollary: each nuclear shell contains
either one s- or one p-state, and the single-particle levels of
similar energy are situated near the end of the closure of this
shell. Spatially inhomogeneous atomic structure in this respect
is more complex and has no similar theorem; see, for example,
Ref. 12.
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where the factor of proportionality c is the first variational energy

13 14derivative of the distribution function * or, in other words, the

energy of a quasi particle near the Fermi level.

The oscillating part N,(Pf) can be determined by calculating the

number of single quasi-particle states occupied by fermions, according

to the Foisson equation *

(6)

The dominant contribution to the last oscillating term comes from quasi

particles nearest to the Fermi distribution level (graphically repre-

sented in Fig. 3). In fact, the oscillating integral under the

summation over v would be too small for a smooth p(n) function.

However, in calculating the thermodynamic functions of the Fermi

systems, cp(n) should contain in the form of a multiplier the statis-

tical distribution of quasi particles, which changes sharply in the

neighborhood of the Fermi level. An example of such an oscillating

characteristic in "ordinary" Fermi systems :.s the de Haas-van Alphen

effect in metals. ' The finite size of the nucleus apparently

cannot be canonically transformed to such quasi particles, for which

expression (4) for an ideally sharp, stepwise Fermi distribution

would hold. This is commonly known in nuclear physics as the "resid-

ual" interaction between nucleont. The diffuse Fermi level resulting

from it will generally suppress the oscillations. However, only a
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certain type of diffuse Fermi level qualitatively corresponds to

experimental data. For example, the statistical temperature distri-

bution

ar. =

yields an analytic expression for N,(Pf) without magic cusps.

What quantities or functions characterize the residual Inter-

action? Me can imagine» of course, a case in which the residual

Interaction between quasi particles is described by a specific

HamiltonLc:n: one such model is calculated In Section 3. However,

we should consider chat, although because of the interaction the

energy o£ the individual quasi particle, strictly speaking, is no

longer a precisely defined qucstity, Eq. (5) can still be used for

the approximation of interest. Suppose the region of the diffuse

Fermi distribution determined by the residual interaction has the

width 6s - this of course can be considerad the uncertainty in the

quasi particle's energy of the same order of magnitude. On the

other hand, In the p scale (see Fig. 3 and next section),6P charac-

teristic of oscillations is of the order of unity. Therefore, in

the region of oscillations, 6e •» (de/dp)6p « e/pf. Taking into

This remark can be considered as the corollary of a more general
theorem. It is clear that continuous distributions or quasi
particles with respect to the states, which are independent of
I, exhibit no cuspiike characteristics. .The dependence of the
width of the diffuse Fermi distribution on the quantum number I,
compatible with the experimentally observed magic cusps, is
determined in Sections 3 and 4.
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account Eq. (2), we get

(8)

i.e., the first factor on the right-hand side of Bq. (5) can be

determined with sufficient accuracy. In other words, the redistri-

bution of quasi-particle states as a result of the residual inter-

action should be determined in principle from the minimum energy

of the nucleus. The oscillations can then be calculated, neglec-

ting the additional energy of interaction between quasi particles.

The specific example in Section 3 illustrates this curious feature.

The so-called dynamic approach - here we mean the specific

Harailtonian for interaction between quasi particles - is highly

ambiguous. since a canonical transformation giving a sharp Fermi

level [Eq. (4)3 does not exist, we cannot choose unambiguously a

transformation for a new, quasi-particle Hamiltonian. According

to Eq. (8), the residual interaction can be more adequately

described by the distribution function for quasi particles. If

we consider this function «(&»£) a primary concept in a certain

sense of the word, it would seem possible to use its simple single-

parameter approximations. In this case, it would be possible Co

observe such a characteristic feature as a rapid decrease of the

residual interaction with increasing nuclear size. The problems

considered here will be discussed in the final sections of this
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paper* and the theory in which the residual interaction is neglected,

i.e., one with a sharp Fermi level [Eq. (4)3* will be discussed in

the next section.

2. SHELL STRUCTURE OF A SPHERICAL NUCLEUS IN THE ABSENCE OF
RESIDUAL INTERACTION

An asymptotic expression of the function N s H(tte) for large

p.'s [see Eqs. (I) and (2)3 must be terminated after a finite number

of terms:

In fact, the fifth term of the expansion ~pl would add physically

meaningless fractional parts to the particles. A macroscopic

approach apparently requires that the fourth term describing the

"single-particle effect" be also dropped (see Introduction). All

nonmacroscopic terms such as p f « 1 will henceforth be dropped.

The third term in Eq. (9) may also seem incorrect, since 2-t + I *» p.

particles would populate a single level in a spherically symmetric

field (see Introduction). However, the zero-point oscillation*; of

the deformation a have a scale Aa « pi , which is also the order of

magnitude of the relative shift of the quasi-particle energy (this

18

effect was pointed out by Rainwater ). As a result, the degener-

ation of energy diminishes to a sufficient degree, but such small
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deformations do not violate tht conservation of the integral of

motion I (see Ref, 19). Thus, the N(&f) function implicit in

Eq. (3) averages out automatically in the actual situation. Taking

into account additional spin doubling, the coefficient of the first

term on the right-hand side of Eq. (9) corresponds to the volume

contribution to She cells in the phase space; i.e., it is equal to

the specific expression for the ideal Fermi gas.

2
The surface term spf and the "curvature term" qp£ take into

account the structure of the transition layer at the nuclear surface,

the spin-orbit coupling within the nucleus, etc. The numerical

values of the coefficients s and q must be determined experimentally

(see Section 5).

Vie shall initially calculate the oscillating part 'N.(pf) of the

single quasi-particle levels in a rather straightforward manner by

19
using the model for the gas situated in a well with a constant

potential (this physically corresponds to a homogeneous spatial

distribution of matter within the nucleus). To calculate N1(pf)>

one must sum over I and n the quantity

f(t>n) =

Only in this volume approximation can*N(p,) be identified with
the number N of true particles. This approximation, however, is
too crude for nuclear physics.

Because of the macroscopic character of the effect being studied,
the spin of the nucleon is determined by simple doubling. Note
that at this step of Che calculation the principal quantum number
n should be numbered from zero rather than unity. For example,
n = 0 is assigned to the is state. This will make it possible to
use Eq. (6) in summing over both quantum number? [see Eq. (14)
below].
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Owing to the eigenvalues P = P, the Fermi distribution

{ I when ft </?

depends on the same quantum numbers. The eigenvalues can be deter-

12
mined by using the Bohr-Sonunerfeld quantisation rule :

(12)

where the internal turning point r = a is determined by the centri-

fugal barrier and y < 1 determines the additional phase that depends

on the boundary conditions. Integral (12) need not be recalculated

because the wave functions (spherical Bessel functions) and their

quasi-classical asymptotic behavior are well known. Confining our-

selves to notations used in Ref. 19, we get

p (sinfi ~js cosp ) = % (n + |-) ,
(l3)

A double summation of function (10) according to Eq. (6) yields
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-Q e*o

liTfWJn +TT(e'*"" + e
iZtm)^o,n)Jn\

j

Equation (14) contains two radically different types of integral.

Although those that depend on almost the entire range of values

0 < p = kR < p.. of a particle's wave number cannot be generalized

to the real Fermi liquid, they depend smoothly on p, and can be

dropped. The integrals oscillating as a function of p. rapidly

converge at p <*» p. and can be generalized to the Fermi liquid.

The importance of the lower part of the scale of angular momenta,

where p « TT/2, is evident from Fig. 3 (see Introduction). There-
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fore, the additional angle should be introduced for conveni* ,ce:

All the terms on the right-hand side of Eq. (14) can now be easily

classified according to the criteria defined above. The nonmacroscopic

character of the first term is evident; after integration, one can

see that the second term also lacks macroscopic characteristics.

After integration according to Eqs. (13) and (IS) and summation over

k, we can see that the third term, equal to p£/6n, depends smoothly

on the limiting momentum- This also applies to the two following

pairs of terms enclosed in braces.

The oscillations are described by the double summation over X

and v fthe last term in Eq. (14)3- The integral under the summation

sign has essentially the same structure as the second term on the

right-hand side of Eq. (14); i.e., it is nonmacroscopic. However,

for a specific relationship between X and v, a saddle point yielding

a macroscopic contribution will occur at the lower edge of the momen-

tum axis (i.e., at *$ = 0; see also Fig. 3).

Taking Eqs. (13) and (15) into account, we can write the expansion

of the argument of che exponential in powers of $ up to the quadratic

terms:

(16)
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The linear terra (the condition for the existence of the saddle at *p = 0)

vanishes at

Thus, using (10), (11), (13), and (15), we get

Addition of a complex conjugate expression and summation over the only

remaining free index yields

(i9)

For the oscillating part of the energy of the nucleus E-, we use Eq. (5):
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Thus, when the quasi particles have a sharp, steplike Fermi level

(this occurs in the absence of residual interaction between them;

see Introduction), the shell effects are described by a universal

periodic function,

(21)

V*

whose plot is shown in Fig. 4. The derivative of this function is

discontinuous when the values of its argument are

p p = 2.3,4.5..., (22)

which correspond to the magic cusps. Since p.. = TT corresponds to the
4

Is state (the doubly magic nucleus 2
H e 2 can be used as a n examPle)>

•k
the magic numbers p should begin with number 2.

The definition of the effective nuclear radius R implied in Eq. (22)
pertains to its internal structure. Since we are using a model with
an impenetrable wall, we must imagine it to be at the point where
the wave function of a given quasi particle extrapolated from the
inner region vanishes. In other words, the effective nuclear sur-
face can always be treated in such a way that the additional phase
arising from the Bohr-Sommerfeld rule will have the value y = 3/4
for the dominant quasi particles, in accordance with Eq. (13) (see
Introduction). In close connection with this fact, the equations
expressing the shell oscillations in terms of p. are universal and
do not depend on the spin-orbit interaction or the structure ot trie
surface layer. On going to the N-scale, however, this universality
is lost [see Eq. (9) and its explanation]..
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We can see that the right-hand side of Eq. (21) is a Fourier

series for the elementary function which we explicitly write in a

form valid fov: the two periods adjoining the magic nucleus p:

The absolute-value symbol indicates the nonanalyticity of the

function at the magic cusp. Using the symbols + and - to dis-

tinguish the values of the discontinuous function on the right-hand

and.left-hand sides respectively, we have

( ) = ? 2K. <24>

And now, returning to (20), we obtain an expression for the discon-

tinuity in the derivative of the oscillating part of the energy of

the nucleus:

(25)

To proceed from the limiting momentum to Che true number of particles

fBq. (I)], both sides of the equation must be multiplied by dp./dN.
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Note that the smooth component E has no singularities at the cusp,

so that Eq. (25) actually gives the discontinuity in the derivative

of the total energy E:

This relation can also be considered the equation for the discontinuity

of the nucleon binding energy e = -dE/dN,

• * »

in the vicinity of the magic nucleus. Thus, we can assume that

3. SIMPLE MODEL OF THE RESIDUAL INTERACTION

In choosing a model Hamiltonian we should remember that the spin

of an even-even nucleus in the ground state is equal to zero and,

within the limits of the shell-model representation, the spin of the

odd nuclei always has a single particle value (see, for example,

Ref. 12). We therefore have

m,nt'>o
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for the Interaction between quasi particles In the same j-level.

Here, a and a are the quasl-partlcle creation and annihilationm ni

operators with a z-momentum component equal to m. The Hamiltonian

(28) is diagonalized exactly (see, e.g., Ref. 20); the eigenvalues

are given by the well-known Racah-Mottelson equation,

(29)

where 2ft = 2j + 1 is the total number of vacancies, b. is the number

of interacting quasi-particle pairs with j « £n at the jth level.

For the nucleus, we minimize the sum

over j-levels (e. is the initial energy of the quasi particle) at

zero point variation of the quantity

(31)

This additional condition can be easily determined by the intermedi-

ate Lagrange multipliers. Taking into account the Paul! exclusion



principle (i.e., the condition 0 s b. £ Q.), we determine

0
where ef is th-i chemical potential. We should also take into account

the interaction energy (29) corresponding to the equilibrium division

In a macroscopic analysis used here, Q,±l is replaced by n. - j + 1/2,
•I J

the quasi particle's orbital angular momentum £ is substituted for i t s
*

momentum j to within the same accuracy, and the spin-orbit interaction

is omitted. Lett us consider more appropriate variables (13) and (IS):

%
f

It is assumed here that the small %%% ara essential for oscillation;:.

In this limit theft dependence of the coupling constant is exponential:

(34)

(35)
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In the variables p and'p distribution (32) has the form

1

9 Y

i
I
\ 0

(see Fig. 5). On the basis of the results of the preceding section,

we conclude that

Z
(3?)

In the general case. After simple integration over §, we get

(38)

To determine the values of the power of k compatible with experimental

data, we should consider the extreme case in which the convergence of

the integral (38) is determined mainly by the term proportional to g

in the exponential. After expanding the other exponential function

e v PfP in a a e r i e s > we confine ourselves to the first two terms and

substitute them in Eq. (37); taking Eq. (5) into account, we obtain an
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expression for the oscillating part of the energy (the energy of

each quasi particle is assumed to be equal to -e; see conclusion

of this section):

• • —llMfc 1 I IIMU 11. "~ I - • fo f t{ *

(39)

Expression (39) is distinguishable fay its trigonometric series, which

can be easily analyzed. A cusplike singularity (i.e., finite discon-

tinuity of the derivative dE/dpf; see Fig. I) is capable of yielding

only an even cosine series with respect to t = 4pf - 2rrp. At k < 2

we have 4/k > 2, and the derivatives converge uniformly according to

the Weierstrass convergence test. Thus, at k < 2 there are no cusps,

and at k > 2 they are pronounced. To verify this, we shall analyze

the derivative of the series of interest,which has the form Zsinvt/v ,
v=l

where a < 1. Near the singular point we have sinvt « vt up to the

liraitv=^>«* l/|t|. Substituting integration for summation, we

determine

V»f

In the special case of k « 0, the absence of cusps is clearly
evident.
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Consequently, at k > 2 and a = r - 1 < I, the derivative of the first

term in Eq. (39) has an infinite discontinuity at t = 0 [Eq. (40) is

consistent with the rigorous mathematical theorems; see, for example,

Ref. 21]. Thus, only

K - (41)

is compatible with the experimentally observed magic cusps. To

eliminate g » 1 bounded from below for the coupling constant, we

should substitute (41) in (38) and integrate. Finally, we obtain

<42)

where

— 4

X>0,
(43a)

X<0 (43b)

are Che functions whose plots are shown in Fig. 6. Here we also have

the function
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(44)

characteristic of oscillations in the presence of a residual inter-

action. This function approaches zero at the cusp. Differentiating

(42), we obtain the discontinuity

JN

for the nucleon binding energy in the nucleus. According to (43),

this discontinuity approaches infinity as g -» 1. Physically, this

is attributed to the fact that at g = 1 one of the boundaries of the

interaction region II [see Eq. (36) and Fig. 5] is superimposed on

the Regge trajectories [see Eq. (3) and Fig. 3]. However, such a

sharply defined region of intermediate occupation numbers is not

likely to exist. In fact, the coefficient of the m(p_) function

presumably should nowhere become infinite. Note that a simple inter-

polation equation can be obtained for the f,(g) function. Since

f, -• 1 as g •* 0 in the absence of residual interaction [Eq. (27)],

and in the asymptotic region (g » 1) according to (43) f. =" 1/g ,

we get
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(46>

The discontinuity C&e) in the absence of residual interaction [see

Eq. (27)) differs from that in Eq. (45) by

(47)

(see also Ref. 11). For a crude interpolation (46) this value is

expressed directly in terms of thexesidual interaction constant.

It is more practical, however, to use the analytic or nearly analytic

expressions for the w(p,$) distribution function. One such example

is analyzed in the next section.

We now can analyze the assumption made above that each quasi

particle has a specific energy e, distinct from the energy [Eq. (33)]

of interaction between quasi particles, from which we get E. «

ep~ » e after a simple calculation of its oscillating part. Thus,

the contribution of the interaction energy to the oscillations is

not macroscopic and hence can be ignored. Since this is not an

isolated case, it should in no way be considered a characteristic

feature of this model. This problem has already been analyzed in
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the Introduction from a general and physically more lucid point of

view.

4. ANALYTIC DISTRIBUTION FUNCTION

Since the contribution of the interaction energy to the oscilla-

tions is negligible (for a given quasi-particle distribution function),

the problem can be reformulated as outlined in the Introduction: the

oscillating energy of the ground-state spherical nucleus is determined

by the w{0,<3) function (for the quasi particles of interest, it is the

diagonal part of the density matrix). Strictly speaking, we cannot

describe its form, although we can say that it obeys physically obvious

general limitations. In the asymptotic regions it must rapidly

approach zero and unity; therefore it is hard to imagine this function

to be nonmonotonic. Moreover, the analysis in the preceding section

Tsee Eqs. (41) and (42)3 suggests that only the quadratic dependence

on the orbital angular momentum of the diffuse Fermi-distribution width

can be reconciled with the experimentally observed magic effects for

any intensities of the residual interaction. In fact, it can be easily

shown that for any distributions of the type w(p-pf/fS ) the oscillating

part of the energy E. can always be reduced to a linear combination of

m(pf) and n(0_). We should therefore use the ordinary Fermi distri-

bution function [Eq. (7)] with the modulus quadratically dependent on

the angle (3
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+ /

Calculation of the oscillating part of the energy Eĵ  according to

Eqs. (5) and (37) yields

(it is assumed here that T = l/4gpf; the advantage of this designa-

tion will become clear later). The plots of the F1(g) and F2(g)

functions are shown in Fig. 7. As in examples (36) and (41), the

term with the n(pf) function is dominant in the region g » 1 of

strong residual interaction; this function has the coefficient

/»/. <50)

We chose the normalised coupling constant g (see above) so that

Eq. (50) would coincide with Eq. (43b). Continuing this analogy,
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we note that in the nonanalytic model (42) and (43) the term with

n(pf) is absent when g « I. In our case, however, this corresponds

to a small exponential value in the case of weak coupling between

quasi particles:

Fjfl-fet

Note that, in a more formal sense, the asymptotic behavior of (51)

confirms the presence of a singular point at g = 0. It is possible

that the limiting case g -* 0 of the sharp Fermi level has a general

character.

The m(p.) function is solely responsible for the magic charac-

teristics (cusps). Let us write the equations describing these

characteristics:

(52)

As can be seen in Fig. 7, the F.(g) function has a maximum in the

region of intermediate values of the coupling constant. Thus, the

effect of interest depends nonmonotonically on the intensity of the

residual interaction.
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5. COMPARISON WITH EXPERIMENT

As shall use the particle scale after determining from experi-

mental data the numerical values of the coefficients s and q in

Eq. (9) for the Fermi liquid. Let us construct curve (9),

(1) through the magic numbers 50 (p = 5) and 82 (p <» 6);

(2) through the magic numbers 82 (p = 6) and 126 (p • 7); and

(3) through the magic numbers 28, SO, 82, and 126 by the least-

squares method. We thus obtain three sets of parameters s and q:

(I)

(2)

(3)

s •

s =

s •

1

1

1

.0

.1

.0

q a

q *

q =

5

6

5

.2

.8

.6

(53)

The values of s and q calculated according to Eq. (9) are compared

in Table 1 with the known magic numbers. Except for the very light

magic nuclei, a good fit seems to begin at N = 28. However, a

macroscopic analysis of magic effects is nonetheless useful in the

case of light nuclei. Ac N and Z < 28 the observed shell correction

Ej is described by discrete points, through which a continuous curve

cannot readily be drawn (see, for example, Ref. 6). The criteria

for finding the magic cusps apparently disappear when condition (2)

is violated. In this respect the magic numbers 2 and 8 can be

thought of as an extrapolation to light nuclei of the rule given

in the footnote on p. 5 [ser also Eq. (22) and Fig. 3j. Note that
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the agreement of the proton and neutron magic numbers indicates that

the parameters s and <\ arc practically the tamo for both components

of nuclear natter. This is attributed to the relative smallnes* of

the effects that distinguish a proton from a neutron in the nucleus,

such as a "Coulonb curve" (radial dependence of the electrostatic

potential within Che nucleus).

Since nuclear matter has two constituent parts, the oieiUaeinp,

tern can be described by the sum of expressions (49) for the neutron

and proton quasi particles :

It would be of great theoretical interest to determine the energy

E(N,2) at the location of the doubly magic nucleus. The terms pro-

portional to m in Eq. (54) represent the surface E,(N,Z) as a pyramid

of rhombic cross section with its axis directed vertically down. The

terms proportional to n, however, yield a more complex shape,

Let us qualitatively compare the discontinuities Ac of the nucieon

binding energy. The values for the residual interaction constant were

According to Eq. (44), the N(t) function approaches zero at the cusp
according to the law Mnjtj (t * 4pf-2np). It is not absolutely
clear yet whether the small term proportional to n exceeds the
accepted macroscopic accuracy. This, however, has no effect on the
nagic jumps in the nucieon binding energy.
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determined fro* the data of Kef, 22 for SI ttagtc nuclei. The tecend

»et of faraiwetcrs * awl <$ was used for the X(p£> function [ tee fcij* <53)}.

According to the interpolation of (&6| and £4?S»/s gives the sott crude

characteristic of the residual interaction. The coupling constant: g'

v«» calculated aeeordlog to C$s. <4J) srtd (41} and $u is* eouAt«ir{s»rt

in tht analytic case (4*>, w** determined from Kqt : ?) and <52). the

•vemge values corrtsponding to the »3Ric numtters 28, SO, S3, and 136

•re given in Tattle 2.

For she shell oscil lat ions, the % dependence of tCie diffuse Fermi

distribution width can be controlled only up to the angt«s

(S5>

after which the integrals (18) and (37) describing them converge

rapidly. According to (48)» the characteristic width in the e scale

is given by

vie now turn to Che energy scale
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Let us assume that

R-L2 tO'"-A* c. <58>

tod that the effective mass m of the quasi particle is equal to that

of * free nucleon. The 6c widths in megavolts are given in the last

column of Table 2.

The width 6e of the diffuse region is different for specific

values of the orbital angular momentum, since it is a quadratic

function o£%. Taking (55) into account, we confine ourselves to

the medium values of X characteristic of the shells of interest. The

results are given in Table 3.

The characteristics of the residual interaction in the tables,

irrespective of their refinement and the choice of scale, consistently

show that its intensity decreases rapidly with increasing size of the

nucleus.

6. DISCUSSION

The shell oscillations calculated in this paper proved to be a

fine tool for analyzing the quasi-particle distribution near the Fermi

level.' Of particular interest is the dependence of the residual inter-

action on the quasi particle's orbital angular momentum:
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2
Only the I dependence of the width of the diffuse Fermi distribution

turned out to be compatible with experimental data. This is as it

should be in some respects. Since we are dealing with a scalar

effect, it must be expressed in terms of the scalar square of the

momentum vector.

According to Eq. (55), relatively small angular momenta have an

important role. In this respect Eq. (59) can be considered the first

term of the expansion in powers of *?/pf. But why is the zero term

of the expansion, which is independent of <&, missing in this case?

Could this mean that the residual interaction in a nucleus with finite

radius depends on the additional, apart from energy, integrals of

motion of the quasi particle? Unfortunately) a final answer cannot

be given to these questions yet. It would be desirable, nonetheless,

to point out the difficulties that would presumably arise in attempting

14 23
to reconcile the current situation with the Cooper effect ' in

nuclear matter. In fact, this effect is characterized by the constant

width of the statistical distribution's transition region, which is

identical for all quasi particles near the Fermi level. It is easy

to show, however, that the presence of this constant component in the
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transit ion region'* width would eliminate Che experimentally observed

magic cusps, therefore, the available experimental data favor more

staple and natural hypotheses of the energy spectrum for infinite

nuclear matter, tt teens that it i* *n ordinary Fermi liquid with

13 14a sh*rp Fermi level for quaii particles. '

the type of residual interaction described by Eq. (59), however,

is Associated with spherical nuclei with a finite radius, experi-

mental data create the impression that this type of residual inter-

action gradually decreases with distance from the magic nucleus and

finally somehow rearranges itself. The thermodynamic aspects of the

transition were investigated by Nosov. The fact that the nucleus

is no longer spherical as a result of residual interaction of the

phase transition should not be surprising. It was shown earlier

(see Ref. 19) that in a simple scheme without interaction the region

is completely unstable in the case of any number of particles.

We would like to thank V.D. Kirilyuk, V.P. Kubarovsky, and

V.I. Lisin for calculating the F.(g) function on the computer. We

also thank I.I. Gurevich, L.P. Kudrin, G.A. Pik-Pichak, V.P. Smilge,

and K.A. Ter-Martirosyan for useful discus; ions.

The critical decrease of the residual interaction having the
structure (59) probably occurs when very few quasi-particle
states reach the diffuse Fermi distribution region [for example,
interaction zone II in the case of the Racah-Mottelson model
(28) and (36); see Fig. 5],
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APPENDIX

In the calculations above we used a model with a wall impenetrable

to quasi particles, situated at a distance R from the center of the

nucleus (see Ref. 19). The roots in Fig. 3 of the wave equation for

the £rce motion of « particle in the spherical region correspond to

the same boundary condition. We shall show that this is not connected

with any constraints imposed on the generality of the results for the

shell oscillations of the energy of a spherical nucleus.

In the Bohr-Sommerfeld quantisation rule (12) for determining the

eigenvalues, the integrand is given by

Because of the uniformity of nuclear matter the wave number k is

constant in the inner region. The additional phase "y depends on the

properties of the actual structure of the transition layer at the

nuclear surface. We shall use the dimensionless variable fcr = p':

<A2>

The Regge trajectories responsible for the oscillations are charac-

terized by Che correlation
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(A3)

between the quantum numbers (see Introduction and Fig. 3). There-

fore

an / J n

Let us differentiate (A2) along the trajectory:

(A5)
2 cfe f* Je

It follows from this that the derivative dp/dH vanishes at X - 0

[the last term on the right-hand side, vhich is determined by differ-

entiating the phase correction, does not affect the result; see

Cq. (A7) below]. In the second differentiation of the Bohr-Sommerfeld

equation the vanishing terms are dropped:

<A6)
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He now take into account the fact that the \ phase is determined

by the specific r.uclear interactions in the immediate vicinity of

Che upper limit of integration. Here, any characteristics

influencing the result depend on the momentum X only in combination

^ . Therefore,

Hence, at t = 0 of the maximum we get

Jt
2

if the terras «l/p are neglected. Thus, Eq. (3)

(A9)

is independent of the specific structure of the nuclear surface.

Let us now determine the ordinates of the successive trajec-

tories. At X = t + 1/2 = 0, according to (A3), n = p/2 + 1/4.

Substituting it in (A2), we pet
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where Y 1 ~ y + 1/4. Substituting k-.R = p,. for p m, we can see that

(A 10) coincides with the quantization rule (22) (see footnote on

p. 15) for the magic values of this parameter (see Ref. 11).
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Table 1

Theoretical and Experimental Nucleon Magic Numbers

0 N

2 2

3 8

4 28

5 50

6 32

7 126

8 184(?)

9

10

(1)

11

18
30

50

82

129

195

281

392

Ntheor

(2)

15
22

33

52

82

126

187

270

376

(3)

12

19

30

50

81

127

191

276

386
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Table 2

Characteristics of the Residual
Interaction Between Nucleons
(Quasi Particles) JJetermined From
the Magic Cusps (66 i s in MeV)

p

4

5

6

7

N,Z

28

50

82

126

Neutron magic numbers

/•

2.4

1.6

1.4

1.1

. 8'

2.7

2.0

1.8

1.6

g

3.3

2.3

2.0

1.7

Si
5.2

3.3

2.6

1.9

Proton

J

1

1

1

.8

.5

.0

magic

g1

2

1

1

2

9

.5

numbers

g

2.

2

1

6

2

6

5e

3

2

1

.8

6

.6
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Table 3

The Values of 6e (in MeV) for Specific I

X
0

i

2

3

4

neutron

0.4

10.2

sproton

0.3

7.5

5

eneutron

1.9

10.2

proton

1.5

8.1

6

neutron

0.14

3.5

proton

0.08

2.1

7

neutton

0.8

4.3
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SO

Fig. 1 The smooth part of the mass described by Weizsacker's
equation has no characteristic features; it is taken
as the origin of the shell effect schematically repre-
sented here. A more detailed and precise plot would
contain all the curves corresponding to the different
chemical elements (see, for example, Ref. 6). The
mass curve exhibits analogous and equally pronounced
characteristics, depending on the number of protons Z.
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Fig. 2 Since the increase (2b) in attenuation (width) of the
single-quasi-particle states in a real Fermi liquid
precludes a correct determination of the location of
the potential well's bottom, case (b), in contrast to
case (a), has only the quasi-particle energy, which is
measured from zero kinetic energy of the free nucleon.
In this highly schematic diagram the quasi-particle
levels are discrete. In fact, the main results in the
following sections [see, for example, Eqs. (19) and
(20)"] were obtained in a "macroscopic" approximation
in which the energy spectrum of the quasi particles is
continuous.
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t t J • f * i s 9 i* u is IT

Fig. 3 The zero-points of the spherical Bessel functions jfi(p)
are on the l,p plane (see Section 2 and Introduction).
The cuasi-particle attenuation (see Fig. 2) was not
taken into account. The shell oscillations are deter-
mined by the nearest neighborhood p « pf of the Fermi
level where the corresponding width is negligible.



A A A
JH

Fig. 4 Plat of the m(pf) function [see Eqs. (21) and (23)].
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CQj

Fig. 5 The Racah-Mottelson model [Hamiltonian (28)3 f o r t h e

nucleus. The particle-state distribution is given
here for a fixed value of "?. (or $). The w(p,"p)
distribution function has a characteristic feature
at p « pf and "p =» 0 [see Eqs. (36) and (41)], which
is difficult to depict on a plane graph.
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Fig. 6 Plots of the f^g) and f2(g) functions [see Eq. (43)].
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I 1

Fig. 7 Plots of the F^g) and F2(g) functions [see Eq. (49)].
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