Conference as " Marties - Fock "and delf consistent field theories in melei. TRIESTE 21.2.15 an 1.3 F

PERTURBATION THEORY WITH A SOFT CORE TWO NUCLEON INTERACTION

D. GOGNY, M. MAIRE

CEA-COWA-. 3010

Service de Physique Nucléaire Centre d'Etudes de Bruyères-le-Châtel B.P.n.º 61, 92120 Montrouge - France

The realistic soft core two nucleon interaction proposed by Gogny, Pirks and de Tourreil $\begin{bmatrix} 1 \end{bmatrix}$ is such that it is not necessary to have recourse to Brueckner theory in treating n-body problems. Therefore, we have used ordinary perturbation theory to calculate the equilibrium properties (i.e binding energy, density, radius and separation energy) of ${}^{16}O$, ${}^{40}Ca$, ${}^{90}Zr$ and ${}^{208}Pb$.

The expansion is to second order, using a Hartree-Fock basis which included all states containing up to five modes. Such a basis is definitely large enough to ensure a good convergence even in ²⁰⁸Pb. Unoccupied states are approximated by plane waves. In table 1 we have listed our definitive results concerning first and second order energies per particle, and first order r.m.s charge radii. In nuclear matter, this interaction saturates at $k_F = 1.5 \text{ fm}^{-1}$ (at first order), a value which is 10% above the empirical value. The relative difference between empirical and theorical values of radii never exceed 8%. For the binding energies, the second order result is 25 to 30% of the nuclear Hartree-Fock potential energy. Concerning the second order corrections to the single particle energies we have evaluated the two following graphs :

Diagramm (a) enters in the definition of the G matrix; diagramm (b) results of the change of the Pauli operator. In table 2 we have listed the single particle energy of the last occupied neutron level in 16 O, 40 Ca, 90 Zr.

Finally let us mentionned that nuclear matter properties calculated with the Gogny - Pirès - de Tourreil interaction in the framework of the Brueckner -Hartree Fock theory are very close to those calculated up to second order with the ordinary serie of perturbation [2]. This result is probably a supplementary indication that the perturbation expansion in powers of the interaction should converge rapidly.

[1] D. GOGNY, P. PIRES, R. de TOURREIL ; phys. Letters <u>32 B</u> (1970) 591.

[2] P. PIRES; these Orsay (1973) .

	$E^{\rm HF}/\Lambda = E^2/\Lambda$		$(E^{HF} + E^2) / \Lambda$		v^{HF}/E^2	rc	
	MeV	MeV	MeV	(EXP)		ſm	(EXP)
¹⁶ 0	- 2, 57	- 4.43	- 7	(- 7.98)	25 %	2.85	(2.73)
⁴⁰ Ca	- 2.78	- 6.24	- 9.02	(- 8,55)	29 %	3.48	(3.50)
90 _{Zr}	- 2.76	- 7,71	- 10,47	(- 8,71)	30 %	4,11	(4.30)
208 _{РЪ}	- 2.29	- 7.64	- 9.93	(- 7.87)	27 %	5.10	(5.50)
Nuclear Matter	~ 8.	- 8.87	- 16.87		25 %	$k_{\rm F} = 1.5 {\rm fm}^{-1}$	

TABLE 1

TABLE 2

	$\varepsilon^{\rm HF}$		E ²	$\varepsilon^{\rm HF} + \varepsilon^2$		
	MeV	graph (a)	graph (b) [·]	MeV	(EXP)	
¹⁶ 0	- 12,02	- 4.60	+ 1.18	- 15.44	(- 15.7)	
⁴⁰ Ca	- 12,38	- 5.51	+ 1.69	- 16,20	(- 15 .6)	
90 _{Zr}	- 5,66	- 4.03	+ 1.98	- 7.71	(- 12.)	

