P7 - 8033

Б.Бочев, С.А.Карамян, Т.Куцарова, В.Г.Субботин

ВРЕМЕНА ЖИЗНИ ВРАЩАТЕЛЬНЫХ УРОВНЕЙ

 $^{160}\,\mathrm{Yb}$

A34, 433

Ранг публикаций Объединенного института ядерных

исследований

Преприяты и сообщения Объединенного института ядерных исследований /ОИЯИ/ являются самостоятельными публикациями. Они издаются в соответствии со ст. 4 Устава ОИЯИ. Отличие препринтов от сообщений заключается в том, что текст препринта будет впоследствии воспроизведен в каком-либо научном журнале или апериодическом сборнике.

Индексация

Препринты, сообщения и депонированные публикации ОИЯИ нмеют единую нарастающую порядковую нумерацию, составляющую последние 4 цифры индекса.

Первый знак индекса - буквенный - может быть представлен в 3 вариантах;

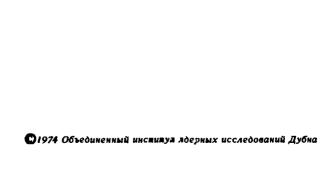
"P" - издание на русском языке;

"Е" - издание на английском языке;

"Д" - работа публикуется на русском и английском языках. Преприиты и сообщения, которые рассылаются только в страныучастиниы ОИЯИ, буквенных индексов не имеют.

Цифра, следующая за буквенным обозначеннем, определяет тематическую категорию данной публикации. Перечень тематических категорий изданий ОИЯИ пернодически рассылается их получателям.

Индексы, описанные выше, проставляются в правом верхнем углу на обложке и титульном листе каждого издания.


Ссылки

В библиографических ссылках на препринты и гообщения ОИЯИ мы рекомендуем указывать: инициалы и фамилию автора, далее - сокращенное наименование института-издателя, индекс, место и год издания.

Пример библиографической ссылки: И.И.Иванов. ОИЯИ, Р2-4985, Дубиа, 1971. Б.Бочев, С.А.Карамян, Т.Куцарова, В.Г.Субботин

времена жизни 160 увращательных уровней 160 ув

Направлено в ЯФ

ВВЕДЕНИЕ

Гамма-спектроскопические исследования ядер на пучках различных тяжелых вонов /от ⁴ Не до ⁴⁰ Аг / в последите годы дали возможность проследить ротационные полосы деформированных ядер вплоть до значений спина (16-22)ћ. При этом были выявлены интересные особенности в энергетическом положении высокоспиновых состояний для целого ряда четно-четных ядер средней массы /1/. Обнаруженные аномалии в ходе зависимости энергии уровня от спина впи, другими словами, момента инерции ядра от частоты вращения послужили толчком для нового развития феноменологических и микроскопических моделей ядерного вращения.

Применение тяжелых бомбардирующих частиц, таких 32 S 31 Р позволяет не только измерять энергетические спектры ротационных переходов, но также экспериментально определять времена жизни уровней вплоть до значений около 1 ncek с помощью метода допплеровского смещения у -излучения ядер, получающих отдачу в вакууме и тормозящихся в подвижном стоппере /2/. С помощью этого метода нами были ранее измерены времена жизни ротационных уровней ядер в реакциях 126,128 Te(40Ar,4n)/3,4/. Экспериментальные значения приведенных вероятностей переходов В(Е2) в зависимости от углового момента в пределах погрешностей согласуются с предсказаниями адиабатической теории. Однако при переходе к ядрам с меньшим квадрупольным моментом можно ожедать более существенных отклонений значений В(Е2) от роторных.

Техника ядер отдачи в реакциях (НІ, хп) дает также информацию об интервалах времени от начала реакции до заселения первого наблюдаемого уровня полосы. Немногочисленные экспериментальные данные о временах заселения показывают, что они равны ~ 10⁻¹¹ сек и увеличиваются при переходе от сильно деформированных к ядрам с меньшей деформицией.

Настоящая работа предпринята с целью измереныя времен жизни коллективных уровней и времени заселения полосы основного состояния 160 Vb.

ЭКСПЕРИМЕНТ

Уровни 160 Yb заселялись в реакции 124 Тс (10 Ar, 4n). Выведенный пучок вонов 40 Ar циклотрона У-3ОО ЛЯР с энергией 184 МэВ после прохождения тормозящих фольг бомбардировал мишень из металлического 124 Тс, нанесенного на подложку из тонкого /13О мкг/см² / алюминия. Мишень толщиной 1 мг/см² натягивалась на решетку из висмута; из такого же матернала были изготовлены стоппер ядер отдачи и двафрагмы, ограничивающие пучок. Расстояние между стоппером и мишенью измерялось высокопрецизионным микрометрическим индикатором -1 мкм. Для точного определения нулевой позиции микрометра и для контроля расстояния во время эксперимента на пучке применялась методика измерения электрической емкости между мишенью и стоппером /5/

Гамма-излучение возбужденных ядер 160 Yb, распадающихся частично на лету, частично после торможения в стоппере, регистрировалось под углом 0° к направлению пучка нонов Ge(Li)-детекторами. На рис. 1 показаны типичные участки у -спектров при разных расстояниях, измеренные детектором с объемом 2,8 см³ и разрешением 1,5 кзВ в условиях эксперимента. Из энергетической разницы между положением "остановленного" и "движущегося" пиков, после поправки на телесный угол детектора была определена средияя скорость ядер отдачи у =/0,0205:0,2004/с. Для каждого расстояния определялась доля интенсивности несмещенного пика 1, /(In+1s).

На рис. 2 показаны спектры, измеренные детектором с объемом 30 см³и разрешением 2.4 кзВ. Большая

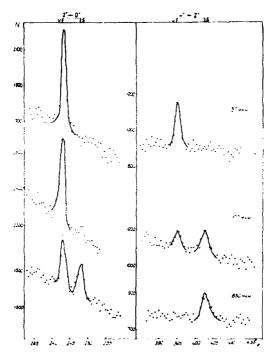


Рис. 1. Гамма-спектры переходов $2^+ * 0^+$ и $4^+ * 2^+$ при разных расстояниях между мишенью и стоппером, измеренные детектором объемом 2,8 см 3 .

скорость ядер отдачи позволила полностью разделить смещенный и несмещенный пики для переходов $4^+ \rightarrow 2^+$ и $10^+ \rightarrow 8^+$. Специальная обработка потребовалась для перехода $6^+ \rightarrow 4^+$, несмещенный пик которого не разрешался от пика аннигиляционного излучения и $8^+ \rightarrow 6^+$, для которого смещенный пик совпадал с фоновым излучением реак-

ции (n,n') на Ge /рис. 3/. С целью выяснения вопроса об интерференции у-лучей изучаемых переходов и фоновых линий были проведены специально измерения спектров при нулевом и "бесконечно большом" расстояних. Кроме приведенных выше случаев для переходов с уровней 6th 8th, не было обнаружено других фоновых у-лучей винтересующих нас участках спектров. Для переходов 6th 8th отно-

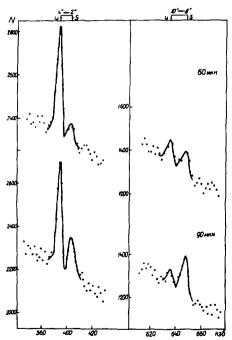


Рис. 2. Гамма-спектры переходов $4^+ \rightarrow 2^+$ и $10^+ \rightarrow 8^+$, измеренные детектором объемом 30 см 3 .

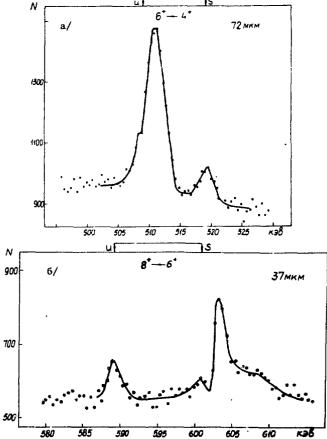
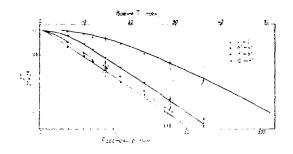


Рис. 3. а/ Участок спектра гамма-лучей, на котором виден смещенный пик перехода $6^+\!\!\!\rightarrow 4^+\!\!\!\!+$. 6/ Участок спектра гамма-лучей, на котором виден несмещенный пик перехода $8^+\!\!\!\rightarrow 6^+\!\!\!\!+$.


РЕЗУЛЬТАТЫ

Извлечение средних времен жизни уровней из экспериментальных значений $I_u/(I_u+I_s)$, после учета ряда проводилось при помощи обратной задачи перераспределения у -лучей каскадных переходов 6 с использованием регуляризованных итерационных процессов типа Гаусса-Ньютона 7. На рис. 4 показаны экспериментальные точки и расчетные кривые распада уровней, соответствующие найденным временам жизни. В таблице приведены средние времена жизни г уровней 160 у ь, вместе с данными об энергиях переходов, полных коэффициентах конверсии дуг и приведенных вероятностях переходов В(Е2). Основным источником ошибок средних времен жизни г является статистическая погрешность в определеныя отношений $l_{n}/(l_{n}+l_{n})$ из интенсивностей пиков. В отдельных случаях учитывалась также неопределенность, вытекающая из необходимости нормировки спект-DOB.

Экспериментальные значения $I_u/(I_u+I_s)$ вместе с погрешностями вводились, как численный матернал, в программу обработки данных $^{/6}$ в виде "матрицы взвешивания" $^{/8}$. Приведенные в таблице ошибки к значениям $_r$ получены путем статистической оценки решения.

Время заселения полосы τ_0 определялось относительно первого наблюдаемого нами уровня 10^+ .Для повышения статистической точности были просуммированы спектры при разных расстояниях и определено τ_0 из отношения (\mathbf{I}_u / (\mathbf{I}_u + \mathbf{I}_s)) $_10^+$ в суммарном спектре. Весовой множитель для каждого спектра определялся по интенсивности перехода $2^+ \to 0^+$.

На рис. 4 r_0 соответствует времени, при котором интенсивность на кривой, обозначенной 10^+ , падает в сраз.

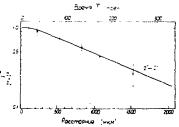


Рис. 4. Кривые распада для перехода $2^+\to 0^+$ /внизу/ v: для переходов $4^+\to 2^+$, $6^+\to 4^+$, $8^+\to 6^+$ и 10^+8^+ /наверху/, полученные на ЭВМ. Точки — экспериментальные результаны отношения $1_u/(1_u+1_s)$.

В ошибку значения r_0 входят, кроме статистической неопределенности, неточность в определении "нулевого расстояния" и отклонения от илоскопараллельности стоппера и мишени. Они не превышали в данном опыте 6 мкм, что в сочетании с большой скоростью ядер отдачи дает аппаратурное $\Delta r_0 \sim 1$ псек. Следует отметить, что на точность определения времен жизни последовательных ротациониых уровней относительно большая величина r_0 и его погрешность существенного влияния ке оказывают. Сравнение полученного значения r_0 =

=/13±1,5/ $nce\kappa$ с нашими предыдущими данными для 162 Yb $/r_0$ = 12±3/ $nce\kappa$ и 164 Yb $/r_0$ = 7,5±2,5/ $nce\kappa$ показывает такую же тенденцию увеличения r_0 при переходе к менее деформированным ядрам, какая наблюдалась ранее для нескольких изотопов Er и Hf $^{/9}$,10/.

В таблице экспериментальные значения В(Е2) сравниваются с расчетными для жесткого ротатора. Несмотря на заметные ошибки значений В(Е2), можно вядеть тенденцию к ускорению переходов с возрастающим спином уровия. Отклонения вероятностей переходов от предсказаний адкабатической теорин могут быть выражены эмпирическим параметром и из соотношения:

$$B(E2; 1 + 1 - 2) - B_0(E2; 2 + 0) = \frac{\langle 1020 | 1 - 20 \rangle^2}{\langle 2020 | 00 \rangle^2} \times$$

$$\{1+\frac{1}{2}\alpha[I(I+1)-(I-2)(I-I)]\}^2$$

где $B_0(E2;2\to0)$ - невозмущенное значение жесткого ротатора. Данная формула получена в модели центробежного растягивания ядра. Однако, независимо от справедливости этой модели, эту формулу можно использовать для описания экспериментальных значений B(E2) н полученную величину « рассматривать как эмпирический параметр, характеризующий степень расхождения данных с предсказаниями модели жесткого ротатора.

Значение a, при котором наилучшим образом воспронзводятся экспериментальные данные о B(E2) для 160 Yb, равно $/2\pm1/x10^{-3}$ Для двух других ядер с N=90, 152 Sm в 154 Gd параметр a получен равным $/2.1\pm0.6/x$ х 10^{-3} и $/2.6\pm1.0/x10^{-3}$ соответственно на измерений времен жизии методом ядер отдачи 11 Значительно меньше экспериментальные значения параметров a для хороших ротаторов 154 Sm в 156 Gd, которые равны $/0.6\pm0.6/.10^{-3}$ $^{/12/}$ в $/0.6\pm0.6/.10^{-3}$ $^{/11/}$

Расчетные значения параметров неаднабатичности α для ряда ядер редкоземельной области имеются в теоретических работах $^{13,13/}$. В $^{13/}$ разработана микро-

Таблица

Времена жизни уровней вращательной полосы вероятности переходов

Переход	Ey (k9B)	(10 ⁻¹² cex)	a _T	B(E2; I → I-2) e ² √10 ⁻⁴⁸ CM ⁴	B(F2) _{por}
2++ 0+	243,0	182 <u>+</u> 6	0,14	0,462+0,023	(0,462) ^{x/}
4 ⁺ - 2 ⁺	395,3	11,6 <u>+</u> 0,6	0,033	0,99 <u>+</u> 0,04	0,659
6 ⁺ 4 ⁺	508,8	2,73+0,3	0,017	0,86 <u>+</u> 0,11	0,726
8 ⁺ → 6 ⁺	588,7	1,29 <u>+</u> 0,3	0,012	0,88 <u>+</u> 0,23	0,760

x/ Нормализовано к экспериментальному значению $B(E2;2\to0)$.

скопическая теория для определения параметров деформируемости и спаривания вращающихся ядер. Параметр вычислялся на основе межнуклонного взаимодействия, включающего деформированное среднее поле свободных квазичастиц и остаточное/квалоуполь-квалоупольное + спаривательное/ взаимодействие. В работе 14/ используется метод обобщенной матрицы плотности для описания системы связанных ротационных полос. При расчетах параметров 14/ применялась модель "спаривание + квадрупольное взаимодействие" со средним полем типа деформированного потенциала Вудса-Саксона. Для ядер 152,154 Sm , 154, 156 Gd в обенх работах имеется хорошее согласие с экспериментом . В работе /14/ также были приведены теоретические значения для ¹⁵⁸ Er н 1,4x1O⁻³ равные 3.1x10⁻³ соответственно. Последняя цифра хорошо согласуется с нашим экспериментальным значением, несмотря на то, что расчет для столь удаленных от полосы стабильности ядер, по-видимому, несколько затруднен из-за отсутствия экспериментальных данных об энергиях первых возбужденных состояний коллективных β – и γ -полос, четно-нечетных разностей масс и др.

Авторы выражают благодарность академнку Г.Н.Флерову за постоянный интерес к работе, Ю.Ц.Оганесяну, Е.Наджакову, Н.И.Пятову, Л.Александрову, Й. и Д.Караджовым - за полезные обсуждения, Н.Джарову - за изготовление камеры в коллективу эксплуатации циклотрона У-ЗОО - за обеспечение четкой работы ускорителя.

Литература

- A. Johnson, H.Ryde and J.Starkier. Phys. Lett., 34B, 605 (1971);
 H.Busscher, W.F.Davison, R.M.Lieder and C.Mayer-Böricke. Phys. Lett., 40B, 449 (1972).
 P.Thieberger, A.W.Sunyar, P.C.Rogers, N.Lark, O.C.Kistner, E.der Mateosian, S.C.Cochavi, and E.A.Auerbach. Phys. Rev. Lett., 28, 972 (1972).
- K.W.Jones, A.Z.Schwarzschild, E.K. Warburton and D.B. Fossan. Phys. Rev., 178, 1773 (1969).
- 3. Б.Бочев, С.А.Карамян, Т.Куцарова, Я.Ухрин, Е.Наджаков, Ц.Венкова, Р.Калпанчиева. ЯФ, 16, 633/1972/.

- 4. B.Bochev, S.A.Karamian, T.Kutsarova, E.Nadjakov. Ts.Venkova and R.Kalpakchiava. Physica Scripta, 6, 243 (1972).
- 5. T.K.Alexander and A.Bell. Nucl.Instr. & Meth., 81, 22 (1970).
- 6. Б.Бочев, Л_Александров, Т.Куцарова. Сообщение ОИЯИ, Р5-7881, Дубна, 1974.
- 7. Л.Александров. Сообщение ОИЯИ Р5-6821, Дубна, 1972.
- 8. Л.Александров. Сообщение ОИЯИ Р5-7259, Дубна, 1973.
- R.M.Diamond, F.S.Stephens, W.H.Kelly and D.Ward. Phys.Rev.Lett., 22, 546 (1969).
- J.O.Newton, F.S.Stephens, R.M.Diamond. Nucl. Phys., A210, 19 (1973).
 N.Rud, G.T.Ewan, A.Christy, D.Ward, R.L.Graham and J.S.Geiger.
- Nucl.Phys., A191, 545 (1972);

 D.Ward, R.L.Graham, J.S.Geiger, N.Rud and A.Christy. Nucl.Phys., A196, 9 (1972).
- 12. R.M.Diamond, G.D.Symons, J.L.Quebert, K.H.Maier, J.R.Leigh and F.S.Stephens. Nucl. Phys., A184, 481 (1972).
- 13. Д.Караджов, И.Н.Михайлов, Й.Пиперова. Преприня ОНЯЙ Р4-8013, Дубна, 1974.
- 14. В.Г.Зелевинский, М.И.Штокман. Программа и тезисы ооклаоов XXIV Совещания по ядерной спектроскопии и структуре атомного ядра, Харьков, 1974. Изд. Наука, Ленинирад, 1974.

Рукопись поступила в издательский отдел 19 июня 1974 года.

Тематические категории публикаций

Объединенного института ядерных исследований

Индекс

Тематика

- 1. Экспериментальная физика высоких энергий
- 2. Теоретическая физика высоких эмергий
- 3. Экспериментальная нейтронная физика
- 4. Теоретическая физика низких энергий
- 5. Математика
- 6. Ядерная слектроскопия и радиохимия
- 7. Физика тяжелых ионов
- 8. Криогеника
- 9. Ускорители
- Автоматизация обработки экспериментальных даниых
- 11. Вычислительная математика и техника
- 12. Химия
- 13. Техинка физического эксперимента
- Исследования твердых тел и жидкостей ядерными методами
- Экспериментальная физика ядерных реакций при ииэких энергиях
- 16. Дозиметрия и физика защиты
- 17. Теория физики твердого тела

Нет ли пробелов в Вашей библиотеке?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

- 16-4888 Дозиметрия излучений и физика за- 250 стр. 2 р. 64 к. щиты ускорителей заряженных частии. Дубиа, 1969.
- Д-6004 Бинариме реакции адронов при высот 768 стр. 7 р. 60 к. ких энергиях. Дубла, 1971.
- Д13-6210 Труды VI Международного свынозаума по вдервой электронике. Вармада, 1971.
- Д10-6142 Труды Международного семнознума 564 стр. 6 р. 14 к. по вопросам автоматизации обработки данных с нузырьковых вискровых камер. Дубка, 1971.
 - Д-6465 Международная школа по структуре 525 стр. 5 р. 85 к. ядра. Алушта, 1972.
 - Д-6840 Материалы II Международного симпознума по фазансе высоких энергий в элементарных частии. Штрбске Плесо, ЧССР, 1972.
- Д2-718] Нелокальные, келяновные в нерскор- 280 стр. 2 р. 75 к. няруемые теория поля. Алушта, 1973.
 - Глубоковеулругие и множественные 507 стр. 5 р. 66 к. прожессы. Дубва, 1973.
- P1,2-7642 Международная школа молодык уче- 623 стр. 7 р. 15 к. ных по фазиме высоких энергий. Гомель, 1973.
- Д13-7616 Труды VII Междувародного свымо- 372 стр. 3 р. 65 к. звума по здервой электронике. Буда- пент. 1973.

- Д10-7707 Совещание по программированию и 564 стр. 5 р. 57 к. математическим методам решения физических задач, Дубна, 1973.
- 13 7154 Пропоримональные камеры. Дубна, 173 стр. 2 р. 20 к. 1973.
- Д1,2-7781 Материалы III Международного свы- 478 стр. 4 р. 78 к. поляма по физике высоких эмергий в элементарных частви, Сядая, 1973.
 - ДЗ-7991 П Международная школа до нейт 552 стр. 2 р. 50 к ронной физике. Алушта, 1974.

Заказы на упомянутые книги могут быть направлены по адресу: $101000 \;\; \text{Москва,} \;\; \Gamma_{\text{ЛВВ ПОЧТАМТ,}} \;\; \pi/\pi \;\; 79.$

издательский отдел Объединенного института ядерных исследований.

Условия обмена

Препринты и сообщения ОИЯИ рассылаются бесплатно, на основе взаимного обмена, университетем, институтам, лабораториям, библиотекам, научным группам и отдельным ученым более 50 стран.

Мы ожидаем, что получатели изданий ОИЯИ будут сами проявлять инициативу в бесплатной посылке публикаций в Дубиу. В порядке обмена принимаются научные книги, журналы, преприиты и иного вида публикации по тематике ОИЯИ.

Единственный вид публикаций, который нам присылать не следуст, - это репринты / оттиски статей, уже опубликованных в научных журналах/.

В ряде случаев мы сами обращаемся к получателям наших изданяй с просьбой бесплатно прислать нам какие-либо книги или выписать для нашей библиотеки научные журналы, издающиеся в их странах.

Отдельные запросы

Издательский отдел ежегодно выполияет около 3 ООО отдельных запросов на высылку препринтов и сообщений ОИЯИ. В таких запросах следует обязательно указывать индекс запрашиваемого издания.

Адреса

Письма по всем вопросам обмена публикациями, а также запросы на отдельные издания следует направлять по адресу:

101000 Москва, Главный почтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований.

Адрес для посылки всех публикаций в порядке обмена, а также для бесплатной подписки на научные журналы:

> 101000 Москва, Главный почнами, п/я 79. Научно- техническая библиотека Объединенного института ядерных исследований.

