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De door Hsu gegeven bovengrenzen van gereduceerde electro-

magnetische overgangssterktes binnen een gegeven configuratie-

ruimte kunnen in het geval van A(J ,T) = 0 overgangen als

volgt scherper worden gesteld. Laat de eigenwaarden en eigen-

vectoren van de overgangsoperator binnen de N-dimensionale con-

figuratieruimte gegeven zijn door e. en v. waarbij geldt

£.<....<e. De sterkst mogelijke overgang vindt plaats tussen

( + ) e n (toestanden gegeven door -py {y. + v ) en -pr (v. - v ) met

overgangssterkte £(e, ~ Ew^2* De door Hsu opgegeven bovengrens

komt overeen met max(e^, e^).

! ) L.S. Hsu> Phys. Lett. 25B (1967) 588.

I I

De konsekwenties van de door Meurders geïntroduceerde tech-

niek om door middel van extra vergelijkingen de parameters in

een kleinste-kwadratenaanpassing in de buurt van de beginwaar-

den te houden, kunnen elegant worden geformuleerd. Men dient

daartoe op te merken dat slechts de eigenwaarden en niet de
2)

eigenvectoren van de correlatiematrix beïnvloed worden door
de toegevoegde vergelijkingen.
15 F. Meuvdevs et al.3 Z. Physik A 176 (1976) 113;
2)

W. Chungj Thesis Michigan State University 1976.
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De door Endt en Van der Leun gevolgde methode om fouten in

vertakkingsverhoudingen op te geven is misleidend.

^ P.M. Endt en C. van der Leun, Nuol. Phys. A214 (1973) 1.

IV

De reactie (18O,2p), in kombinatie met lichte neutronrijke

trefplaatkernen, biedt een goede mogelijkheid voor het pro-

duceren van neutronrijke kernen zoals 29Mg en

V

De informatiestroom van het kernfysische onderzoek naar het

Internationale Nucleaire Informatie Systeem (I.N.I.S.) is

in Nederland aanzienlijk breder dan die in de omgekeerde rich-

ting. Er is in deze situatie geen verbetering te verwachten

zolang de door I.N.I.S. uitgegeven documentatie slechts moei-

zaam bereikbaar is.

International Atomic Energy Agency te Wenen, I.N.I.S.
Atonrindex.

VI

Voor de bestrijding van de luchtverontreiniging is een gelijk-

matige beperking van de emissies van koolwaterstoffen en stik-

stofoxiden weinig effectief om fotochemische smogvorming te

voorkomen.

E. Hesstvedt et al., Institute Report series No. 16, April
1976, University of Oslo.
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Om een goede voorspelling te verkrijgen yoor elektromagnetische

vervalseigenschappen is het zinvoller eerst van gegeven golf-

functies lineaire kombinaties te vormen die worden aangepast

aan reeds bekende vervalseigenschappen dan direct gebruik te

maken van die golffuncties.

Hoofdstuk II van dit •pvoefsehvift.

VIII

De verklaring van Salm en Klepper voor de waargenomen

faseverschuiving in een tijdafhankelijke spinprecessiemeting

aan 19F geïmplanteerd in Ni is onjuist.

W. Salm en 0. Klepper, Phys, Rev. Lett. 37 (1976) 88.

IX

Teneinde nóg meer luisteraars naar klassieke-verzoekplaten-

programma's tevreden te kunnen stellen kan de gebruikelijke

procedure om van meerdelige composities slechts ëén deel ten

gehore te brengen worden verfijnd door het toerental van de

afspeelapparatuur iets op te voeren en oninteressante passages

binnen dat ene deel te verwijderen.
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INTRODUCTION AND SUMMARY

,>7 Z In the past two decades a large number of nuclear shell-

,^;1 .;; model calculations have been performed. Some general trends

«y:,.;, 'K emerge when one follows the historical development of these

ff--\ •.. calculations in Utrecht and elsewhere. In the first place,

"*.<• with the advent of large computers, one sees a steady growth

in the size of configuration spaces used for the description

of nuclear properties. A second development that can be dis-

A cerned is a shift of the emphasis that was focussed initial-

ly on the proper reproduction of energy spectra towards a

proper description of other nuclear properties as well. At

least for the sd-shell nuclei (A = 17-40), one can observe

that the point has been reached where a reasonable descrip-

tion of the energy spectra is taken far granted, at least

for low-spin states, and hence the reproduction of the ener-

gies is considered to be of decreasing importance for the

evaluation of the success of a given calculation. An impor-

tant stimulus for considering properties other than energy

spectra alone, is to be found in the very rapidly growing

body of reliable experimental data on gamma-decay properties,

spectroscopie factors and static moments.

The work presented in this thesis is partly an extension

of calculations described in [1], Two Hamiltonians were ob-

tained in [1], i.e. the modified surface-delta interaction

(MSDI) and the adjusted surface-delta interaction (ASDI).

In the first chapter the results are presented of a cal-

culation of electromagnetic properties with the MSDI and ASDI

.( wave functions. It is concluded that ASDI yields better re-

sults than MSDI. In order to describe the sensitivity of the



calculated gamma-decay properties on the Hamiltonian, we in-

troduce in chapter I the concept of a theoretical error to

be assigned to these gamma-decay properties. It is found that

these errors account reasonably well for the deviations be-

tween, experiment and theory. It is concluded that in many

cases a Hamiltonian may be found which indeed improves this

agreement.

In the second chapter the problem of finding such a Hamil-

tonian is considered. There we obtain wave functions showing

a s criking agreement for the decay properties. These wave

functions differ only slightly from the ASDI wave functions.

Then there follows a discussion of ways of constructing a

Hamiltonian that yields these wave functions as eigenfunctions

with the proper energy. The success of this last step is

limited, although some encouraging results were obtained.

The last chapter concerns a problem that is hardly linked

with the topics discussed in the first two chapters, i.e. the

spurious state problem. This problem, in its generality,

arises if a symmetry property of the Hamiltonian is violated.

Thus in current shell-model techniques the translational in-

variance is not properly taken into account. Although we cannot

cure this deficiency, the formulae presented give a means of

estimating quantitatively the spurious content of shell-model

wave functions. The method is applied to some wave functions

describing negative parity states in A = 32.

Reference

1) F. Meurders, P.W.M. Glaudemans, J.F.A. van Hienen and
G.A. Timmer, Z. Physik A276 (1976) 113.



CHAPTER I

A QUANTITATIVE EVALUATION OF THE RELIABILITY OF CALCULATED

DECAY PROPERTIES OF NUCLEI IN THE MASS REGION A = 24 - 28

G.A. TIMMER, F. MEURDERS, P.J. BRUSSAARD
and

J.F.A. van HIENEN
t

Abstract: Electromagnetic transition rates and log ft values were calculated for

transitions between positive-parity states in the A = 24 - 28 mass region.

The wave functions used were taken from a previous paper. In general we found

satisfactory agreement with experiment. In order to have a measure of the

stability of the results against changes in the Hamiltonian a method was

developed for assigning errors to calculated transition properties. The re-

normalized single-particle matrix elements of the E2 and Ml transition ope-

rators were determined in a phenomenological way. To this end use was made

of the errors just mentioned. It was found that good agreement was obtained

with bare-nucleon Ml single-particle matrix elements and a state independent

effective isoscalar charge for the E2 operator. Predictions for static moments

are given.

1. Introduction

In a shell-model calculation > < a phenomenological

effective interaction fitted to a number of experimental

data, i t is not immediately evident how well determined the

interaction and hence the calculated wave functions are.

The dynamical properties (e.g. electromagnetic transition

t Present address: Cyclotron Laboratory, M.S.U., East Lansing,
Michigan, 48823, U.S.A.



I
rates) calculated with these wave functions may sometimes |

deviate appreciably from the experimental data, even if one |

uses effective transition operators. It would be quite use- j

ful to know then whether the discrepancies could be ascribed |

to deficiencies of the Hamiltonian. It will be shown that I

some calculated observables are often very sensitive to a ,|

slight change in the Hamiltonian while others ari not. |

In this paper the calculations of decay properties of |
~>

positive-parity states in the mass region A = 24 - 28 are 1
•{

described. They represent a continuation of earlier shell- (,

model calculations [1], i

In [1] two different effective interactions were consider- J

ed in a truncated ls-Od shell-model configuration space. The 3

first of these interactions, the modified surface-delta inter- f

action (MSDI), see [2],served as a starting point for the §

generation of the second interaction which is referred to as f

the adjusted surface delta interaction (ASDI). Subsequent- |

ly, we considered two observables,viz. energies and spectros- :j

copic factors for single-particle transfer. ?

Here we present calculations of E2 and Ml decay rates §

using the MSDI and the ASDI wave functions. We shall confirm ,;i

the conclusion drawn in [1], namely that the ASDI wave ;|

functions constitute an improvement over the MSDI wave 3

functions. "̂

In section 2 a detailed account will be given of a method ^

of assigning errors to calculated transition matrix elements. |

These errors are intended to give a measure for the stability f

of such matrix elements when the Hamiltonian is changed. In 1

this way we may obtain an impression of the reliability of |

calculated transition matrix elements. The method of assigning Ï



errors is based on the observation that an improvement in

the reproduction of the energies often leads to an improve-

ment in the other observables as well. The outline of the

error assignment procedure given in [3] is superseded by

the present paper.

A truncation of the configuration space, unavoidable for

practical calculationss gives rise to renormalization effects.

Many attempts based on perturbational techniques have been

made to obtain a renormalized Hamiltonian and renormalized

transition operators. Owing to the poor convergence [4] of

the perturbation expansions, these attempts have not led so

far to quantitatively satisfying results. We therefore adopt

a phenomenological approach to obtain the renormalized

transition operators. To this end we consider in the first

part of section 3 different ways of parametrizing the E2 and

Ml operators. The relevant parameters will be fitted to the

experimental data. The results of section 2 are essential when

weighting factors are introduced into the fitting procedure.

Another point stressed in the first part of section 3 is the

dependence of the fitted parameters on the set of experimen-

tal data which have been taken into account. In our opinion

this dependence deserves more attention than it has received

hitherto in the literature dealing with phenomenological

Hamiltonians. The remainder of section 3 is devoted to a I

comparison of calculated and experimental E2 and Ml transi-

tion rates and static moments.
i

We present not only electric and magnetic reduced transi-

tion strengths and moments but we also deal with quantities

derived from them like lifetimes, E2/M1 mixing ratios and

branching ratios. 1



We do this mainly because of a rather trivial extension of

the error assignment procedure. This extension leads to the

observation that quite often the quantities mentioned above

are less sensitive to details of the Hamiltonian than the

separate transition matrix elements.

In some cases we consider explicit changes of the wave

functions without specifying the underlying changes of the

Hamiltonian. Unitary transformations among the given xjave

functions are constructed in such a way that the best

possible agreement with experiment is obtained. In section

4 we discuss some remarkable results of this procedure. A

more systematic investigation along these lines is under

consideration at present.

In the last two sections we present some calculations

with the ASDI wave functions that are somewhat detached from | ~

the main lines of this paper. Section 5 is devoted to pre— f

dictions for static moments, and in section 6 allowed |

g-decay is treated. '3.

3

2. Reliability of calculated transition matrix elements. |

1
•J

In a shell-model calculation generating wave functions 0
•5

for the evaluation of electromagnetic transition rates and |

log ft values one needs the appropriate effective interaction '|

for the model space chosen. The various methods used to de- i

termine this interaction do not produce identical results. -j

In a previous paper [1] we considered two effective inter- f

actions and calculated energies and spectroscopie factors J

for the mass region under consideration, viz. A = 24-28. i



The first of these interactions, the modified surface-delta

interaction (MSDI), contains four parameters that must be

adjusted to experimental energies. These four parameters

determine all 63 two-body matrix elements of the interaction

in the sd shell-model space. It was possible to improve the

agreement of the calculated energies with the experimental

values when subsequently small variations of the two-body

matrix elements with respect to their MSDI values were allow-

ed. The resulting effective interaction is called the adjust-

ed surface delta interaction (ASDI) .

It was found that on improving the agreement between the

experimental and the calculated energies the results obtained

for spectroscopie factors were also of better quality. In

section 3 it will be shown that the same applies to Ml and E2

transition rates. In view of thase facts one would like to

quote an error for the calculated nuclear properties as a

measure of the uncertainties in the Hamiltonian. The magni-

tude of this error will then be related to the agreement for

the energies.

To achieve this we shall first give a simple expression

for the change of calculated transition matrix elements (CTME),

resulting from small changes of the Hamiltonian, in terms of

first-order perturbation theory.

The eigenvalue equation of the effective Hamiltonian reads:

H|K,m > = E^|K,m >, (2.1)

where the abbreviation K = (JÏÏ,T) is introduced and the sym-

bol m(m = 1,2,..) stands for the eigenvector number within
K K

the set of eigenstates labelled by K, so that E > E .
m+1 m



A small change 6H of the Hamiltonian H will cause changes

6<K,m|o|K',m!> in the matrix elements of a transition opera-

tor 0. Applying first-order perturbation theory to the ini-

tial and final states one obtains the relation:

6<K,m|0|K;m'>

m

P, El t m

m' L

The problem of degeneracy can be ignored for the Hamiltonians J

considered, viz. MSDI and ASDI. |

The variation ÖH should now be specified. Let H' repre- |

#sent the (unknown) Hamiltonian that yields the best agree-

ment with experiment in the chosen configuration space. Then §

2H is defined by the relation 5H = H'-H. The main assumption ;
q

'•i

we shall make about H' is that the deviations of its eigen- i

values from the experimental (Coulomb corrected) energies j

are small compared with the level spacings. The diagonal >

matrix elements of 6H are then given by: I

<K,m|6H|K,m> = E K - E K, (2.3) I
m m 'iexp %

K ~

where E m represents the experimental energy of the state |

[K,m>. p Thus these diagonal matrix elements can be |

extracted from the experimental data. I

The off-diagonal matrix elements of 6H in eq. (2.2) cannot |

be determined from the experimental data. Let Q . be an esti- §
mi .:

i



If
mate of the matrix element <K,m| 6H|K,i>. We shall now make

the assumption that the off-diagonal matrix elements of <5H

can be treated as uncorrelated variables. Then an estimate

A , for the change in <K,m| 0 JKjm'> under the influence of
mm
<5H is given by:

A , =mm
ilOjKlm^K I +

E
m l

K _ EK
m' l1

1/2

(2.4)

,53

ït

:si

In the remainder of this paper we shall refer to this

quantity as the theoretical error in <K,m| o|Kjm'>. Since

the indices i and i' run over eigenstates of the model

Hamiltonian H, this error will not account for deficiencies

in the configuration space. We shall comment on this point

at the end of this section.

Equation (2.4) needs some modification when K = K' holds.

Then the terms i = m' and i' = m in eq. (2.2) must first be

taken together before the incoherent quadratic sum is formed,

since they involve the same matrix element of 6H and hence

may not be considered as independent.

The summations in eq. (2.4) will now be divided into two

parts. The first part includes the summation over the inter-

mediate states of which the eigenvector number i or i' is

near m or m', respectively. In the applications we have

m,m' £ 2 and we limit the terms in the first part to i,i' <_ 4.

The second part contains the remaining terms.



Let us now consider the f i r s t part . In order to obtain
if

an estimate for Q . of the off-diagonal matrix element of
mi

SH to be used in this part of the summation, we make the

following ansatz:

( £ . = i j | E K - E K | + | ] £ - E * i j . ( 2 . 5 )Tai 2 I ' m m' ' l i ' Jexp exp

Thus we replace each off-diagonal matrix element of 8H by

the arithmetic mean of the corresponding two diagonal

matrix elements. In some cases the necessary experimental

informatior. i . e . E. , was lacking even for low values
xexp

of i . In such cases an average value over the available

states K i s taken:

D = |E - E | = E | E f - E f | /E 1, ( 2 . 6 )
1 1exp x K' 1exp X K'

where the summation over K' is res tr ic ted to those combinations
K'for which E. is known. In th is way we introduce an eigen-
lexp

vector number dependent measure of the expected deviation
between experimental and calculated energies. In table 2.1

we show the resul t of th is manipulation for the MSDI and

ASDI Hamiltonians.

This ansatz (2.5) of course cannot be jus t i f i ed rigorous-

ly; i t exhibi t s , however, the following desirable features,

(i) If the energy of a s t a t e IK,m> is poorly reproduced by

H, we expect |K,m> to mix more easily with other states l ike

|K,i> under the influence of 5H than in a case where the

energy was calculated accurately, ( i i ) The hermiticity of

6H is retained, i . e . Q^ = Qim- The appropriateness of the
i m

ansatz (2.5) is demonstrated by the resul ts of the present

10



Table 2.1

The average difference (in MeV) between calculated and
experimental energies as a function of the eigenvector
number m

m: 1 2 3 4

MSDI 0.1 0.3 0.6 0.6

ASDI 0.1 0.2 0.4 0.6

11

'S

calculations. In most cases a definite correlation is ob- f

tained between the size of the errors one thus assigns to J

the CTME and the quality of the agreement between the 1

theoretical and the experimental values. ;

We now turn to the second part of the summation in eq. -j

(2.4), i.e. i,i' > 4, again considering only the cases m,m' Ï

<_ 2. These terms are neglected. Although we thus disregard 4

the majority of the terms in eq. (2.4) this omission can be 4

made plausible numerically in the following way. After a I

complete diagonalizat?on of the ASDI Hamiltonian for all ;j

K considered, the matrix elements of the operator 0 in ^
I

eq. (2.4) are calculated. Subsequently the following quantity J
is evaluated (cf. eq. (2.4)): a



Qmm< = |<K,m|o|KïmT>|

(2.7)

If Q , turns out to be much larger than an estimate for a
mm

typical value of Q . with i > 4 and m < 2, we may conclude
mi

that the omission of the second part of the summation in eq.

(2.4) is justified. For m <. 2 the energies are reproduced

within 0.2 MeV (see table 2.!); we assume that a typical

off-diagonal matrix element of 6H between states m <_ 2 and

high-lying states i > 4 should be considerably smaller than

this value. Thus if Q , has a magnitude < 0.2. MeV serious
mm "\i

doubt must be cast upon the legitimacy of our assumption

that we may neglect the second part in the summations in

eq. (2.4). We shall now discuss the results of the numerical
evaluation of 0 ,.

mm

Although the calculated values of Q , showed large varia-

tions, the following trends appeared.
i) Q f is generally larger for E2 transitions than for Mlmm

transitions,

ii) For transitions between yrast levels Q is large,

typically > 5 MeV for E2 transitions and > 2 MeV for Ml

transitions.

12



•35

•af
iii) For transitions involving one non-yrast level Q , is

of the order of 0.5 MeV for E2 transitions and 0.2 MeV

for Ml transitions. Especially in this case large v&ri-

ations occur.

iv) For transitions between two non-yrast levels the value

of Q t is generally found to be so small that our
ram

assumption that we may neglect the summations over

high-lying intermediate states seems not to be justi-

fied. There are, however, very few such transitions

that can be compared with experiment. A notable excep-

tion is provided by the static moments of non-yrast

levels. For both the electric quadrupole moments and

the magnetic dipole moments it was found that Q tends
mm

to be very large. Here we have a special case of the

situation described in eq. (2.8) which will be discussed

below.

After discarding the summations over higher intermediate

states in eq. (2.4) we are now in a position to investigate

the reliability of the error assignment procedure.

The ASDI results displayed in tables 3.1 and 3.2 are

illustrated in fig. 2.1. The relative difference between the j

calculated E2 matrix elements and the experimental data, i
(|M I - |M |)/|M [, is plotted versus the ratio of the total

c e e
error and the calculated matrix element |M I. The total error 1

C 1
is obtained by adding the theoretical and experimental errors j

quadratically. In line with the discussion following eq.

(2.7), the non-yrast to non-yrast transitions are not taken

into account. The 5/2* -»• 1/2* transition in Al has been

omitted since we have serious doubts about the reliability

of the experimental strength quoted. The two curves repre-

13



sent the cases for which the experimental matrix element is

given by either of the relations IM 1 = IM I + V(AM ) + (AM ) .
° J ' e c c e

In the region between the two curves the difference between

experiment and theory is smaller than the total error.

KI-K
JM

im
en

t

t_
0)
Q.X
0)

w
ith

•ö

5

e
0

-0.2

-0.4

-0.6

-0.8

0,1
relative error

"A

i

Fig. 2.1. The difference between the experimental and calculated E2 matrix elements

(see tables 3.1 and 3.21 as a function of the ratio of the total error

and the calculated E2 matrix element. The average value and the standard

deviation are given for a number of intervals of the abscissa. The length

of each interval is indicated by the horizontal bar; M is the number of

cases in each interval.

We shall now discuss some aspects of the error assignment

procedure that have been ignored so far. First we shall

mention a tricky point that may arise when the quantity
,K

mexp
- E I is evaluated for the ansatz (2.5).

m
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Then one takes the energy difference between the m-th experi-

mental eigenstate with spin K and the m-th calculated eigen-

state with the same spin, The underlying assumption is that

when <5H is switched on the eigenstate |K,m> of H will

converge to the m-th eigenstate of H', with H' defined as

before. We encountered one case where this assumption proved
+ + 28

to be incorrect, viz. the 2» and the 2_ states in Si. This

case will be discussed in detail in section 4.

A second remark concerns the class of very large CTME.

This class contains many of the E2 matrix elements between

yrast levels and many of the E2 and Ml static moments. We

call a matrix element <K,m|o|Kjm'> large if the following

approximate relations are satisfied:

<K,m|o|K',mf><K',m' (2.8)

This means that for a given initial state |K',m'> the total

strength of the operator 0 to states with given spin K is

concentrated mainly in one state, i.e. |K,m>, and vice versa.

If these relations (2.8) are substituted into eq. (2.2) one

finds that <K,m(o|Kjml> is very insensitive to the choice

of the Hamiltonian. In such cases the higher-order terms

in <$H should be taken into account. In view of the tentative

character of the error assignment procedure this point was

not considered further. Moreover, as is clear from fig. 2.1,

it is found that the agreement between theory and experiment

is about as good as may be expected for these cases, i.e.

AM « I M I .
c ' c1

15



iI
The same remarks about the omission of higher-order terms

in 6H apply to cases where one calculates very large errors.

In section 4 we shall give a trivial extension of the

error assignment procedure to quantities that depend on

more than one CTME such as mixing ratios etc.

We shall now discuss an application of these theoretical

errors. The errors are intended to give some measure of the

possible change in a CTME in case a better Hamiltonian is

required. An improper choice of the Hamiltonian is, however,

not the only source of errors in CTME . There are two other

deficiencies, viz. an improper choice of the configuration

space (it may be too heavily truncated) and an inappropriate

renormalization of the operator considered. If we arrive

at a completely wrong result with a small error assigned

to it we must conclude that one of these deficiencies

occurs. It should be mentioned that there is one class of

transition matrix elements where the conclusion about the

deficiencies of the configuration space can be drawn regard-

less of the choice of the Hamiltonian. Since for a finite

model space the transition operators are bounded, an upper

limit exists for the transition strength which is indepen-

dent of the Hamiltonian; for further details see [5]. I

The few relevant cases we encountered will be considered I

explicitly in the next section. \

16



3. Effective single-particle matrix elements

Besides the errors in the wave functions described in the

previous section there are uncertainties in the single-

particle transition operators used in the truncated confi-

guration space. The effects of the truncation of the

configuration space can be compensated for to a large extent

by a renormalization procedure. There are two approaches

possible to achieve this renormalization. One method is to

parametrize the operators in some way and adjust them to the

experimental data. The other way is to use perturbation

theory to calculate the corrections required because part

of the configuration space is ignored. Here we shall

follow the former, phenomenological approach. As the electro-

magnetic transition operators are single-particle operators, j •

all matrix elements between many-particle states can be

expressed linearly in terms of matrix elements between

single-particle states. The single-particle matrix elements j

(SPME) can now be considered as adjustable parameters in a ]

least-squares fitting procedure. i

i

3 . 1 . THE LEAST-SQUARES FITTING PROCEDURE ]
j

The principles of the least-squares fitting procedure \

used are given in [6]. However, the procedure we followed j

differs from the one referred to in two respects. j

i) The experimental data do not determine the sign of the |

experimental transition matrix element (ETME), but j

determine only the absolute value. Exceptions are of J

course the static moments. In [6] the sign of an ETME °\

17



is equated to the sign of the CTME that results if the

bare-nucleon single-particle matrix elements are used.

A CTME resulting from a calculation with the fitted

single-particle matrix elements may have a different

sign. When this was the case we repeated the fitting

procedure with the sign of the EIME reversed as well,

ii) We took the weighting factors of the linear equations

to be inversely proportional to the quadratically added

experimental and theoretical errors. Thus our weighting

factors show no explicit dependence on the magnitude of

the matrix elements or on the eigenvector numbers of the

states involved. In view of the results of the evaluation

of eq. (2.7), discussed in section 2, it was decided to

fit only those matrix elements <K,m|OJKjm'> where

m + m' <_ 3 holds.

Some problems of self-consistence now arise. The theo-

retical errors that affect the weighting factors depend on

the quantities to be fitted, viz. the single-particle matrix

elements. In fact an iterative scheme has to be followed.

The first step is to make an initial guess for the SPME to

determine theoretical errors. The second step is to use the

errors in the weighting factors of the equations to determine

new SPME. This procedure is repeated until convergence

occurs.

3.1.1. The experimental data used in the fitting prooeduves

The experimental data used to fit the SPME were taken from

[7,8]. These references contain those experimentally known

E2 and Ml transition strengths the experimental errors of

which are not larger than 50 %. The static moments were de-

rived from [9]. In some cases we used more recent values which

18



will be referred to explicitly. Neither the transitions in-

volving high-spin states (J > 6) nor transitions in neutron

rich nuclei (T > 3/2) were fitted since the necessary wave

functions were not available.

A point that should be considered is the dependence of

the results of the fitting procedures on the selection of

the experimental data. To investigate this dependence we

performed the fits for different sub-sets of the data

available. Each sub-set was labelled by the minimal experi-

mental strengths, S . , which was taken into account. If
ram

the fitted value of a parameter is strongly dependent on
S . , then we must conclude that the way that was chosen
mm J

to parametrize the transition operator is not meaningful.

3.2. E2 TRANSITIONS AND QÜADRÜPOLE MOMENTS

In the second-quantization formalism the E2 transition

operator is given as:

0(E2)
<a | | |E2 T | | | b>

/5(2T + 1)' L J (3.1)

Here the summation extends over the single-particle states

a and b and over the isoscalar and isovector parts, T = 0

and T = 1 . The fermion creation operator

n = n- _ i and the time-reversed destruction
a VV5 'Tz

operator n, = n. i = (-1) n-

19



are coupled to the proper multipolarities in configuration

space and in isospin space. The reduced bare-nucleon SPME

<a||[E2 |||b> are multiplied by state-dependent effective

charges e , to account for the renormalization of the E2
ab

operator in the truncated configuration space.
rp

The matrix element <a| j JE2 j||b> was calculated with

harmonic oscillator wave functions. The radial matrix

elements were calculated with the size parameter

b = Cïï/mu>)2 that was determined from the well-known empirical
-1/3

relation -fia) = 41A MeV. It should be noted that effective

charges need not represent merely the renormalization

effects. They could be interpreted as alterations of the

radial matrix elements,since the latter always occur
T

multiplied with e , . A discussion about whether this re-r ab

interpretation is justified is beyond the scope of this

paper.

A procedure often followed is to take a state-indepen-

dent isoscalar charge e and to use for the isovector part

of the E2 operator the bare-nucleon matrix elements, i.e.

e , = +e for all a and b, which thus leaves one free para-

meter. We shall refer to this procedure as fit I.

In view of the large amount of experimental data available

in the mass region under consideration it might se.n worth-

while attempting a calculation without making this restric-

tion. Then for an sd-shell calculation one would deal with

a set of ten free parameters. However, there appeared to be

little point in considering the state-dependence of the

effective charge in its full generality. There are two

reasons for not considering the isovector charges as adjust-

able parameters, i) Out of the 59 E2 matrix elements that

could be included in the fitting procedure, 19 are between

20



T = 0 states, which thus determine e , only, ii) The

result of the fit for the remaining cases is quite

insensitive to the choice of e , since most CTME for

both the MSDI and the ASDI case were determined largely

by the isoscalar contribution. The latter phenomenon is

demonstrated in fig. 3.1. In these histograms we plotted

the frequency with which a certain ratio between the bare~

nucleon isovector and isoscalar matrix elements occurs

within the set of E2 matrix elements that could be fitted.

Corresponding transitions between pairs of analogue states

are counted once.

10

5
'—I

MSDI

— i

In ...

ASD!

\rT] ... PI
0.5 1.0 >1.0 0.5

<0'(E2)>

1.0 >1.0

<0 (E2)>

Fig. 3.1. The number of cases N as a function of the absolute ratio between the

isovector and isoscalar parts of the E2 matrix elements.



Two fits were actually considered, viz. the fit previous-

ly called fit I with a state-independent effective charge

as a free parameter, and a fit, to be referred to as fit II,

where the state-dependent effective isoscalar charges were

allowed to vary independently.

3.2.1. The results of fit I. The procedure described

at the end of section 3.1 led after one iteration to effective

isoscalar charges e = 2.33e and e = 2.15e for the MSDI and

the ASDI case, respectively. With these values entering into

the theoretical errors we performed the fit for a number

of sub-sets of the experimental data. The results are dis-

played in fig. 3.2. The error bars in this picture are the

statistical errors in the parameter e ; they result from

the fitting procedure.

B-H-hH

2.8-

2.6-

2.4-

2.2-

2.0h

10 15
Smin(w.u.)

Fig. 3.2. The isoscalar effective charge e° = e + e as a function of the minimal

P "
experimental strength S . used in the fit .

mm
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Although there is a tendency for the large matrix elements

to require a larger effective charge we may conclude, es-

pecially for the ASDI, that a state-independent effective

isoscalar charge is a meaningful quantity in the sense

described in section 3.1.2. It should be mentioned in this

connection that, especially for the MSDI, a different way

of calculating weighting factors (i.e. according to [6] )

gives a completely different value of e for small values

of S . .
mm

The results for individual transitions obtained with

fit I will be discussed in section 3.2.3.

3.2.2. The results of fit II. Although for fit II we have

a larger set of adjustable parameters at our disposal than

for fit I, there resulted no noticeable improvement. This

can be understood in the following way. In the first place

it proved impossible to fit the effective charges involving

the d , state in a reliable way. The d_ ,„ content of the

MSDI and the ASDI wave functions was not large enough. The

total isoscalar transition matrix elements are thus mainly

determined by the d_/o -*• dc .„ and the s, ,„ •* d_.„ transition
D/Z 5/1 1/2 5/2

amplitudes. It turns out that for the majority of the CTME

considered the interference between these amplitudes is con-

structive, which reduces the relative importance of the d~,»

amplitudes even further. The effective charges that involve

the d„. state were kept constant at a value e° = 2e for the

remainder of the procedure. The behaviour of the two remaining

parameters, viz, e° and e° , as a function of the
d5/2d5/2 Sl/2d5/2

minimal strength that was fitted, is shown in fig. 3.3.

1
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Fig. 3.3. The statre-dependent isoscalar effective charges as a function of the mini-
mal experimental strength S . used in the fit.

r mm

Thus, in view of the strong dependence on S . , th is way
min

cf parametrizing the operator seems not to be justified.

When one combines i) the afore-mentioned constructiveinterference between the d
5/2 and transi-

tion amplitudes and ii) the opposite trends of the respective

effective charges, one sees why the state-independent effec-

tive charge shows no strong dependence on S . .
mm

It was decided not to pursue the idea of a state-dependent

charge any further.

3.2.3. Discussion of the E2 results. The E2 transition

strengths presented in table 3.1 and the quadrupole moments

in table 3.2 resulted from fit I described in the previous

section.
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Table 3.1

Comparison between experinjental and calculated E2 transition strengths

Transition E2 Strength (W.u.)

J* . Exl(HeV) J*. Exf(MeV) MSDIa) ASDIb) EXPc)

24Hg 2* 1.37 ° i ° 19 1 2 18 +_ I 20 +_ l d )

4* 4.12 2* 1.37 5 + 7 2 1 + 2 23 +4
1 1 —* ~ —

2* 4.24 0* 0 0.8 + 1.7 0.9 + 0.4 1.1 + 0.1
* . i. * * " ™" • "

2* 1.37 6 + 4 4 +_ 2 2 . 4 + 0 . 3

3* 5.24 2* 1.37 1 + 2 1 . 7 + 0.7 2.0 +_ 0 .3

4* 6.01 2* 1.37 19 +_ 8 0 . 2 + 0.6 1.0 +_0.2

2* 4.24 2 +_ 5 e ) 4 + 9 e > 9 +4

0* 6.43 2* 1.37 3 +_ 8 ~ 0 +_ 0.05 0.24 +_ 0.08

2* 4.24 13 *_ 16e> 12 + 7 e ) 3.5 +_ 1.3

25Hg 1/2* 0.59 5/2* 0 0.6 +_ 1.9 0.5 +_ 1.3 0.54 +_ 0.01

3/2* 0.97 5/2* 0 1.7+ 1.7 0.9 : 0.7 0.7 +. 0 .3 £ )

7/2* 1.61 5/2* 0 2 2 + 4 23 +_ 1 35 + 8 f 5

5/2* 1.96 5/2* 0 0.2+ 1.4 0.2 +_ 0.3 0.4 + 0 .2 f )

1/2* 0.59 1 5 + 2 14 +. 1 18 + 7 f )

7/2* 2.74 5/2* 0 2 +_ 3 ï 0 +_ 0.04 0.16 +_ 0.04 f '

3/2* 0.97 1 5 + 4 15+1 23 + 3 f )

9/2* 4.06 5/2* 0 « 0 +_ 1.0 1.1+^ 1.8 1.7 + 0 . 3

7/2* 1.6 8 + 3 3 + 4 3.1 +_ 1.2
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Table 3.1 (cont.)

Transition E2 Strength (W.u.)

J ? , E .(HeV) J* E „(MeV). MSDla) ASDIb* EXPc)

t 3C3. £ X t

25A1 1/2* 0.45 5/2* o 3 + 6 2 +. 3 3 . 0 + 0 . 1

3/2* 0.95 5/2* O 3 + ^ 3 2.0 +_ 1.3 1.8 +_0.7

5/2* 1.79 1/2* 0.45 16 +_ 3 15 +. 1 31 + 5 e )

3/2* 0.95 5 * 2 5.5 + 1.0 8.1 + 1.5
J, ^ ~"~ mm

26Mg 2* 1.81 O* O 14 1 5 14 +_ 1 12.6 +_ 0 . 5 d )

2* 2.94 O* O 1 ± S 0.2 +_ 0.5 1.0 +.0.3

2* 1.81 17 i 4 11.0 +. 0.5 13 +.6

4* 4.32 2* 1.81 0.2 + . 1 . 5 9 +_ 2 5.8 + 1.9

4* 4.90 2* 1.81 17 + . 9 5 ± 3 9 +.3

26A1 3* 0.42 5* O 3 +_ 2 8 +_ 3 7.4 +_ 0.2

4* 2.07 5* O 7 +_ 4 2 .6+ . 1.1 3.1 +_ 0 . 5 e )

3* 2.37 1* 1.06 6 +. 8 7 +_ 12 4.7 +.1.1

5* 3.40 5* O 4 +. 3 0.3 +_ 0.4 1.5 +.0.4

3^ 0.42 1 +_ 6 1.4 i 1.8 5.8 +_ 1.6

2 6 Si 2* 1.80 O* O 15 +. 2 10 +_ 2 7 +. 3

Oj 3.33 2* 1.80 ^ 0 + ^ 3 1 ± 3 8 +_3

27Mg 3/2* 0.98 1/2* O 8 + 3 8.4 +_ 0.9 6.3 +_ 1.7

5/2* 1.70 1/2* O 5 + 5 1 0 + 3 9 . 6 + 1 . 61
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Table 3.1 (cont.)

Transition E2 Strength (W.u.)

17, E .(MeV) J* E r{MeV) MSDla) ASDIb) EXPC)

i xi f * xl

5 /2 2 1.94 XI2X 0 7 +_ 5 2 + ^ 3 1.8 +_ 0 . 3

1/2; 0.84 5/2; 0 4 + 3 10 +_ 2 8.8 *_ 1.0

3/2; 1.01 5/2; 0 14 +_ 3 7.7 +_ 1.3 9.5 + 1 . 7

7/2; 2.21 5/2; 0 18+1 13+1 11+1

5/2* 2.73 3/2; 1.01 5 +_ 3 13 _+ 2 7 +_ 3

9/2; 3.00 5/2; 0 6.4+ 0.4 6.0 +_ 1.0 7.4 +_0.7

11/2; 4.51 7/2; 2.21 1 +_ 5 5 +_ 5 6.2 +_ 0.6

9/2; 3.00 1 ± 4 4 + _ 4 9.0 + 1 . 4 h )

7/2^ 4.58 5/2; 0 0.5 i 0.6 0.6+^ 0.4 0.18+^0.09

3

9/2j 5.43 5/2; O Q.5 f_ n.4 0.9 *_ 1.0 0.41+^0.13 I

2 7Si 1/2* 0.78 5/2* 0 7 + 4 VJ + 2 11 + 1 |

3 /2 ; 0.96 5/2; 0 13 +. 3 b.4 + I.'* 7.5 +_ 1.8 §

7/2; 2.16 5/2; 0 14+1 9 + 1 9 + 3 A

I
2 8 + 4 - ^

A 1 °i 0-97 2X r.03 1 + 3 1 + 3 3.8 +_ 0.6 '4

i
\ 1-37 3i ° i +.10 0 . 2 +_ 0.7 5 +_ 1 f

X2 1 # 6 2 3 1 ° 2 +. 10 7 .4 +_ 1.8 4 .8 + 1 . 1 |J
j
]
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Table 3.1 (cont .)

Transi t ion

J*. Ex£(MeV) MSDla)

E2 Strength (W.u.)

ASDI
b)

EXP

2 3 Si 1.78 0 14+1 13.0 + 0.2 13.0 + 1

4.62 1.78 19 i 6 17+1 14 + 1

4.98 1.78 3 + 5 5.8 + 1.8 11 +2

6.89 1.78 1 + 5 0.2 + 0.5 0.57 + 0.09

7.38 0 0 . 8 + 0.9 0.5 +_ 0.2 0.36 +_ 0.09

a) e° = 2.33 e.

b) e° = 2.15 e.

c) Experimental data from [7,8]; more recent data taken into account are

quoted explicitly.

d) Ref. H.

e) Not used in the fit; see discussion in the text.

f) Ref. 22.

g) Ref. 23.

h) Ref. 24.

i) Ref. 12.
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Comparison between

*%

26Mg

2 7 M

2 8 S i

a}e°

•* i

* ;

5 /2r
2t

5/2;

2 i

E (MeV)

1.37

0

1.81

0

1.78

- 2.33 e .

Table

experimental ,

3.2

and

MSDI*^

-15 +

15 +

S O +

13 +_

15 +

4

2

18

2

2

calculated quadrupole moments

QCefm2)

ASDIb>

-16 +_ 1

19 + 1

-11 +_ 4

16.3 +_0.5

16.4 + 0.5

EXPC)

-24 +

22 +.

-14 +.

15.1 *,

16 +.

5

5

0.3

3

i

b) e° - 2.15 e.

c) Ref. 9 unless indicated otherwise.

d) Ref. 10.

•'•it

On inspection of tables 3.1 and 3.2 two conclusions can

be drawn. In the first place there is a reasonable correla-

tion between the size of the theoretical errors assigned and

the deviation between theory and experiment. This was for

the ASDI already mentioned in section 2 in connection with

fig. 2.1. In the second place the ASDI results are generally

better than the MSDI results. For 28 of the 62 transitions

considered the ASDI showed a marked improvement over the MSDI

results and for 6 matrix elements the opposite was the case.
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Fig. 3.4. The isoscalar effective charge reproducing the experimental strength for

transitions between yrast levels.

An interesting difference between the E2 properties of

ASDI and MSDI wave functions is shown in fig. 3.4. The ab-

scissa of each cross represents the strength of a transition

between yrast levels. The ordinate is the isoscalar effec-

tive charge e needed to reproduce this strength theoreti-

cally. The spread is substantially smaller in the ASDI

case. There is no reason to ascribe this smooth behaviour

in the case of the ASDI to the fact that the yrast levels

of all spins considered were used in the energy fit in [1].

In the remainder of this subsection we shall discuss some

of the results presented in tables 3.1 and 3.2.

= 24 The improvement of the ASDI over the MSDI is

noteworthy, especially for the decay of the 4? level. Most

of the ASDI wave functions do not differ very much from the

corresponding MSDI wave functions; the 4"!" and 4* wave

functions, however, become completely mixed.

r'-S
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25 25

A - 25 In Mg and Al one finds the strongest experi-

mental E2 transitions of the A = 24 - 28 mass region. They

are calculated too weak with both the MSDI and the ASDI wave

functions. We have, however, some doubts about the accuracy

of the experimental results for the case where agreement is
+ + 25

worst, viz. the 5/2 -> 1/2. transition in Al. One needs a

large isovector matrix element to explain the difference be-

tween the strengths of this transition and the analogous
25

transition in Mg. The required value of this isovector ma-

trix element can easily be obtained by taking a linear com-

bination of ASDI 1/2 wave functions to represent the 1/2
.j. '

state and another linear combination of 5/2 wave functions

to represent the 5/2„ state. There is, however, no way of

doing this without at the same time reducing the isoscalar

contribution that must also be large to reproduce the data.
A = 26 The large difference between the ASDI and MSDI

results for the quadrupole moment at the 2. level in Mg *

are due to an accidental cancellation between large isoscalar

and isovector contributions. Here it may be mentioned that

the majority of the contributions to the right hand sides of •?*

the histograms in fig. 3.1 are from transitions in Mg. jj

A - 27 Most of the results obtained for this mass are in g

very good agreement with experiment. We shall comment on the -f

transition 5/2* •*• 3/2* in 27A1 and 27Si in section 4. f

I
+ + 28 *ï

A = 28 The 2, ̂ -0, transition in Si provides an exam- %
1 1 v f

pie where, in the case of the ASDI, the equations (2.8) hold f
+ + I

to a remarkable degree. Thus, since the 2 -»- 0 transition \
1 • i
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exhausts virtually all E2 strength, and the energies are

well reproduced, the resulting theoretical error assigned to

this transition is very small.

3.3. Ml TRANSITIONS AND DIPOLE MOMEI^S

3.3.1. Effective Ml single-^artiale matrix elements.

Although there is a tendency to calculate Ml strengths too

large, the introduction of effective Ml singls-particle ma-

trix elements did not turn out to be very successful. This

could be due to the fact that all first-order corrections

to Ml single-particle matrix elements vanish because of

£-forbiddeness.

A too strong dependence of the fitted SPME on the sub-

set of the experimental data was found. If g-factors instead

of single-particle matrix elements were fitted, this depen-

dence turned out to be even stronger. Furthermore, the agree-

ment obtained with fitted single-particle matrix elements

was not much better than with bare-nucleon matrix elements.

In the remainder of this paper we shall, in view of these

observations, use bare-nucleon Ml single-particle matrix

elements.

3.3.2. Discussion of the Ml results. In this section we

discuss some of the results displayed in tables 3.3 and 3.4.

Comparing these tables with the analogous tables 3.1 and 3.2

for E2 transitions and quadrupole moments one sees that in

general the relative theoretical errors assigned to Ml ma-

trix elements are larger than those assigned to E2 matrix

elements.

For 24 of the 56 matrix elements considered the ASDI

showed a marked improvement over the MSDI results and in 15

cases the other way round. The agreement between experiment
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Table 3.3

Comparison between experimental and calculated Ml transition strengths

Transition HI Strength (cW.u.)

24Na 2* 0.56 1^ 0.47 70 +_ 90 13 +_ 20 88 +. llc

24Mg 3* 5.24 2* 1.37 (2i4)XlO"
4 O ^ O W o " 4 (17+8)xio"4

1* 7.75 0^ 0 0.05 ± 0.20 0.66 +. 0.09 0.15 +_ 0.06

1* 9.83 0^ 0 0.4 +_ 0.20 0.10 + 0.07 5.5 +, 1.6

25Mg 3/2* 0.97 5/2* 0 o.5 +_ 0.9 0.1 +_ 0.3 0.10 +. 0.0lC^

1/2* 0.59 2 + 2 1.1 +. 1.0 1.6 + 0.1C>

7/2* 1.61 5/2* 0 1 1 + 8 29 +. 4 30 +, 4 d )

5/2* 1.96 5/2^ 0 «0 +_ 1 0.02 +_ 0.2 0.08 +_ 0 . 0 3 d )

3/2* 0.97 3 + 5 3.1 +_ 2.0 1.0 +_ 0.4d >

1/2* 2.56 1/2* 0.59 -s0 +20 11 +_ 6 5 i 2

+ + -,<*)

7/2z 2.74 5/21 0 8 +_ 11 0.1 +_ 0.4 (3+l)xl0~J

33
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and theory for Ml transitions is not as good as in the E2 1

1]
case. Towards the higher part of the mass region the agree- ?;

ment obtained is in general better than for the lower masses. |

Very large differences are often visible between the ASDI |

and the MSDI results, this in spite of the large overlap |

between the low-lying ASDI and the corresponding MSDI wave \
r,

functions. ',*



Table 3.3 (cont,)

Transition Ml S t r e n g t h (cW.u.)

J'.', E .(MeV) j " , E f(MeV) MSDI a)
ASDI

a)
EXP

25,Mg 7/2, 2.74

12* 2.80

9/22 4.06

25Al 3/2 t 0.94

5/22 1.79

26Mg 2* 2.94

3.94

4.35

26A1 1* 1.06

1 2 1.85

T=l 2.07

2.37

27Mg 3 /2* 0 .98

27
Al 3/2x 1.01

5/2* 1.96 0 .5 +_ 2 .0 0 . 3 +_ 0 . 6 1.2 + 0 . 3 d )

5/2* 1.96 4

1.61

+ 9 1 1 + 4 7 . 2 + 1 . 7

+ 30 5 + 8 1.5 + 0 .3

0.9 ^ 1.4 0 . 2 +_ 0 .5 0.23 + 0 .06

0.45 4 2.5 +_ 2.0 2.4 +̂  0,6

0* T=l

2^1=1

1/2*

0 ^ 0 +_ 6 = 0 +_ 0 .7 0.16 + 0.04

0.94 4 +_ 7 3.3 +_ 2.0 3.5 +_ 0.6

1.81 35 +_ 60 28 +_ 20 25 +_ 6

1.81 6 + _ 9 2 ± 3 0.19 +_ 0.04

Z-94 3 +_ 7 14 ^ 7 3.0 +_ 0.7

1.81 i +_ 4 0.8 +_ 1.0 0 .76 + 0 . 1 0

0.23 100 +_ 60 150 ^ 20 140 +_ 30

0.23 6 +_ 60 40 +_ 20 19 +_ 7

1.06 60 + 200 130 +_ 30 130 ^ 3O c )

2.07 40 + 100 60 + 200 43 + 9

O 2.7 + 1.8 2 .7 + 1.0 2.3 +_ 0.5

0 2 +_ 4 3 . 1 +_ 1 .0 1.4 ^ 0 . 2

0 . 8 4 o.7 + 1.0 11 i 2 10+1

3
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1
> .Se

1
T a b l e 3 . 3 ( c o n e . )

Transi t ion Ml Strength (cW.u.)

i(MeV) j " r Ex£(MeV) MSDia) ASDIa) EXPb)

J7A1 7 /2 ; 2.21 5 /2 ; O 1.2 +_ i .2 7.1 +_ 2.0 6.1 +_ 0.6

5/2* 2.73 5/2* 0 ~0 + 0.2 2 + 4 2.6 + 0 .8
£. 1 — — —

3/2; 1.01 13 • 20 8 +_ 4 32 +_ 9

3/2* 2.98 5 /2; 0 2 7 + 1 0 33 t 5 20 + 2

9/2; 3.00 7/2; 2.21 21 + 4 19 +_ 5 7.0 +_ 1.7

11/2; 4.51 9 /2 ; 3.00 5 +_ 4 0.5 +_ 2.0 0.57 +_ 0 . 0 7 ^

7 /2 ; 4.58 5 /2 ; 0 6 +_ 9 4 +_ 3 1.3 +_ 0.4

7 /2; 2.21 1 +_ 7 5 + ^ 4 1 . 9 + 0 . 7

9 / 2 ; 5.43 7 /2; 2.21 - 0 +_ 0.5 8 +_ 4 1.0 +_ 0.3

2 ? Si 3/2* 0.96 5/2* 0 2 + 3 4.1 + 1.0 1.8 + 0 .2

1 1 — — —

7/2; 2.16 5/2; 0 0.8 +_ 0.9 5 +_ 2 5.2 +_ 0.7

5 /2 ; 2.65 5 /2; 0 - 0 +_ 0.4 Q.7 +_ 0.8 1.1 +_ 0.5

3 /2 ; 0.96 11 + 18

28A1 2 ; 0.03 3 ; 0 80 +_ 20

3^ 1.01 3 i ° 8 +_ 30

2; 0.03 8 +_ 15

i ; 1.37 2 ; 0.03 1 +. 5

0* 0.97 80 +100 60 + 3 0 68 + 14

•4

6

34

6

18

5

+_ 3

t 6

+ 4

i 6

+ 6

21

37

8

16

2

-

t

.6 +_

1

. 2 +

8

1

1

2

0

i

'i
3
;

. 3
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Table 3.3 (cont.)

Transition !fl Strength (cW.u.) T>%

_ _ _ _ _ _ ^ _ _ _ ^ ^ _ ^ _ _ _ _ „ ^ — — ^ « _ _ — _ _ _ — _ — _ _ _ _ •'•—

jT, E .(MeV) J™, E ,;(MeV) MSDla^ ASDIa^ EXP ?1
I XI f XI :s|

— ^ • . — y
2 8 A 1 1 + 1.62 2 + 0 . 0 3 1 + 7 12 +_ 8 3.9 +_ 0.9 ï'i

28Si 3 + 6.27 2 + 1.78 (13+5)xio"2 (5+.5)xlO~3 (26:|13)xl0"
3 |

a) Bare-nucleon Ml. single-particle matrix elements. •£

b) Experimental data from [7,8] J more recent data taken into account are '4

quoted explicitly. -J

c) Ref. 12. d) Ref. 22. e) Ref. 23. f) Ref. 24. Ï

j

Table 3.4

Comparison between experimental and calculated magnetic dipole moments

u (n.m)

j " , E (HeV) MSDla) ASDIa^ EXPb)

24Mg 2* 1.37 1.07+^0.01 1.07 +.0.01 1.02 +_ 0.04c)

25Mg 5/2* 0 -0.61+0.09 -0.94 +.0.10 -0.86e) I

'H
26Mg 2* 1.81 1.1 +_ 1.7 1.9 +_0.4 1.6 + 0.3d) |

j

27A1 5/2* 0 3.9 + 0.1 4.2 + 0.1 3.64e) J
i

28A1 3* 0 3.2 + 0.3 4.0 + 0.1 2.79e) I

1 I
+ I

2 X 0.03 4.0 +0.2 3.7 +_0.2 4.3 +_ 0.4 f28 +
s i 2l 1.78 1.06 +_ 0.01 1.08 +_ 0.01 1.12 ^ 0.18d)

a) Bare-nucleon Ml single-particle matrix elements.

b) Experimental data from ref. 9 unless indicated otherwise.

c) Ref. 13. d) Ref. 14. e) Experimental error is negligible.
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We shall now discuss some of the cases presented in tables ;$

3.3 and 3.4. sr*

24 24 M

The ASDI wave functions to describe Na and Al are of ,f|

very poor quality when compared with the MSDI wave functions. |||

This might be due to the fact that in the construction of ||
24 -%s

the ASDI matrix elements the equations for Na had a small j?i|
weighting factor. :f

The experimental strength of the 1 -> 0 transition in %

Mg cannot be reproduced in the given configuration space. J;

This was checked by the use of the method described in [5]. %

Since the energy difference between this 1„ state and the • }\

1 , T = 1 state amounts to only 0.14 MeV, an easy explana- 4:1

tion of the discrepancy is to be found in isospin mixing [8] . ill
26 26 '-'i®

In CTME between levels in Mg or Si one encounters ,i«

the largest Ml isoscalar contributions for the mass region :||

under consideration. This applies especially to matrix ele- |f

ments between states with the same spin. An analogous anomaly, ;§

regarding exceptionally large E2 isovector matrix elements, ||

was mentioned before. In section 4 we shall discuss an inter- S

esting combination of these effects, viz. the mixing ratios ;|
26 26 3

in Mg and Si. Most of the Ml transitions in A = 27 are $|
reproduced reasonably well, the worst exception being the |l

+ + 27 27 '*'•!
5/20 ^"3/2, transitions in both Al and Si. We shall com- j§
ment on these transitions in section 4. •"<%[

The Ml decay rates in A = 28 are calculated as well as |
can be expected from the calculated errors. The erroneous ,|

+ 28 "̂!

result for the magnetic moment of the 3 state in Al is |-j
at present not well understood. A large mixing with the 3* ^

z s

state is required to obtain the experimental result, but .̂

this would at the same time spoil the agreement obtained ij

for the other properties involving the 3. state. ;|37



)>1

4. Gamma-decay schemes ;]

In the remainder of this paper we shall concentrate on ig

the results obtained with the ASDI wave functions since, v|

as was shown in section 3, they are suparior to the MSDI 'f\

wave functions. In line with the discussion presented in |[

section 3 we shall use a state independent effective charge

of e° = 2.15e for the isoscalar matrix elements of the E2

operator and bare-nucleon matrix elements for the Ml opera-

tor.

The quantities we shall consider are mixing and branching

ratios and lifetimes. These depend not only on transition

matrix elements but also on energy differences. For these M

energy differences we use throughout the experimental values. ||j

There are two reasons for considering all these quantities JJ-

instead of only transition matrix elements as in section 3. ïï|

The first reason is that comparatively few of the latter can ||

be extracted meaningfully from the large amount of available |

data presented in [9]. Too large experimental errors would §

result, thus rendering a comparison with theory useless. The a

second reason will be dealt with in the next subsection. /i

4.1. ASSIGNMENT OF ERRORS TO QUANTITIES DEPENDING ON %

SEVERAL MATRIX ELEMENTS $,
-ml
'ill

For a proper assignment of errors to quantities that %t

depend on more than one transition matrix element the pro- |

cedure followed up to now needs some extension. Let a quan- s!

tity G(e ,m ) be a function of E2 and Ml matrix elements e 1
u a a ;f

an«i ma, respectively, with a = 1,2,... A small change 6H in '|
the Hamiltonian will cause the change f
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SG = id r -öe +|£öm ). (4.1) Ia 3e a dm aa a

The changes <5e and <5m , given by eq. (2.2) in terms of the j

matrix elements of <SH, are in general not independent. After >

insertion of eq. (2.2) into eq. (4.1) and after taking to- >

gether the coefficients that multiply the same matrix ele- !

ment of 6H, one may proceed in exactly the same way as in \

section 2 to obtain the error in G. <

If one follows this procedure it turns out that in many i

cases the resulting error is smaller than the one obtained !

by ignoring the coherent ontributing terms. This re-

mark applies in practice • specially to the E2/M1 mixing ra-

tios. Under a change 6H the ratio (e + 6e)/(m + 6m) will be i

fairly constant in many cases. . f

We calculated, in the way described above, the errors in ]
I

the following quantities: mixing and branching ratios, life-

times and ratios of partial widths. These have one thing in

common in that they all involve matrix elements referring

to one and the same initial state. One quantity that could

be of interest is left for future consideration. It concerns

the ratio T(a -• 1̂- (b -> c ) , i.e. the ratio between two

strengths following each other in a cascade. Such transitions

also have one state, b, in common.

4.2. RESULTS

In this sub-section we discuss the results displayed in

figs. 4.1 to 4.11. In these figures the positive-parity

states for the nuclei considered are included, with the fol-

lowing restrictions, i) Only up to three eigenvectors of a

certain spin value are used since the higher eigenvectors
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are very unreliable, as was discussed before, ii) Only those

states are given whose spin and eigenvector were unambiguous-

ly known.

Calculated branching ratios are given when they amount to

\ % or more. Calculated mixing ratios are given if the ex-

perimental mixing ratio is known or if the experimental

branching ratio is larger than 10 %. We did not venture to

calculate M3/E2 mixing ratios for the mass region under con-

sideration since none of them is experimentally known to be

different from zero with any degree of precision. Moreover,

a reasonable estimate for a renormalized M3 operator is not

available. Theoretical errors are quoted in figs. 4.1 to 4.11

if two conditions are satisfied: i) the calculated error is

smaller than the value itself; ii) the eigenvector numbers of

the states j' involved obey m < 2.
m —

4.2.1. Lifetimes. An impression of the overall agreement

between experiment and the results of the calculations with

ASDI wave functions can be obtained from table 4.1. In this

table we give for each mass the weighted average of the ra-

tio between the experimental and the calculated lifetimes.

The weighting factor of each ratio was calculated by adding

quadratically the experimental and theoretical errors. Table

4.1 shows that for the lifetimes considered the agreement is

in general very good. There is a slight tendency to overes-

timate the lifetimes, but even for the worst case, A = 26,

the deviations are hardly meaningful. The averaging was done

over all those lifetimes for which the experimental and the

theoretical error were both smaller- than the values them-

selves. Most of the lifetimes excluded from the averaging

procedure showed too large a tnaoretical error. Thus a large
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number of lifetimes are excluded, as can be seen in the third |

column of table 4.1. We conclude that lifetimes are often |j

sensitive to the precise choice of the Hamiltonian. §I
I
i
I
•1

Table 4.1

The average ratio between experimental and calculated lifetimes

MASS

24 a >

25

26

27

28b>

toeala'b>

Texp/Tth

1.05 + 0.11

0.91 +.0.15

0.82 +_0.08'

0.93 ^0.07

0.98 +,0.09

0.92 +_0.04

4/8

4/15

10/21

14/16

4/15

36/75

U<: the number of lifetimes for which Che relative experimental and

theoretical errors are less than 10QZ. The average ie taken

over these cases only.

N: the number of lifetimes for which the relative experimental

error is less than 100X.

al 2^ •+ 0^ transition in Mg omitted (weight too large).

b) 2^ -*• Oĵ  transition in Si omitted (weight too large).
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We shall now discuss some particular cases. Some striking

discrepancies will be discussed in connection with mixing

ratios.

The lifetime of the 0g level at 3.59 MeV- in Mg. The

lifetime calculated far too large for this state results

from an accidental cancellation between isoscalar and iso-

vector E2 matrix elements. This can be seen clearly if one

makes a comparison with the lifetime of the corresponding

level in Si. Small admixture of the 0 state in the 0 2

state would decrease considerably the lifetimes for both the

0* states in Mg and Si. Possible inaccuracies of the 2} 2

wave functions will be discussed in the next sub-section.

The lifetime of the 2„ and 2 levels in Al at 1.85 and

2,07 MeV3 respectively. It was found on inspection that

small changes in the Hamiltonian tend to worsen the poor

agreement with experiment still further.

4.2.2. E2/M1 mixing ratios. In table 4.2 we show the

weighted average of <5(exp)/6(th), the ratio between the ex-

perimental and calculated mixing ratios. The procedure fol-

lowed was the same as for table 4.1. Some values of 6(exp)/

<S(th) were not included in the averaging procedure since

they differed greatly from the average value of the remaining

cases; they will be discussed in detail below.

As one sees from table 4.2, the agreement is in general

very good. It was mentioned before that one often finds sur-

prisingly small theoretical errors for E2/M1 mixing ratios.

It should also be noted that, when compared with lifetimes,

relatively few cases had to be excluded from the averaging

procedure because the theoretical errors are too large. This

indicates that the results had a relatively weak dependence



Table 4.2

The average ratio between experimental and calculated mixing ratios

MASS

24

25

263)

27b)

28

t o t a l a ' b )

S
exp

1.09 +

i . l *•

1.04 +

0.9 +

1.06 +

/ f ith

0.09

0 . 3

_ 0.08

0 . 4

• 0.06

0/2

9/15

1/3

8/9

3/3

21/34

See caption for Table 4.1 with "mixing ratio" replacing "lifetime".

a) 6(2- -*• 2?) in Si omitted.

+ + *>7 27
b) 5(5/22 •* 3/21) in Al and Si omitted (weight too large).

on the choice of the Hamilton!an. Indeed it was found that

the results, when compared with earlier calculations (see

e.g. [15]), did not show any dramatic improvement.

We shall now discuss some particular cases shown in

figures 4.1 to 4.11. The phase convention for the mixing ra-

tio is that of Brink and Rose [16].

Ta only two cases was the experimental sign reproduced
1 .1. O /

improperly. In one of them, viz, 6(2^ -> 2 ) in Mg, extreme-

ly small changes in the wave functions would give agreement

with experiment. The second case where the sign of the mixing

ratio was not reproduced, i.e. <5 (2*-• 2̂ ") in 26Si, deserves

closer attention. This is one of the two cases where we
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assigned a small error to a completely wrong result. The mix-

ing ratio for the analogous transition in Mg is well repro-

duced. The calculated result follows the normal pattern, i.e.

the E2/M1 mixing ratios of analogous transitions have opposite

signs. In view of the small theoretical error we conclude that

Ex(MeV)
b)

B 44 -—F -63=5—23=3 7!l 6! 1—135 5

7 75-25^5 75:5

I I
7 3S-62Ï5 — 38-5

<6— 1Ü4

I
<3—20:5

190=60

1.12

1 37 —100-

0 «—

3 <2-

83:3 17:3

I I I
93:3 <3 7:3 <1—85^20

98=1 <1 2:1 •—llOïlS

• 100:i0

55:iO
23=9
-1Ó0-

-1 56 1 26 19-

I I
0 17-60:7—se:7-

- 3 1 -

- 2 = 1 -

0.97 —19

-0 03 -

- 7 4 -

EXPERIMEN1

0 0 2 -

O 09-

0.19-60:20^40:20 -

•IB11

- 34 — 9

•63:06

4 50

-2OO:O.O7psa) 0 10—100-

... Ju
'Mg

THEORY

- 320
4 0 0

•100

-360

-ISO' 6 0

-40

- 90:9

- 59:5

- 2 34!0OB ps

Fig. 4.1 Comparison between the experimental and the calculated decay scheme

for positive parity states with low spin values. Lifetimes, branchings

and E2/M1 mixing ratios are given; AE, represents the difference be-

tween the experimental and calculated energies. Experimental data are

from [9] unless indicated otherwise. Calculated results were obtained

with the ASDI wave functions, bare-nulceon Ml single-particle matrix

elements and an isoscalar effective charge e° = 2.15 e. The convention

for quoting theoretical errors is given in the text,

a) Ref. 11. b) 1 % branch to 3( state, c) Discussed in the text.
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the configuration space used was not appropriate to describe

both the 2 and the 2„ states. Especially in this case this

conclusion could be made plausible even without using the an-

sat? 2.5 that underlies our error calculations. It turned out

that all unitary transformations among the first four 2

states yielded an even more negative value or the mixing ra-

tio 6(2^ -y 2 ) in Si if at the same time the large strengths

of the 2 -> 0. transitions in Mg and Si were maintained.

Mixing with states 2 (m ̂_ 5) would decrease still further the
m , . o/-

strengths of the 2] -• 0. and ll -> 0 transitions in Mg that

were calculated too weak already. Equivalently, cf. eq. (2.7),

it was found that off-diagonal matrix elements of <5H to the

high-lying states of the order I.0 MeV were needed to influ-
+ +

ence the strengths of the 2̂  -*- 0 transition to any substan-

tial extent.

I
1
3

Ex(MeV)
1 06-55*2

1/2J

5/2."

2.80-23*2 —

2.74—7=2

23*0.5
Z 55 —2*1 7S:2 — 20*2

I I I
I 96-28 = 2 — 46*4—26=2

0.56*0.03

= 0

8*2—400:60b'

4Eb(MeV)

•0 23 —22

-0.47:0.ie

, .-
1 6 1 —10,0 h

O.2O:OO2

097 -5i;2 —49*-2 *
4If

101

lu l l

-0.3410.09 .
I -0\5tC05

O S9 — 100 ™

EXPERIMENT

0.06
- 6 0 = 30 0 11 —4:2 6i:iB —35*-17'

I i ~'\
i.o:o.<psb) 0.30 — 5 — 27:1a—68-

-24 :3

cl

I
1.0

0 03 —100
0.19:0 oi

•0.12 — 5 7 4 3 -

O.l6!O.C16

-4e6:0.08na -0 38 —100
0 4 -0.18=010

*

25'Mg
THEORY

- * 700

= 5

700

25*4

21 ps

5.3 ns

Fig. 4.2. See caption for fig. 4.1.

a) Discussed in the text, b) Ref. 22. c) Ref. 12.
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+ + 27There is one more case, viz. 5(5/2 -> 3/2 ) in Al and
27

Si, where a serious discrepancy between theory and experi-

ment occurs. This discrepancy is due to too small a value for

the calculated Ml matrix element. The rather small errors that

are assigned to this mixing ratio and to the lifetime of the

5/2- level indicate that one cannot expect too much from

changes in the Hamiltonian. It is not clear at present if the

appropriateness of the configuration space should be questioned

or if a reasonable Hamiltonian reproducing the data can still

be found.

Ex(MeV)

2

a)
7,2 ;

&EblMeV)

0.68 26 -
-0.3

-0 02 -13 = 6-

EXPERIMENT

•0.14 —34
0.1

-0 13 -50*20 3 35*20-
-0.6:0.4 I I

Oil —5*2—64: i4 —31113-
I I 0.03

-012=0 01

2 -

-20— 6

10=1

350

0 30 -9 32:20-59:40-

0 03 —1O0-
-0.16:0 01

0.4 0.16:0.06
3 30*0.05m -0.38 —100 *

2 SA
THEORY

-O4

22=3

7ps

49ns

Fig. 4.3. See caption for fig. 4 .1 .
a) Spin not known within 0.1 % confidence limit.

b) 5 = 0.05 iO.QA or 5 = -0.15 j^0.05 are quoted in [9]

c) Erroneous sign quoted in [9] .
d) Branches to high lying states not displayed.

e) Part ia l lifetimes h/r .
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In the other cases where theory and experiment are in

disagreement, the theoretical results turned out to be very

sensitive to little admixtures of other states. For example,
+ + 2 5

6(7/2„ -> 5/2.) in Mg will be in agreement with experiment
+ +

if one mixes 0.2

wave function.

+
of the 7/2 wave function into the 7/2

EXPERIMENT 2 6 Mg
THEORY

Fig . 4 . 4 . See caption for f i g . 4 . 1 .

a) Discussed in the text.

b) 1 I % branch to 2, state not shown.
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4.2.3. Bvcmching rat-Cos. The overall agreement obtained

for branching ratios is quite satisfactory although it is

not as good as for lifetimes and mixing ratios. In most cases

there is still a reasonable correlation between the agreement

obtained and the theoretical errors assigned. The errors found,

however, are often large, indicating the sensitivity of the

result .or the choice of the Hamiltonian. This may seem re-

markable since one would expect branching ratios to be deter-

mined largely by the high powers of energy differences that

enter the relevant formulae. If however one notes that mixing

THEORY

Fig. 4.5. See caption of fig. 4.1.

a) 7+2 % branch to 3, level not shown.

b) 5 % branch to 1.85 MeV level not shown; another 4 % is fragmented over

many higher states.

c) Discussed in the text.

d) Ref. 23.
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ratios are quite insensitive to changes in the Hamiltonian,

as was shown before, it will be clear that at the same time

partial widths of mixed transitions will be particularly

sensitive to changes in the Hamiltonian.

We shall now discuss some special cases.
+ 24The 31 state in Mg 'at 5.24 MeV. The properties of this

state are well reproduced. It is interesting to note that the

calculated E2 strength for the transition to the 2„ state at

4.24 MeV is the largest found in the mass region under con-

sideration, viz. 24 +_ 3 W.u. Experimental information about

the mixing ratio of this weak branch is lacking however. The

calculation yields a nearly pure E2 character for this trans-

ition.

AEb(MeV)

014 r

EXPERIMENT

xm(ps)

-100— 19

0.19 -23Ï16— 7 7 Ü 6 - 0O9tO02

| -o.ioio.oza'
0.13 —100 • 0.90t0.14

-0.26

2 6Si
THEORY

M
1

Fig. 4 .6 . See capt ion of f ig . 4 . 1 .

a) M3/E2 mixing r a t i o : 0.14+0.19.

Ex(MeV) t m (ps , AEb(MeV)

5/2, 1 9 1 -33-2 67J2 <1 1.l!0.2

5/2. 1 70 —100'

3/2J 0.96 -10,0
•O.22:OO2

1/2! 0 *
EXPERIMENT

F i g . 4 . 7 . See c a p t i o n f i g . 4 . 1 .

a) M3/E2 m i x i n g r a t i o : 0 . 1 4 + 0 . 1 9 .

0.43 — 9 89
I 0.06

-0.02 —96 4

-0.01 —100 *iqo-

-0.24iO.06

0.04 •

Mg
THEORY

xm(ps)
-2 0.25:0.08

J0.02 1
.210 6

1.2*0.5
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The 0+ state at 6.43 MeV In 24Mg. The ratio T(0* •+ 2 +)/

2 -> 22) depends strongly on the choice of the Hamilton!an.

In fact an admixture of 5 % of the 2 state and the 2 + state

into each other would give agreement with experiment. As a

by-product of this transformation it is then found that the

lifetime of the 2j state comes out in agreement with the

experimental value.

The 4 state at 4.90 MeV In Mg. An improbably large
+

mixing of the 4 states is needed to suppress the large

calculated Ml matrix element of the transition to the 4

level at 4.32 MeV. No experimental upper limit is, however,

available for this unobserved branch.

Tm(tS)

= 2 15=3 <2— 19 !6

712 j 2 21 —tOO
-Q4i:o.ot

3/2! 101 97.i:o.1-29*;Oi

1/2,

5/2:

034=002 -Ó

0 84 —100 *

EXPERIMENT
27AI

AEbCMeV)

• 0 13 -ao; i3-
•0.2J!00B
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The 9/2 state at 3.00 MeV in At. The decay of this

state provides one. of the few cases where the branching ra-

tios are more stable under changes of the Hamiltonian than

the matrix elements involved.

J„ Ex(MeV)

9/2*aï 2 91-92:3

xm»s)

5/22 2.65-1914 3

O4o:ooe

2^ 2 163—IQQ

0.38i

1 78 25
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AEb(MeV)
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I
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The 2* and st states at 7.38 and 7.42 MeV. In section 2

we noted already that the assignment of these two experimen-

tal states to the calculated ones was erroneous. Let us con-

sider linear combinations of the calculated 2 and the 2„

states of the form:

|2*'> = 0.6|2*> + 0.8|2*>,

. (4.2)

This means that the two states are to a large extent inter-

changed. The properties of the new states \l > and j2̂  > are

in amazing agreement with experiment, as shown in table ':.3.

The experimental values of the E2 matrix elements for the

transitions 2_ -^2 were obtained on the assumption that
2., ó 1

the purely isoscalar Ml matrix elements could be neglected.

Clearly we now have a set of good wave functions, with-

out however knowing a Hamiltonian of which they are the eigen-

functions table 4.3
i ,1 no

Decay of the 2, and the 2, states in Si

1 •+ f

+

"I
+

°2

< f | | o

|Exp.

3.0 + 0.4

7.3 + l . l b )

c)

2.2 +_ 0 .1

0.8 + 0 . 3 b )

9.6 +_ 1.9

(E2) | | i> (efm2)

ASDI

-3 .5

4.0

6.6

-1 .3

4.6

-4.!

Mixeda)

-3.1

6.1

0.5

2.1

-0.5

-8.1

a) C.f. eq. (4.2).

b) Pure E? character assumed,

en c) N°t observed.



+ 28
The 1 level at 8.33 MeV in Si. The calculated branching

*• . +

ratios are very sensitive to admixtures of higher 1 states;

small admixtures of the 1„ state give agreement with experi-

ment. To reproduce the experimental lifetime, however, a

nearly complete interchange of the 1- and 1 wave functions

is required. It is concluded that either the experimental

lifetime is about one order of magnitude too large, or we

have here an interesting case for future theoretical consi-

deration.
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5. Predictions for static moments.

In this section we present predictions for magnetic di-

pole moments and electric quadrupole moments. The calcula-

tions were performed with ASDI wave functions.

5.1.MAGNETIC DIPOLE MOMENTS

Magnetic dipole moments were calculated with the bare-

nucleon Ml single-particle matrix elements. In table 5.1 the

predictions for the magnetic moments and their theoretical

errors are shown for a number of states. The table includes

only those states whose moment one would expect to be measur-

able by present-day techniques. This implies that i) only

states with a lifetime T > 0.3 ps are considered and ii)
m ^

only the first few, i.e. about five levels of each nucleus

are considered. It should be mentioned that particularly in

the case of magnetic moments the assigned theoretical errors

tend to be quite small. This is because eq. (2.8) is satis-

fied to a remarkable degree. As yet there is no satisfactory

explanation for this phenomenon.

5.2. ELECTRIC QUADRUPOLE MOMENTS

Electric quadrupole moments were calculated with an iso-

scalar effective charge e° = 2.15 e. Table 5.2 shows the

results. For the g-instable nuclei we give the quadrupole

moment of the ground state only. Theoretical errors were not

quoted if they turned out te be larger than 100 %. The large

errors were in all cases due to very big E2 matrix elements

of the type <J^|0(E2)[J^>.

54



Table 5.1

The ASDI predictions for magnetic dipole moments

ƒ , Ex(MeV)

25Hg 1/2*

3/2;

5/2*

2SA1 5/2*

1/2*

3/2*

5/2*

26Hg 3*

2 6AI 5*

Z6Si 2*

0.59

0.97

1.96

0

0.45

0.95

1.79

3.94

0

0.42

1.76

1.80

u(n.m)

-

0.99 +_

0.40 +_

3.83 +.

0.8 +_

0.52 +.

2,49 +.

1.7 +

2.9 +.

1.82 +

1.18 +

o.:

0.2

0.18

0.12

0.12

0.2

0.18

0.13

0.7

0.01

0l04

0.03

3

"Mg

27A1

27Si

28A1

28Si

28p

f, E (MeV)

1/2*

3/2*

5/2*

5/2*

1/2*

3/2*

5 / 2;

i/2;

3/2J

0

0.98

1.70

1.94

0.84

1.01

0

0.78

0.96

1.37

6.28

0

u(n.m)

-0.36 +.0.03

1.74 +0.16

0.1

1.13 +_0.63

2.61 +_ 0.04

1.48 +. 0.06

-1.28 +. 0.06

-1.80 +.0.04

0.06 +_ 0.04

0.87 +. 0.10

1.61 +.0.01

-0.53 +.0.07



(1
Table 5.2 • 3

The ASDI predictions for electric quadrupole moments

2 5 A1

" « ,

2 6 A1

2 7 A1

27Si

J * .

ml

ml

ml

't

ml

ml

ml

ml

Ex(MeV)

0.97

1.96

0

3.94

4.32

0

1.01

2.21

3.00

0

QCefm2

-11.6 +

-14 *_

17.1 +

i

*

25.7 +

-12.6 +

8.4 +

23.8 +

13.0 +

)

2

1

a)

0

. 0

o

0

.2

.3

.7

.1

.4

.4

.7

J \

28A1 3*

2 8 Si 4+

3t

2I

2+

2 8A1 3 +

2 8 P 3 +

E (MeV)

0

4

6

6

7

7

0

0

.62

.28

.89

.38

.42

QCefm2)

16.1

18.6

9

4

8

-:

-9

16.1

13.1

±°'

1 1 .

1 3

± 3

±8

l l «

+_ 7

9b>

+ 1

+.1

.3

.2

.3

.5

a) Extremely sensitive to admixtures of other states with the sane spin.

b) Values obtained with mixed states defined in eq. (4.2).

I
I
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I.

I

6. Allowed B-decay ]

In this section we present log ft values for allowed

B-decay calculated with ASDI wave functions.

The ft value of a transition from an initial state |I>

to a final state |F> is defined as:

f t . ^ 2 2 { G 2 < 1 > 2 + G2 < o,2 }

m c

where < 1> and •• J> denote the usual Fermi and Gamov-Teller

matrix elements.

For the vector coupling constant, G , we shall adopt the

value:

G^ = 2.00 x 10 erg cm . (6.2)

2
With this choice of G one obtains a good fit to the ft values

for the pure Fermi transitions 0 + 0 of 0 and Al .
2 2

A proper choice of G is less trivial. The ratio G /G

for free neutron decay is experimentally known to be 1.53.

A value of 1.29 for this ratio is obtained by Wilkinson [17]

from a fit to odd-mass nuclei with A = 11 - 21. We shall use

the latter value for the presentation of our results. On in-

sertion of the numerical values of all constants the expres-

sion (6.1) therefore becomes:

f t - 2
 6 1 5 5 y s. (6.3)
+ 1.29<a>

We also considered the ratio G /G as a free parameter

in order to obtain the value that would best fit our results
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to the experimental data; the fitting procedure used is des-

cribed in section 3. In this way it was found that the sur-

prisingly low value G /Ĝ . =0.65 gives best agreement. It is

seen that for the mass region under consideration a large

reduction of the axial vector coupling constant is required.

It should be mentioned, however, that part of the large

reduction factor might be due to deficiencies in our wave

functions. The calculation of spectroscopie factors in [1]

indicated that the d_,„ content is too small. The Gamow-

Teller matrix elements are more sensitive to the d_ ,„ content

than the observables discussed up to now. On decreasing the

d , -d , spin-orbit splitting one enlarges the d„ ,„ content

of the wave functions and decreases the Gamow-Teller matrix

element. The precise argument leading to this last conclusion

is discussed in detail in [18] and will not be repeated here.

The same point was also stressed in another recent calculation

of allowed B-decay in the s-d shell [19].

The results of our calculations are presented in table

6.1. The experimental log ft values are taken from [9]. The
2 2effect of using the fitted value G,/GTI = 0.65 would be to
A V

enlarge the log ft values of the pure Gamow-Teller transitions

by the amount 0.30; the log ft value of the two mixed trans-
25 25 ?7 27

itions, i.e. the Al -*• ' Mg and the Si + Al ground state

transition increase by 0.12 and 0.14, respectively.

The convention for quoting theoretical errors is as before

As seen from table 6.1, in many cases the theoretical errors

are not sufficiently large to explain the often large (and

positive) differences between the experimental and calculated

log ft values. Thus we conclude that it will be difficult to

find a Hamiltonian in the given configuration space that will
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yield good agreement with experiment. This seems to contra-

dict our previous remark that when the spin—orbit splitting

is dimished, the calc .ated Gamow-Teller matrix elements

will decrease. One should however bear in mind that in doing

this a drastic change of our configuration space will result

as a consequence of the procedure followed in [1] for deter-

mining the configuration space.

Table 6.1

Comparison between calculated and experimental log ft values for allowed

8-decay

log ft

ASDla) EXPb)

24Na

24A1

24A1

25Na 5/2;

24Mg

24Mg

24Mg

25Mg

3;

*r
»;
*;
4;

0;

2;

K
5/21

3/2*

7/2;

5/2;

3/2;

4.12

5.24

4.12

5.24

6.01

8.44

0

1.37

4.24

0

0.97

1.61

1.96

2.80

5.6

6.0

5.6

6.0

3.6

4.8

4.2

4.34

5.2

4.6

4.9

4.7

5.8

5.5

+ 0.5
- 0.2

+ 0.5
- 0.2

+ 0.2

+ 0.2

+ 0.15

+ 1.0
- 0.4

+ 0.2

+ 0.2

+ 0.2

+ 1.4
- 0.5

6.12

6.77

6.2

6.49

6.4

3.99

6.01

6.18

6.07

5.25

5.05

5.03

5.99

5.19

+_0.02

+_ 0.04

+_ 0.2

+_ 0.17

+_ 0.2

+_0.05

+_0.15

+ 0.15

+_ 0.15

+_ 0.02

+_ 0.03

+_ 0.03

+_ 0.07

+ 0.08
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Table 6.1 (cont.)

Ji

IC +
Al 5/2t

26mAi 0 ;

Z6si 0 ;

Mg 1/2X

97 +
Si 5/2x

2 8AI 3;

2 8 P 3;

25Hg

26Mg

26A1

27A1

27A1

28Si

28Si

5/2;

3/2;

7/2;

O;

O;

i;

1*

l/2;

3/2;

5/2;

3/2;

7/2;

5/2;

3/2;

2;

2;

"l
3;

32

Exf(HeV)

0

0.97

1.61

0

0.23

1.06

1.85

2.07

0.84

1.01

0

1.01

2.21

2.73

2.98

1.78

1.78

4.62

6.28

7.80

ASDI'

3.50 ;

6.5

4.24 ;

3.49

3.49

3.54

3.65

4.3

7.1

4.8

3.44

5.8

4.75

5.1

4.22

4.8

4.8

5.0

4.10

4.09

log ft

• 0.03

t 0.05

i 0.11

+_0.17

+ 0.2

+_ 0.02

+_0.3

+_ 0.11

+_ 0.4

+.0.04

+ 0.4

+ 0.4

+ 0.2

+_ 0.08

+_ 0.09

EXPb>

3.555

6.27 :

4.35

3.49

3.49

3.53

3.81

4.47

4.62

4.94

3.61

7.4

4.76

5.10

4.41

4.87

4.85

5.82

4.78

4.76

t 0.15

+ 0.04

+.0.0Ï

+ 0.02

+ 0.03

+_ 0.10

+_ 0.02

+.0.02

+.0.02

+_0.2

+_0.03

+ 0.06

+_0.04

+_0.02

+.0.02

+ 0.05

+ 0.06

+.0.05

a) Calculated with G2/G2 = 1.29.

b) Experimental data from ref. 9.
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7. Conclusions '
i

The main conclusions of this paper can be summarized as j

follows. 1

i) The correlation assumed to exist between the agreement for !

the energies on the one hand and the agreement for the :

transition properties on the other hand is corroborated ;

by the results presented. Thus the results obtained with

the ASDI wave functions are in better agreement with ex-

periment than the MSDI results.

ii) The theoretical errors that were introduced account in ;

a quantitative way for the correlation mentioned sub i).

iii) When one determines the phenomenological matrix elements i

of operators in a least-squares fit, one should pay

more attention to the weighting factors than is usually

done. Thus the dependence of the resulting matrix ele-

ments on the set of experimental data taken into account

should be considered. As the suppression of particular

data is equivalent to the assignment of zero weight,

there is an obvious connection with weighting factors.

If such a dependence is found one should conclude that

the chosen parametrization of the operator is inappro-

priate. In this paper this situation was encountered}

e.g. on considering state-dependent effective charges.

Furthermore, the weighting factor should depend also

on the reliability of the wave functions. The last point

was accounted for in this paper by including the theo-

retical errors in the weighting factors,

iv) There is as yet no compelling reason either to use a

state-dependent effective charge for the E2 operator or

to use renormalized Ml matrix elements for a calculation
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in the mass region considered.

v) If a theoretical error is far too small to explain the

difference between the calculated and experimental

result, it may be concluded that at least one of the

levels involved cannot be described in the given con-

figuration space. In fact, in some cases it was verified

explicitly that no linear combination of the calculated

wave functions could be found which reproduced the

experimental data.

vi) It was shown that particular combinations of the matrix

elements, e.g. mixing ratios, can be quite insensitive

to changes in the Hamiltonian. On the other hand certain

combinations can be indicated, e.g. branching ratios

and lifetimes, that are particularly sensitive to changes

in the Hamiltonian. In such cases a good testing ground

for the comparison between models is available, provided

the experimental data are sufficiently accurate.
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CHAPTER I I

THE USE OF Y - D E C A Y PROPERTIES FOR THE CONSTRUCTION OF A

PHENOMENIOLGGICAL SHELL-MODEL HAMILTON IAN

G.A. TIMMER, F . MEURDERS, P . J . BRUSSAARD, P.W.M. GLAUDEMANS

and H . F . DE VRIES

Abstract: Unitary transformations have been applied to shell-model wave functions in

the mass region A = 24 - 28 in order to fit the experimental y-decay properties.

It is found that usually only small rotations are needed to obtain very good

agreement with experiment. Several attempts are described to obtain a Hamiltonian

that generates these new wave functions. The results of one approach applied to

some levels in • 5Si are discussed in more detail. Some extensions of this tech-

nique ;ire proposed.

1 . Introduction

When one constructs a phenomenological shell-model Hamil-

tonian, the final results are affected by: i) the choice of

the configuration space, ii) the particular parametrization

of the Hamiltonian, iii) the choice of the experimental data

to which the parameters of the Hamiltonian are fitted and

iv) the relative weight that is assigned to the data in the fit.

It is current practice to determine the parameters of such

a Hamiltonian from a fit to experimental energies only. The

main objective of this paper is to present the results of an
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attempt to use experimental information on other observables

as well, in particular y-decay properties.

In a previous paper [1] a Hamiltonian was obtained. This

Adjusted Surface Delta Interaction. (ASDI) resulted from a

fit to the experimental energies of the low-lying positive—

parity states in the mass region A = 24-28 for a truncated

Od,. /ols, /?0d~jj configuration space. In a subsequent paper

[2] the ydecay properties were calculated with the ASDI wave

functions. The agreement with experiment was found to be good

for strong transitions and of varying quality for weak trans-

itions.

The present approach is motivated by the observation that

the y~decay properties are often very sensitive to small

changes in the Hamiltonian. This point was stressed in [2] ,

where this sensitivity was described in terms of a theoretical

error. This applies in particular to weak transitions and to

the decay properties of closely lying levels with the same

(J ,T). Hence one can try to find a Hamiltonian which, while

differing only slightly from the ASDI Hamiltonian, leads to

an improvement over the ASDI results for weak transitions

but at the same time does not spoil the agreement obtained for

strong transitions. Also the agreement for the energies should

be maintained. A recent observation [3] may be of help, i.e.

that only a relatively small number of linear combinations of

the one- and two-body matrix elements of the Hamiltonian are

well determined by a least-squares fit to experimental ener-

gies.

The present idea is that, at least initially, the empha-

sis is shifted from energies to wave functions. In current

approaches the wave functions are obtained as a by-product
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from a calculation focused on energies. Here we shall start

with the construction of wave functions reproducing the ex-

perimental y-decay properties as well as possible in the gi-

ven configuration space. In sect. 2 a systematic search will

be described for the amplitudes of these wave functions in a

basis of ASDI wave functions. It is then found that one can

obtain a considerable improvement of the y~decay properties

as a result of only minor changes in the original ASDI wave

functions.

In sect. 3 methods are discussed which may lead to a

Hamiltonian generating the wave functions obtained in sect.

2. Some results will be presented.

Finally, in sect. 4, some of the possible refinements and

extensions of the techniques presented will be discussed.

2. The construction of wave functions

Let {|a,S >} with a = 1,...M denote a given complete set

S of orthonormal states in a configuration space of dimension

M for given values of A,J ,T. Suppose that a set of states

{|a,S >} in the same configuration space provides a better

description of the y-decay properties than the set S . We
o

determine the states |a,S > by varying the coefficients
a in

M
|a,S > = X a |B,S >. (2.1)

1 a3 0
S
0

In subsect. 2.1 some arguments are presented leading to

a conf-'nement of the space of the parameters a . In subsect 2.2
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the construction of the matrix a o is discussed. For this

construction a quantity Q(a ) is minimized, defined in

subsect. 2.3, which provides an indication for the agreement

between the ydecay properties of the states |a,S > with the

experimental data. Finally, in subsect. 2.4 some of the re-

sults obtained with this procedure are discussed.

2.1 RESTRICTIONS ON a _

ag

Two arguments are presented that lead to a substantial

reduction of the number of states |a,S > to be considered.

The first argument relies on the existence of very strong

E2 transitions between low-lying states. Let \y> denote a

state providing a good description for the experimentally

observed level Y. Suppose that the level y is fed by a strong

E2 transition from another level y'. The largest possible E2

strength |<Y|O(E2)|Y!>I with 0(E2) denoting the E2 operator

is obtained when the relation |Yf> = P O ( E 2 ) | Y > holds. The ope-

rator P projects onto the configuration space available for

the description of y'. When this E2 strength is not larger

than the experimental value then it is clear that any serious

candidate for the description of Y' should have a large over-

lap with |Y T > as defined above.

The second argument that leads to a reduction of the num-

ber of matrices a _ to be considered arises from the fact that

eventually one would like to obtain a Hamiltonian for which

the states lotjS^, defined in eq. (2.1), are eigenstates. One

may try to achieve this by considering only Hamiltonians

H. = H.qj,-,. + V with V being small. Since then to first order
in V the state |a,S > is given by
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i a ,S> - |a> + S ^ M ^ - | 6 > (2.2)
B â E-E

with H |g> = E |g>, it is clear thats provided the ener-
AjiJ J p

gy differences E -E are small, the transformation matrix

a in eq. (2.1) should be close to unity.
otB

In practice only mixtures of the four ASDI states that

correspond with the lowest four eigenvalues for each combi-

nation A, J , T were considered. We are interested mainly in re-

producing the y-decay properties of the lowest two states of

each spin. Hence the restriction to the lowest four states

(M=4) will not noticeably affect the results according to the

argument just presented, since the energy differences with

higher-lying ASDI states are usually sufficiently large. It

may be noted that the same argument was used for the construc-

tion of theoretical errors [2].

The two arguments presented in this subsection did not

lead to contradictory requirements since the ASDI wave func-

tions already produce very strong E2 transitions for low-

lying states. The main practical consequence of the argument

concerning strong E2 transitions was that it allowed us to

abandon any search for a set of strongly deviating wave func-

tions that may lead to a Hamiltonian that differs substantially

from H „ . Such wave functions would invalidate the appli-

cability of the first-order perturbational argument.

2.2 THE SEARCH PROCEDURE FOR a
aB

Let Q(a „) denote a non-negative quantity measuring the

overall agreement between the experimental y-decay properties

and those calculated with the s ta tes |a,S >, defined in
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eq. (2.1). This quantity Q, to be discussed in the next sub

section, is constructed in such a way that Q = 0 indicates

perfect agreement. Here it will be described how a was

varied in order to minimize Q.

The general rotation matrix, of which a provides an

example, can be written as the direct product

M

f X R *<•* ->> (2-3)

Y<<5

where

(2.4)

cos <j) - s i n

YÖ
s i n (j) cos

is a rotation over an angle <|> in the plane spanned by the

basis vectors [Y»S > and 1ö _ S > . The rotations considered
' o o

here are a direct product of rotations in the spaces of each

combination J ,T separately., each of them with dimension

M=4, as mentioned in the previous subsection.

The search for minimal Q in the space of the parameters

^ was conducted by the use of the method of steepest descent.

Thus one may, and probably will, find a local minimum for Q.

This procedure is a compromise between finding the absolute

minimum and the requirement that tx .otation matrix should

be>. kept close to unity, as discusjed in the previous sub-

section. Successive rotations of the form

( 2 ' 5 )
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for one J ,T combination and unity for the other spin values

were employed. One can prove that a repeated application of

this transformation for each J ,T separately is equivalent to

the six-parameter transformation given in eq. (2.3) in the

space with M = 4.

2.3 THE QUANTITY Q(a D)

Here the quantity Q will be discussed which measures the

agreement between theory and experiment.

There are three points to be considered: i) the selection

of the calculated observables {w.} that are to be compared

with experiment, ii) the functional dependence of Q on

w.(a D) and iii) the single-particle matrix elements of the
i ot p

transition operators. The quantities {w..} considered were

lifetimes, E2/M1 mixing ratios and branching ratios. For the

mass region under consideration, i.e= A - 24-28, a very large

amount of experimental information exists on these quantities,

with often very small experimental errors. The experimental

data used in the search were taksn from [4] , supplemented by

many recent values that will be included in [5] .

For computational convenience it would have been desirable

to compare reduced matrix elements instead of the quantities

listed above. The main reason for not considering these matrix

elements follows from the fact that the errors in the moduli

of matrix elements extracted from experiment are .in general

rather large and, even worse, strongly correlated. It should

be mentioned that such a reduction of the experimental data

is even impossible when the lifetime or the mixing ratio is

unknown. In the present approach, however, the information on

branching ratios can always be take., into account. Other
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possible candidates for comparison with experiment» like

spectroscopie factors, will be considered in the final section s||

of this paper. 4?

The next point to be discussed is the functional depen- ^

dence of Q on w. , which is taken as ;"̂

I e|w. - w. I
Q = E — g., (2.5)

1 W. + W. ^
1 i' ' l '

where the summation over i covers the lifetimes, branching

ratios and mixing ratios that can be compared with experi-

ment. The most satisfactory results have been obtained so far

with the weighting factor g. given by

g. = (5-m|) (5-m£)/A1 for rnj.m^ < 2 , (2.6)

where m1 and m_ are the eigenvector numbers of the states

involved. States are ordered according to increasing energy

such that yrast levels get m = 1. For A either a value 0.1

was used or the relative experimental errorj provided the lat-

ter is larger than 0.1. The dependence of g. on the eigen-
i

vector numbers reflects the decreasing confidence one should

have in the wave functions of higher-lying stages. In pre-

liminary calculations it was found that lifetimes were not

reproduced well enough. In order to improve the results for

the lifetimes it was decided to employ for these quantities

twice thp weighting factor given in eq. (2.6) with m1 = m„

the eigenvector number of the decaying state.

The E2 single-particle matrix elements were calculated

with harmonic-oscillator wave functions; the size parameter
1/2

b = (ü/mui) was determined from the well-known relation
fiw = 41A MeV. Furthermore an effective isoscalar charge
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e = 2.2e was employed. For the Ml single-particle matrix

elements bare-nucleon values have been used. The presumably

very small admixtures of M3 or E4 radiation have been ignored

for the calculation of the decay properties. The energy dif-

ferences entering the calculation of transition rates were

taken from experiment.

2.4 SOME RESULTS

With the technique presented in the previous subsections

wave functions were constructed for the low-lying positive-

parity states in the mass region A = 24-28. The number of

steps required to reach a minimum for Q varied between 20

and 100. Mirror nuclei were considered simultaneously. Be-
26

cause of the occurrence of low-lying T = 1 states in Al,

the three nuclei Mg, Al and Si were treated together.
27

As an example the results obtained for Al are displayed

in fig. 2.1. One should note the considerable improvement ob-

tained with respect to the ASDI results. In table 2.1 the
27

rotation matrices a „ for the Al case are shown. It is re-
ap

markable that often rather small rotations of the original

ASDI wave functions lead to a considerable improvement for

the y~decay properties, especially for branching ratios.

The results obtained for the nuclei not displayed are of

comparable quality, although some striking disagreements with

experiment remained. It ii conceivable that these poor fits

are due to an ixproper truncation of the configuration space,
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Table 2.1
27

The amplitudes of the fitted wave functions of Al
in an ASDI basis.

. Amplitudes in ASDI basis

(1) (2) (3) (4)

V2*

1/2*

3/2*

7/2*

5/2*

3/2*

9/2*

1/2*

1/2*

7/2*

0

0.84

1.01

2.21

2.73

2.98

3.00

3.68

4.51

4.58

0.998

0.982

0.997

0.999

-0.061

-0.076

0.951

-0.173

0.998

0.054

0.062

0.191

0.076

-0.054

0.920

0.963

0.239

0.898

-0.070

0.987

-0.011

-0.005

0.007

-0.004

-0.380

0.259

0.195

0.009

-0.003

0=120

0

-0.005

0

-0.002

0.066

-0.022

0

0.406

0

0.091

3. Construction of a Hamiltonian

The rotated states |a,S >, obtained in the previous sec-

tion, are no longer eigenstates of the original Hamiltonian

H, except, of course, in the case of exact degeneracy.

Here some attempts will be discussed to construct a Ha-

miltonian H. that in good approximation satisfies the eigen-

value equation H |a,S.> = E xp|a,S >. An obvious procedure

to consider is a fit of H to satisfy the equation
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(3.1)

provided of course that a reasonably complete set of states

|B,S > is available. The use of eq. (3.1) in its general

form did not lead to satisfactory results. It turned out to

be possible to fit either the diagonal matrix elements or

the off-diagonal matrix elements separately, but not simul-

taneously -

A somewhat more restricted approach that led to rather

promising results will now be introduced.

When the ASDI states are employed instead of |a,S>,

eq. (3.1) is solved by construction in good approximation

with H = H. . The effects of replacing only a few of the
1 AbUl

ASDI wave functions were considered. The choice of this sub-

set was restricted by the obvious requirement that the states

considered should be orthogonal to the remaining ASDI states.

A new Hand. 1tonian H was then determined from a fit of the

diagonal matrix elements of eq. (3.1) only. In order to

keep the 'lamiltonian close to H._ the approach discussed
A.0DI.

in [l] was followed.

As this case was best investigated, the results will be

presented that were obtained when the ASDI wave functions

for the 2 2 and 2 levels in Si at 7.38 and 7.42 MeV, res-

pectively, were replaced by rotated wave functions. The

Hamiltonian H then obtained indeed differed only slightly

from H , i.e. an average absolute deviation of only 40

keV in the one- and two-body matrix elements was found,

whereas the average absolute value is 1.4 MeV. The largest

differences of the order of 100 keV occurred for the two-

body matrix elements <lsj/2
0d3/2^l !si/20d3/2>JT'
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28
Fig.- 3.1 displays the decay scheme of Si obtained with

the eigenfunctions i> that resulted from the diagonalization

of H. One should note the large improvement obtained for the

y-decay properties of the 7.38 and 7.42 MeV levels, whereas

the calculated properties of the remaining states are barely

affected. From fig. 3.2 one obtains a clear impression of the

sensitivity of the y-decay properties of the 2„ _ levels

to changes in the wave functions. In this figure we show the

decay properties of the 2, level as a function of the mixing

of the eigenfunctions ^ and I|J of the second and third 2

levels, respectively. The ASDI wave functions for these

levels happen to be very nearly linear combinations of ty„

and I|JO. Hence the ASDI results could be indicated in fig.

3.2. All other eigenfunctions of H coincided closely with

the ASDI wave functions with the exception of the 2„ and

2_ wave functions for A = 28, T = 1. These levels, however,

were neither taken into account in [1] nor in the present

fit because of the uncertain spin .- signments in the experi-
28

mental level scheme of Al.

4. Discussion

In this section some of the possible refinements and

extensions of the techniques presented are discussed.

A first point concerns the effective single-particle

transition matrix elements (SPME) that should be used. The

SPME used in this calculation resulted, apart from a slight

enhancement of the effective isoscalar charge for the E2
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operators, from a fit to experimental reduced transition

strengths as described in [2]. It seems desirable to fit the

SPME directly to quantities like lifetimes, branching ratios

and mixing ratios for the same reasons that were mentioned in

sect. 2.3. It is clear that such a procedure interferes with

the line followed in this paper- In fact one should follow

an iterative scheme by fitting in small steps alternately

wave functions with given SPME and determine new SPME with

the wave functions thus obtained. A possible oscillatory be-

haviour of the solution of course must be envisaged.

A second remark concerns the v'.̂ -"-* of the configuration

space. In the procedure of section 2 linear combinations of

wave functions in a given configuration space were considered.

One also may consider the effect of mixing with wave functions

outside the initial space. For example, the effect-of adding
2

(0f7 ,„) components to the A - 24-28 wave functions might

show up rather strongly in view of the large values of the

SPME <0f /2|Op|Of7/2
>> where Op denotes either the E2 or the

Ml operator.

A further remark concerns the experimental data that

should be taken into account in the search for good wave

functions. The uiain reason for not considering Gamov-Teller

matrix elements is a consequence of the fact that it is pro-

bably a shortcoming of the configuration space employed that

log ft values are riot well described by the ASDI wave func-

tions as discussed in [2]. Spectroscopie factors should cer-

tainly be included in searches as described in section 2.

In order to get rid of the large experimental errors in in-

dividual spectroscopie factors one should for a given £-value

consider their ratios.
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Other quantities that may be included are elactric and magne-

tic static moments. In view of the rather scanty experimen-

tal information they were not yet considered. Very intriguing

quantities to consider along these lines are (e,e') form

factors. All kinds of interference effects connected with the

rotation of wave functions may show up much clearer when one

considers the momentum dependence instead of only the photon

point. Furthermore form factors allow the consideration of

separate E2 and Ml matrix elements, a property they share

with static moments.

A last remark concerns the construction of the Hamil-

tonian. Up to now it turned out to be impossible to construct

a Hamiltonian that generates all wave functions desired. There

are of course effects from the truncation of the configuration

space that frustrate such an endeavour, i.e.3 as mentioned

before, the "true" wave function may have a substantial com-

ponent outside the configuration space and the underlying

assumption that the effective Hamiltonian may be given as a

one- and two-body interaction may be erroneous. Nevertheless,

a procedure that actually may be considered is a repeated

application of the technique presented here, i.e., instead

of considering ASDI wave functions as a starting point one

may use the wave functions of the Hamiltonian generated here.
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CHAPTER III

CALCULATION OF SPURIOUS ADMIXTURES IN
SHELL-MODEL WAVE FUNCTIONS

G.A. TIMMER, P.J. BRUSSAARD and G.F. DELEN

hstract: The ixpectation value of the square of the centre-of-mass position operator

is ralculaied and used to obtain an estimate for the intensity of spurious centre-

of-mass c mponents in shell-model wave functions. The method is applied to some

«jvc functions for negative-parity levels in A = 32 nuclei.

1 . Introduction

The Hilbert space in which one usually describes the nu-

clear A-particle system allows 3A translational degrees of

freedom, whereas the description of the intrinsic motion of

the nucleus requires only 3A-3 translational degrees of free-

dom. The superfluous degrees of freedom in the description of

the intrinsic motion lead to the presence of the spurious

states, i.e. states for which the centre-of-mass (CH) is not

in its ground state.

Several methods have been devised to cope with the problem

of the spurious states. In sect.2 some comments on a few of

them will be given. This will lead to the conclusion that at
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present there is no satisfactory procedure to treat this

problem rigorously. The main part of this chapter is devoted

to the presentation of a somewhat more modest approach to the

problem of the spurious states. The method presented will

provide no way to separate the consequences of CM motion from

those of the intrinsic motion for quantities of interest as

e.g. transition rates. The only aim is to give a measure for

the admixture of spurious states in a given shell-model wave

function. In sect.3 expressions for the matrix element of the

square of the CM position operator between multishell jj-

coupled basis states are derived. In sect.4 it is shown how

these matrix elements, on some additional assumptions, can

be used to obtain the intensity of the spurious admixture in

a given state. The method is applied finally to shell-model

wave functions of A = 32 nuclei.

2. Other methods

In this section some methods to treat the spurious-state

problem will be mentioned.

If one assumes a harmonic-oscillator (h.o.) potential with-

out spin-orbit splitting for the single-particle states, the

Hamiltonian can be separated in an intrinsic and a CM part

[1].. The latter has again the h.o. form. It was shown by Lee

and Baranger [2] how one may then proceed to construct all

states with the CM in an excited state, i.e. one constructs

the spurious state:;. This is achieved by introducing an iso-

scalar vector operator
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A+ = 1 E l+(k), (2.D
k=l

where

is the single-particle operator that excites particle k to

the next higher oscillator shell (see e.g. ref. [3]).

This approach has been applied in the following way. If P

denotes the projection operator onto the spurious states, the

operator (l-P)H(l-P) was diagonalized for 180 and 18F in a

(Op. ,_)n(0d,. ,„) n m(ls1 ,„)
m configuration space. The matrix

elements given in [4] were used for the effective Hamiltoni-

an H. The resulting changes in the spectra and transition

properties of the wave functions, when compared with the re-

sults of diagonalizing H, turned out to be unsatisfactory.

The main reason for this failure is to be found in the fact

that in this calculation, as in most other calculations, the

configuration space is too small to accommodate most spuri-

ous states completely. Thus, since model states in a trunca-

ted configuration space are the projections of the true

states in the complete Hubert space, one is faced with

the serious problem that the two projections involved here

- i.e. projecting off the spurious states and projecting onto

the truncated model-space - do not commute.

Two other, in principle very promising, approaches to the

spurious-state p.oblem should be mentioned. The first approach
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is directed towards the explicit construction of translati-

onally invariant wave functions [5]. This, however, requires

the introduction of singular operators that do 'not seem to

be very well suited for application in a shell-model calcu-

lation. In [6] this approach is criticized from a mathemati-

cal point of view.

Finally we would like to mention the approach [7-9] in

which one imposes a constraint on the CM motion by adding a

h.o. potential of extremely high energy hoi . This method

has been criticized recently in [10]. The arguments need not

be repeated here.

2
3. The matrix elements of R

In this section expressions will be given for the matrix
2

elements of the operator R , i.e. the square of the position

operator of the CM of A particles of equal mass

R2 = (i E V 2

2
In the next section the matrix elements of R will be used to

obtain an estimate for spurious content in shell-model wave

functions. In the second-quantization formalism this operator

reads:
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R2 =i-E
A Xp

AA/\ By

A 2 X$p
(3.2)

The indices X and p cover a complete set of single-particle

states. A direct product notation is employed; e.g.

M = Ux] [tx] H (2jx + 1) (2tx + 1), (3.3)

and the fermion creation operator A and time-reversed anni-
p

hilation operator B are coupled as indicated in the diagrams

in both configuration and isospin space. The normalization

constants £.. are given by
Ap

Ap (3.4)

Further details on this formalism can be found in \\ l] . The

two-body matrix element W7 is given by

(3.5)
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The two-particle states in eq̂ . (3.5) are antisymmetric and

normalized. The matrix element can be factorized into

(3.6)

where P interchanges the labels a and T and the quantity

v assumes the value v = 1 in configuration space and v = 0

in isospace.

Many-body matrix elements of the type

<zr|R2|zr'> (3.7)

will be evaluated, where it is assumed that some shell X
c

exists so that the shells X $ X in both the initial and
c

the final state are closed. Furthermore, only those cases

are considered where the configuration space is truncated in

such a way that the single-particle states |nljm> are uni-

quely determined by l,j and m, i.e. for each set l,j,m only

one value of the radial quantum number n occurs. In virtual-

ly all shell-model calculations this restriction is made and

therefore no severe limitations are introduced in this way.

After insertion of the right-hand side of eq.(3.2) the

matrix element (3.7) can be divided into three parts:
2

<R > = <Sj> + <S2> + <S3>. (3.8)

9
The operator S stands for the single-particle part of R .
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The operators S_ and S are obtained when the summations in

the two-particle terms of eq.(3.2) are written as partial

summations over X $ X and X > X , respectively.
c c 2

Owing to (i) parity conservation by the operator r , (ii)

closure of the core and (iii) the previous assumption con-

cerning the truncation of the configuration space, one can

derive the result:

r'ZF|S |zr'> =-L- E n <x|r2|X>6
1 kl X K l'1

(3.9)

Here n-, represents the number of particles in shell X.

As the closed shells of the core are coupled to zero spin

and isospin, the contribution <S„> in eq.(3.8) can be reduced

to

<ZF|S |zr'>=-^- E n [p]"1|<X||r||y>|26 ,. (3,10)

c

For future reference the result for <S1
> + < S 9

> is quoted in

the form

<zr|s + S |z
r'> = i i E n < X | r 2 | X > - ^ - Z |<X||r||y>!2

Z n ji T< M|r
2|M> - ^ [ u ] - 1 E | <X



where use is made of the relation n, = [A.] that holds f or a

closed shell X .

A lengthy but straightforward calculation yields for the

third contribution to eq.(3.8):

<S„> = 5-
3 /3A2 Xc

X C<O<T

B
- \ E <X||?||u><u||r||X>(-l)/

A X <X<]i
°A

B

(3.12)

Again, this equation holds only provided the limitations on the

configuration space that were described before are satisfied.

Furthermore, in order to obtain the simple restrictions on the

summations in eq,(3.12) it was assumed that the coupling order

of the active shells is such that all states of one parity ir

precede all those shells with the opposite parity -IT. For nume-
2

rical evaluations of <R > it is, as far as <S > is concerned,



easier to use eq.(3.2) directly, provided one has a,computer f^

code for calculating matrix elements of one- and two-body (-M

scalar operators at one's disposal, e.g. the Öak Ridge-Roches- .; •!

ter code [11]. In such a calculation the terms between the ,;}!

second set of curly braces in eq.(3.11) may be included tö ft:j

play the role of single-particle energies. |i

4. Spurious content of shell-model states

On the assumption that CM excitations of energy 2̂iu) (or

higher) may be neglected, one can write a shell-model state

as

Z 6 (lmJ'M-m|jM)x~! (R)*"* (?). (4.1)
J'my' J'YY' J'M-m.y'

In this expression x •, (R) represents the h.o. wave function

for the CM motion, whereas {(j)̂», (£)} denotes a complete set

if wave functions depending on the intrinsic coordinates 5. The

explicit dependence [12] of ? on the laboratory coordinates r

need not be known.

The expe

is given by

2
The expectation value of R in the state defined by eq.(4.1)



(4.2)

2 3

where 3 is defined as !i
ï 3

32 = E 62 , (4.3)
Y
 J'Y' J'YY'

arid use. is made of the relation

r- (4-4)

2The quantity B gives the intensity of the spurious admixture

in 41 . By calculating the left-hand side of eq.(4.2) with
JM,y

the expressions given in sect.3, it is thus possible to ob-
2

tain g for given shell-model wave functions.

The technique- described above was applied to some wave

functions of negative-parity states in 32P and 3 2S. These

wave functions were obtained [13] in the configuration space
3 1

(Is , -Od-,-) (0^7/2~^P3/2^ employing a modified surface-

delta interaction.

The results shown in table 1 indicate the small spurious

content of these wave functions. This is not very surprising,

though, since with h.o. wave functions all states consisting

of a closed 1 60 core and the other nucleons occupying the

Od-ls shell are known to be free of spuriosity [1,2], The
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Table I

2
The spurious content 6 of

some shell-model wave functions from ref.[13]

state

Y

27
22

23

37
32

3l

47
hi
43

32p

0.009

0.031

0.017

0.029

0.012

0.018

0.001

0.008

0.007

e2

Y

32S

0.009

0.017

0.048

0.007

0.042

0.012

0.002

0.020

0.005
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lnu> CM excited states are then obtained when the operator
- - ' • " • - • - - ' - " - : • - • - . - • • •

given in eq.(2.I) is applied. The excitations that the vector

operator A can produce in a model space with a closed 0d,-,„-

subshell, are given by lSj ,„ •* lPi/2''p3/2 an(* ^3/2 "*" '^1/2'

lp , ,0f ,„. Since only the Ofy/o a n d t h e ^3/2 s u b s l i e l l s a r e

considered in the fp shell, only the components of the wave

functions with a particle in the lPo/o o r ^ i t will contribute

to the spuriosity.

In principle it is of interest to investigate the relation

between the amount of spuriosity in a given wave function and

the quality of the agreement one obtains on calculating de-

cay properties using the same wave function.. It should, how-

ever, be mentioned that the El transition strengths calcula-

ted with the wave functions of [13] save such poor agreement

with experiment that this discrepancy cannot be attributed to

spurious states effects only but it arises also from an appa-

rent inadequate model space.
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1
SAMENVATTING l

De in dit proefschrift beschreven berekeningen hebben

betrekking op twee verschillende aspecten van het kërnspec-

troscopisch onderzoek. In de eerste twee hoofdstukken worden

voornamelijk electromagnetische eigenschappen berekend van

kernen in het massagebiad A = 24 - 28 en wordt ingegaan op

mogelijke verbeteringen in bestaande golffuncties. In het

derde hoofdstuk besteden we aandacht aan het probleem van de

onechte toestanden ('spurious states').

Van elk der hoofdstukken volgt nu een korte samenvatting.

Hoofdstuk I. Hierin worden elektrische quadrupool- en mag-

netische dipoolmatrixelementen berekend met twee stelsels

golffuncties die bij respectievelijk de 'modified surface-

delta interaction' (MSDI) en de 'adjusted surface-delta

interaction' (ASDI) behoren. Het blijkt dat de ASDI-golf-

functies een betere beschrijving van de experimentele ei-

genschappen geven dan de MSDI-golffuncties.

De ëën-deeltjes matrixelementen van de overgangsoperatoren

worden bepaald door een aanpassing aan experimentele over-

gangssterkten en statische momenten. Het tlijkt dat volstaan

kan worden met een toestandsonpfhankelijke effectieve lading

en een ongerenormeerde magnetische dipooloperator.

In dit eerste hoofdstuk wordt verder het begrip theove—

tisehe fout geïntroduceerd. Deze theoretische fouten geven

een aanwijzing omtrent de gevoeligheid van berekende electro-

magnetische eigenschappen voor veranderingen in de Hamilto-

niaan. Het blijkt dat deze fouten in het algemeen de verschil-

len tussen experiment en theorie verklaren.

Tenslotte worden met behulp van de ASDI-golffuncties voor-

spellingen gegeven voor statische momenten en worden log ft
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waarden berekend voor toegestaan beta-verval.

Hoofdstuk II. Reeds in het eerste hoofdstuk wordt in som-

mige gevallen expliciet aangegeven hoe lineaire combinaties

van ASDI-golffuncties tot een betere beschrijving van de

experimentele vervalseigenschappen kunnen leiden dan met

de oorspronkelijke golffuncties mogelijk is. In dit hoofd-

stuk wordt dit effect op een meer systematische wijze onder-

zocht. Het blijkt dat in het massagebied A = 24-28 golf-

functies gevonden kunnen worden die, hoexiel slechts weinig

afwijkend van de ASDI-golffuncties, tot een grote verbete-

ring van de berekende eigenschappen van gatnmaverval leiden.

In het laatste deel van het tweede hoofdstuk worden enige

pogingen beschreven om een Hamiltoniaan te vinden die deze

nieuwe golffuncties als eigenfuncties voortbrengt. Voor
28

enige gevallen in Si is dat inderdaad gelukt.

Hoofdstuk III. In dit hoofdstuk worden formules afgeleid

voor de berekening van de verwachtingswaarde van het kwa-

draat van de zwaartepuntscoördinaat. Vervolgens wordt aan-

getoond hoe deze verwachtingswaarden gebruikt kunnen worden

om de intensiteit van onechte toestanden in schillen-model-

golffuncties te berekenen. De methode wordt toegepast op

enige reeds uit de literatuur beschikbare golffuncties in

3 2P en 3 2S.
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