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Stellingen behorende:bij het proefschrift

AN INVESTIGATION ON WAVE FUNCTIONS OF sd-SHELL NUCLEI

I
De docr Hsu D gegeven bovengrenzen van gereduceerde electro-
magnetische overgangssterktes binnen een gegeven configuratie-
ruimte kunnen in het geval van AIT,TY = 0 overgangen als
volgt scherper worden gesteld. Laat de eigenwaarden en eigen—
vectoren van de overgangsoperator binnen de N-dimensionale con-

. . . ‘s > s
figuratieruimte gegeven zijn door €, en v, waarbij geldtr

616...-S€N. De sterkst mogelijke overgang vindt plaats tussen

toestand d1(+++\ 1(+—+)t1
oestanden gegeven door 75 (v, + v} en o5 (v, = v) met als
overgangssterkte %(e1 - EN)Z. De door Hsu opgegeven bovengrens
komt overeen met max(e%, e%).

D 1.5, Heu, Phys. Lett. 25B (1967) 588.

IT

. 1 .
De konsekwenties van de door Meurders ) geintroduceerde tech~

niek om door middel van extra vergelijkingen de parameters in
een kleinste-kwadratenaanpassing in de buurt van de beginwaar-
den te houden, kunnen elegant worden geformuleerd. Men dient
daartoe op te merken dat slechts de eéigenwaarden en niet de
eigenvectoren van de correlatiematrix 2)Abe‘l'nvloed worden door
de toegevoegde vergelijkingen.

1)

F. Meurders et al., Z. Physik A 176 (1976) 113;
2)

W. Chung, Thesis Michigan State University 1976.
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De door Endt en Van der Leun gevolgde methode om fouten in

vertakkingsverhoudingen op te geven is misleidend.

D p.y. Endt en C. van der Leun, Nucl. Phys. A214 (1973) 1.

v

De reactie (180,2p), in kombinatie met lichte neutronrijke
trefplaatkernen, biedt een goede mogelijkheid voor het pro-

duceren van neutronrijke kernen zoals 29Mg en 3%5i.

v

De informatiestroom van het kernfysische onderzoek naar het
Internationale Nucleaire Informatie Systeem D (I.N.I.S.) 1is
in Nederland aanzienlijk breder dan die in de omgekeerde rich-
ting. Er is in deze situatie geen verbetering te verwachten

zolang de door I.N.I.S. uitgegeven documentatie slechts moei-

zaam bereikbaar is.

D International Atomic Energy Agency te Wewen, I.N.I.S.
Atomindezx.

VL

Voor de bestrijding van de luchtverontreiniging is een gelijk-
matige beperking van de emissies van koolwaterstoffen en stik-—
stofoxiden weinig effectief om fotochemische smogvorming te

voorkomen.

E. Hesstvedt et al., Institute Report series No. 18, April
1976, Untiversity of Oslo.



VII

Om zen goede voorspelllng te verkrijgen voor electromagnetlsche
vervalseigenschappen 1is het zinvoller eerst van. gegeven golt-
functies lineaire kombinaties te vormen die worden aangepast

aan reeds bekende vervalseigenschappen dan direct gebruik- te

maken van die golffuncties.

Hoofdstuk II van dit proefschrift.

VIII

. 1

De verklaring van Salm en Klepper ) voor de waargenomen
faseverschuiving in een tijdafhankelijke spinprecessiemeting
aan 19F geimplanteerd in Ni is onjuist.

W. Saim en 0. Klepper, Phys. Rev. Lett. 37 (1976) 88.

X

Teneinde ndg meer luisteraars naar klassieke-verzoekplaten-—
programma's tevreden te kumnen stellen kan de gebruikelijke
procedure om van meerdelige composities slechts &&n deel ten
gehore te brengen worden verfijnd door het toerental van de

afspeelapparatuur iets op te voeren en oninteressante passages

binnen dat ene deel te verwijderen.

G.A. Timmer 20 oktober 1976
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INTRODUCTION AND SUMMARY

In the past two decades a large number of nuclear shell-
model calculations have been performed. Some general trends
emerge when one follows the historical development of these
calculations in Utrecht and elsewhere. In the first place,
with the advent of large computers, one sees a steady growth
in the size of configuration spaces used for the description
of nuclear properties. & second development that can be dis-
cerned is a shift of the emphasis that was focussed initial-
ly on the proper reproduction of energy spectra towards a
proper description of other nuclear properties as well. At
least for the sd-shell nuclei (A = 17-40), one can observe
that the point has been reached where a reasonable descrip-
tion of the energy spectra is taken for granted, at least
for low-spin states, and hence the reproduction of the ener-
gies is considered to be of decreasing importance for the
evaluation of the success of a given calculation. An impor-
tant stimulus for considering properties other than energy
spectra alone, is to be found in the very rapidly growing
body of reliable experimental data on gamma-decay properties,
spectroscopic factors and static moments.

The work presented in this thesis is partly an extension
of calculations described in [1]. Two Hamiltonians were ob-
tained in [1], i.e. the modified surface-delta interaction
(MSDI) and the adjusted surface-delta interaction (ASDI).

In the first chapter the results are presented of a cal-
culation of electromagnetic properties with the MSDI and ASDI
wave functions. It is concluded that ASDI yields better re-

sults than MSDI. In order to describe the semsitivity of the

s i 5 s b T e e
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calculated gamma—decay properties on the Hamiltonian, we in-—
troduce in chapter I the concept of a theoretical error to

be assigned to these gamma—decay properties. It is found that
these errors account reasonably well for the deviations be-—
tween experiment and theory. It is concluded that in many
cases a Hamiltonian may be found which indeed improves this
agreement.

In the second chapter the problem of finding such a Hamil-
tonian is considered. There we obtain wave functions showing
a gcriking agreement for the decay properties. These wave
{unctions differ only slightly from the ASDI wave functionms.
Then there follows a discussion of ways of constructing a
Hamiltonian that yields these wave functions as eigenfunctions
with the proper emergy. The success of this last step is
limited, although some encouraging results were obtained.

The last chapter concerns a problem that is hardly linked
with the topics discussed in the first two chapters, i.e. the
spurious state problem. This problem, in its generality,
arises if a symmetry property of the Hamiltonian is violated.
Thus in current shell-model techniques the translational in-
variance is not properly taken into account. Although we cannct
cure this deficiency, the formulae presented give a means of
estimating quantitatively the spurious content of shell-model
wave functions. The method is applied to some wave functions

describing negative parity states in A = 32,

Reference

1) F. Meurders, P.W.M. Glaudemans, J.F.A. van Hienen and
G.A. Timmer, Z. Physik A276 (1976) 113.
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CHAPTER |

A QUANTITATIVE EVALUATION OF THE RELIABILITY OF CALCULATED
DECAY PROPERTIES OF NUCLE! IN THE MASS REGION A = 24 - 28

G.A. TIMMER, F. MEURDERS, P.J. BRUSSAARD
and
.1.
J.F.A. van HIENEN

Abstract: Electromagnetic transition rates and log ft values were calculated for
o transitions between positive—parity states in the A = 24 - 28 mass region,
. ) The wave functions used were taken from a previous paper. In general we found
satisfactory agreement with experiment. In order to have a measure of the
stability of the results against changes in the Hamiltonian a method was
! developed for assigning errors to calculated tramsition properties. The re-
normalized single-particle matrix elements of the E2 and M! transition ope-
: rators were determined in a phenomenological way. To this end use was made
of the errors just mentioned. It was found that good agreement was obtained
with bare—nucleon M! single-particle matrix elements and a state indepemdent

effective isoscalar charge for the E2Z operator. Predictions for static moments

are given.

1. Introduction

4
4
P
3
2
3
3
¢
3
3
i

In a shell-model calculatiun v° + a phenomenological

effective interaction fitted to a number of experimental
data, it is not immediately evident how well determined the
interaction and hence the calculated wave functions are.

The dynamical properties (e.g. electromagnetic transition

t Present address: Cyclotron Laboratory, M.S.U., East Lansing,
Michigan, 48823, U.S.A.,

I S



rates) calculated with these wave functions may sometimes
deviate appreciably from the experimental data, even if ome f
uses effective transition operators. It would be quite use-

ful to know then whether the discrepancies could be ascribed §

to deficiencies of the Hamiltonian. It will be shown that

4 some calculated observables are often very sensitive to a

slight change in the Hamiltonian while others ar: not.
In this paper the calculations of decay properties of

positive-parity states in the mass region A = 24 - 28 are

R

described. They represent a continuation of earlier shell-
model calculations [1]. b
In [1] two different effective interactions were consider-—

ed in a truncated 1s-0d shell-model configuration space. The

first of these interactions, the modified surface-delta intex-

i action (MSDI), see [2],served as a starting point for the

et T

P

generation of the second interaction which is referred to as

k2

the adjusted surface delta interaction (ASDI). Subsequent-

PARTRIE

ly, we considered two observables,viz. energies and spectros-

e

g

copic factors for single-particle transfer.

e

P

Here we present calculations of E2 and Ml decay rates

SIRERRNTL: /RS LE TS

using the MSDI and the ASDI wave functions. We shall confirm
the conclusion drawn in [1], namely that the ASDI wave
functions constitute an improvement over the MSDI wave
functions. E
In section 2 a detailed account will be given of a method s
of assigning errors to calculated transition matrix elements.
These errors are intended to give a measure for the stability
of such matrix elements when the Hamiltonian is changed. In i

this way we may obtain an impression of the reliability of

calculated transition matrix elements. The method of assigning

e ol 508 g Bt R S S AN F IR R,
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errors is based on the observation that an improvement in
the reproduction of the energies often leads to an improve-
ment in the other observables as well. The outline of the
error assignment procedure given in [3] is superseded by
the present paper.

A truncation of the configuration space, unavoidable for
practical calculations, gives rise to renormalization effects.
Many attempts based on perturbational techniques have been
made to obtain a renormalized Hamiltonian and renormalized
transition operators. Owing to the poor convergence [4] of
the perturbation expansions, these attempts have not led so
far to quantitatively satisfying results. We therefore adopt
a phenomenological approach to obtain the renormalized
transition operators. To this end we consider in the first
part of section 3 different ways of parametrizing the E2 and
Ml operators. The relevant parameters will be fitted to the
experimental data. The results of section 2 are essential when
weighting factors are introduced into the fitting procedure.
Another point stressed in the first part of section 3 is the
dependence of the fitted parameters on the set of experimen-—
tal data which have been taken into account. In our opinion
this dependence deserves more attention than it has received
hitherto in the literature dealing with phenomenological
Hamiltonians. The remainder of section 3 is devoted to a
comparison of calculated and experimental E2 and M! tramsi-
tion rates and static moments.

We present not only electric and magnetic reduced transi-
tion strengths and moments but we also deal with quantities
derived from them like lifetimes, E2/M! mixing ratios and

branching ratios.

PPN



We do this mainly because of a rather trivial extension of
the error assignment procedure. This extension leads to the
observation that quite often the quantities mentioned above
are less sensitive to details of the Hamiltemnian than the
separate transition matrix elements. _

In some cases we consider explicit‘changes of the wave
functions without specifying the underlying changes of the
Hamiltonian. Unitary transformations among the given wave
functions are constructed in such a way that the best
possible agreement with experiment is obtained. In section
4 we discuss some remarkable results of this procedure. A
more systematic investigation along these lines is under
consideration at present.

In the last two sections we present some calculations
with the ASDI wave functions that are somewhat detached from
the main lines of this paper. Section 5 is devoted to pre-
dictions for static moments, and in section 6 allowed

B-decay is treated.

2. Reliability of calculated tramsition matrix elements.

In a shell-model calculation generating wave functions
for the evaluation of electromagnetic transition rates and
log ft values cne needs the appropriate effective interactiom
for the model space chosen. The various methods used to de-
termine this interaction do not produce identical results.

In a previous paper [1] we considered two effective inter-
actions and calculated energies and spectroscopic factors

for the mass region under consideration, viz. A = 24-28.

tre st e e bttt i
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The first of these interactions, the medified surface—delta
interaction (MSDI), contains four parameters that must be
adjusted to experimental energies. These four parameters
determine all 63 two-body matrix elements of the interaction
in the sd shell-model space. It was possible to improve the
agreement of the calculated energies with the experimental
values when subsequently small variations of the two-body
matrix elements with respect to their MSDI values were allow-
ed. The resulting effective interaction is called the adjust-
ed surface delta interaction (ASDI).

It was found that on improving the agreement between the
experimental and the calculated energies the results obtained
for spectroscopic factors were also of better quality. In
section 3 it will be shown that the same applies to Ml and E2
transition rates. In view of these facts one would like to
quote an error for the calculated nuclear properties as a
measure of the uncertaiunties in the Hamiltomian. The magni-
tude of this error will then be related to the agreement for
the energiles,

To achieve this we shall first give a simple expression
for the change of calculated transition matrix elements (CTME),
resulting from small changes of the Hamiltonian, in terms of
first—-order perturbation theory,

The eigenvalue equation of the effective Hamiltonian reads:
K
H|K,m > = Ele,m >, (2.1)

where the abbreviation K = (J",T) is introduced and the sym—

bol m(m = 1,2,..) stands for the eigenvector number within

the set of eigenstates labelled by K, so that EE+1 > EE.
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A small change 6H of the Hamiltonian H will cause changes
6<K,m|0|K',m"> in the matrix elements of a tramsition opera-
tor 0. Applying first-order perturbation theory to the ini-

tial and final states one obtains the relation:

5 <K,m|8H|K,i><K,i|0|K}m'>

ifm gf - gf
m 1

8<K,m|0|Kim'> =

+ ¢ <K,ml0|Kii'><R}i'|SH|R}m'>

L ] 1 ] ]
i'#m EK' _ Ei'
m

(2.2)

The problem of degeneracy cam be ignored for the Hamiltonians
considered, viz. MSDI and ASDI.

The variation SH should now be specified. Let H' repre-
sent the (unknown) Hamiltonian that yields the best agree-
ment with experiﬁent in the chosen configuration space. Then
SH is defined by the relation 6H = H'-H. The main assumption
we shall make about H' is that the deviations of its eigen-
values from the experimental (Coulomb corrected) energies
are small compared with the level spacings. The diagonal

matrix elements of 6H are then given by:

K K
<K,m| §H|K,m> = E. -E, (2.3)
exp
where Ei represents the experimental energy of the state

[K,m>. ®%P  Thus these diagonal matrix elements can be
extracted from the experimental data.
The off-diagonal matrix elements of 6H in eq. (2.2) cannot

be determined from the experimental data. Let Qii be an esti-

e ot e ATt ] b
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mate of the matrix element <K,m|sH

K,i>. We shall now make
the assumption that the off-diagonal matrix elements of SH
can be treated as uncorrelated variables. Then an estimate

Amm' for the change in <K,m[0[K;m'> under the influence of

SH is given by:

2
T R B L1 AL S
mm . 1
m [ gR_gm
m 1

. 3 <K,m|0|K!i'> K'

21 ' Y v m'i'
1'fm EE! - Eli{_|

. (2.4)

In the remainder of this paper we shall refer to this
quantity as the theoretical error in <K,m|0|Kim'>. Since
the indices i and i' run over eigenstates of the model
Hamiltonian H, this error will not account for deficiencies
in the configuration space. We shall comment on this point

at the end of this section.

Equation (2.4) needs some modification when K = K' holds.

Then the terms 1 = m' and 1i' = m in eq. (2.2) must first be

taken together before the incoherent quadratic sum is formed,
since they involve the same matrix element of SH and hence
may not be considered as “ndependent.

The summations in eq. (2.4) will now be divided into two
parts. The first part includes the summation over the inter-

mediate states of which the eigenvector number i or i' is

near m or m', respectively. In the applications we have
m,m' < 2 and we limit the terms in the first part to i,i' < 4,

The second part contains the remaining terms.
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Let us now consider the first part. In ordexr to obtain
. K X .
an estimate for Qmi of the off-diagonal matrix element of
8H to be used in this part of the summation, we make the

following ansatz:

4 __1_{ K _ K K _ K

Qs =5 {IE; E| + |E; EiI}. (2.5)

exp exp
Thus we replace each off-diagonal matrix element of SH by
the arithmetic mean of the corresponding two diagonal
matrix elements. In some cases the necessary experimental
informatior. i.e. Ei » was lacking even for low values
. exp .

of 1. In such cases an average value over the available
states K is taken:
K' K'
-E.|=Z[Ei -E, |/z1, (2.6)
exp K' exp = K'

where the summation over K' is restricted to those combinations

. K . . . .
for which Ei is known. In this way we introduce an eigen-

vector numbeixgependent meas’.ce of the expected deviation
between experimental and calculated energies. In table 2.1
we show the result of this manipulation for the MSDI and
ASDI Hamiltonians.

This amsatz (2.5) of course cannot be justified rigorous-
ly; it exhibits, however, the following desirable features.
(i) If the energy of a state lK,m> is poorly reproduced by
H, we expect ]K,m? to mix more easily with other states like
|K,i> under the influence of ¢H than in a case where the
energy was calculated accurately. (ii) The hermiticity of
§H is retained, i.e. Qﬁi = Q?m. The appropriateness of the

ansatz (2.5) is demonstrated by the results of the present
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Table 2.l

The average difference (in MeV) between calculated and
experimental energies as a function of the eigenvector

number m

m: 1 2 3 4 5
MSDI 0.1 0.3 0.6 0.6 f
ASDT 0.1 0.2 0.4 0.6 ;

calculations. In most cases a definite correlation is ob-

e e o SHAE

tained between the size of the errors one thus assigns to

the CTME and the quality of the agreement between the !
theoretical and the experimental values.

We now turn to the second part of the summation in eq.

BEieeet Lot Fol

(2.4), i.e. 1,i' > 4, again considering only the cases m,m'
< 2. These terms are neglected. Although we thus disregard

the majority of the terms in eq. (2.4) this omission can be

P

N

made plausible numerically in the following way. After a

complete diagonalization of the ASDI Hamiltonian for all

v it -
G

g

K considered, the matrix zlements of the operator 0 in

eq. (2.4) are calculated. Subsequently the following quantity
is evaluated (cf. eq. (2.4)):

R i,

‘v
N
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r = | JE |
Qo = |<K,m|0|Kim'>]| | & <k’1LQLKfm - +
>4 gK_gK
m i

-1
+ 3 <K,m|0|Kim'> 2| ™
=t . Ki Kl
i'>4 E, - By, (2.7)

If Qmm' turns out to be much larger than an estimate for a
typical value of Qﬁi with i > 4 and m < 2, we may concludg
that the omission of the second part of the summation in eq.
(2.4) is justified. For m < 2 the energies are reproduced
within 0.2 MeV (see table 2.1); we assume that a typical
off-diagonal matrix element of SH between states m < 2 and
high-lying states i > 4 should be considerably smaller than
this value. Thus if Qmm' has a magnitude N 0.2 MeV serious
doubt must be cast upon the legitimacy of our assumption
that we may neglect the second part in the summations in
eq. (2.4). We shall now discuss the results of the numerical
evaluation of Qmm"

Although the calculated values of Qmm' showed large varia-
tions, the following tremnds appeared.
i) Qmm, is generally larger for E2 transitions than for Ml

transitions.

ii) TFor transitions between yrast levels Q]] is large,

typically 2 5 MeV for EZ transitions and > 2 MeV for Ml

transitions.



iii) For transitions involving one non-yrast level Q@ , is

of the order of 0.5 MeV for E2 transitions and 0.2 MeV

Sl

for M1 transitions. Especially in this case large veri-

‘-I's
i
‘,i.|
i

Lo

ations occur.

iv) For transitions between two non-yrast levels the value

S ST K.ty o]

of Qmm' is generally found to be so small that our

5 assumption that we may neglect the summations over

: high-lying intermediate states seems not to be justi-
fied. There are, however, very few such transitions
that can be compared with experiment. A notable excep-
tion is provided by the static moments of non—-yrast
levels. For both the electric quadrupole moments and

- the magnetic dipole moments it was found that Qmm tends
to be very large. Here we have a special case of the

situation described in eq. (2.8) which will be discussed

below.

After discarding the summations over higher intermediate

states in eq. (2.4) we are now in a position to investigate

the reliability of the error assignment procedure.

The ASDI results displayed in tables 3.1 and 3.2 are
illustrated in fig. 2.l. The relative difference between the
calculated E2 matrix elements and the experimental data,

(!Mcl ~ [Me[)/[Mel, is plotted versus the ratio of the total

error and the calculated matrix element |Mc . The total erroxr

is obtained by adding the theoretical and experimental errors
quadratically. In line with the discussion following eq.

(2.7), the non-yrast to non~yrast transitions are not taken

into account. The 5/2; - 1/2T transition in 25Al has been |

omitted since we have serious doubts about the reiiability

of the experimental strength quoted. The two curves repre-

13
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sent the cases for which the experimental matrix element 1is é
- . N N2 2 B

given by either of the rzlaticns [Me] = IMCI :\/(ZMC) + (AMe) . 1
In the region between the two curves the difference between k
&4

experiment and theory is smaller than the total error. ‘f‘g
i

5

b

relative difterence with experiment "
1
Q
EN
T

1 “0.6—

: o8tN:9 15 9 9 8 9
S —Te
relative error WMC)%(AME)Q/‘MC‘ i

Fig. 2.1. The difference between the experimental and calculated E2 matrix elements
(see tables 3.! and 3.2) as a function of the ratio of the total error

and the calculated E2 matrix element. The average value and the standard

deviation are given for a number of intervals of the abscissa. The length i

of each interval is indicated by the horizontal bar; N is the number of
cases in each interval.

We shall now discuss some aspects of the error assignment

procedure that have been ignored so far. First we shall

e AN

mention a tricky point that may arise when the quantity
I,
m

- EII](II is evaluated for the ansatz (2.5).
exp

PENPIR
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Then one takes the energy difference between the m-th experi-
mental eigenstate with spin K and the m—th calculated eigen-
state with the same spin. The underlying assumption is that
when 8H is switched on the eigenstate |K,m> of H will
converge to the m—th eigenstate of H', with H' defined as
before. We encountered one case where this assumption proved
to be incorrect, viz. the 2; and the 2; states in 28Si. This
case will be discussed in detail in section 4.

A second remark concerns the class of very large CTIME.
This class contains many of the E2 matrix elements between
yrast levels and many of the E2 and Ml static moments. We
call a matrix element <K,m|0|K!m'> large if the following

approximate relations are satisfied:

£|K,i><K,i|0|K",m"> 3 |[K,m><K,m|0|K',m'> ,
i

z<K,m[0|K',i"><K',i'| & <K,m|0[K',m"><K',m'| . (2.8)
il

This means that for a given initial state |K!m'> the total
strength of the operator O to states with given spin K is
concentrated mainly in one state, i.e. |K,m>, and vice versa.
If these relations (2.8) are substituted into eq. (2.2) one
finds that <K,m|0|R!m'> is very insensitive to the choice

of the Hamiltonian. In such cases the higher-order terms

in 6H should be taken into account. In view of the tentative
character of the error assignment procedure this point was
not considered further. Moreover, as is clear from fig. 2.1,
it is found that the agreement between theory and experiment

is about as good as may be expected for these cases, i.e.
MM <<|M
c c
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The same remarks about the omission of higher—order terms
in 6H apply to cases where one calculates very large errors.
In section 4 we shall give a trivial extension of the
error assignment procedure to quantities that depend on

more than one CTME such as mixing ratios ete.

We shall now discuss an application of these theoretical
errors. The errors are intended to give some measure of the
possible change in a CIME in case a better Hamiltonian is
required. An improper choice of the Hamiltonian is, however,
not the only source of errors in CIME . There are two other
deficiencies, viz. an improper choice of the configuration
space (it may be too heavily truncated) and an inappropriate
renormalization of the operator considered. If we arrive
at a completely wrong result with a small error assigned
to it we must conclude that one of these deficiencies
occurs, It should be mentioned that there is one class of
transition matrix elements where the conclusion about the
deficiencies of the configuration space can be drawn regard-
less of the choice of the Hamiltonian. Since for a finite
model space the transition operators are bounded, an upper
limit exists for the transition strength which is indepen—
dent of the Hamiltonian; for further details see [5].

The few relevant cases we encountered will be considered

explicitly in the next section.
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3. Effective single-particle matrix elements

Besides the errors in the wave functions described in the
previous section there are uncertainties in the single- -
particle transition operators used in the truncated confi-
guration space. The effects of the truncation of the
configuration space can be compensated for to a large extent
by a renormalization procedure. There are two approaches
possible to achieve this renormalization. One method is to
parametrize the operators in some way and adjust them to the
experimental data. The other way is to use perturbation
theory to calculate the corrections required because part
of the configuration space is ignored. Here we shall
follow the former, phenomenological approach. As the electro-
magnetic transition operators are single—particle operators,
all matrix elements between many-particle states can be
expressed linearly in terms of matrix elements between
single—particle states. The single-particle matrix elements
(SPME) can now be considered as adjustable parameters in a

least-squares fitting procedure.

3.1. THE LEAST-SQUARES FITTING PROCEDURE

The principles of the least—squares fitting procedure
used are given in [6]. However, the procedure we followed
differs from the one referred to in two respects.

i) The experimen:tal data do not determine the sign of the
experimental transition matrixz element (ETME), but
determine only the absolute value. Exceptions are of

course the static moments. In [6] the sign of an ETME

17
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is equated to the sign of the CTME that results if the

bare-nucleon single-particle matrix elements are used.

A CIME resulting from a calculation with the fitted

single-particle matrix elements may have a different

sign. When this was the case we repeated the fitting
procedure with the sign of the ETIME reversed as well.
ii) We took the weighting factors of the linear equations

to be inversely proportional to the quadratically added

experimental and theoretical errors. Thus our weighting

factors show no explicit dependence on the magnitude of
the matrix elements or on the eigenvector numbers of the
states involved. In view of the results of the evaluation
of eq. (2.7), discussed in section 2, it was decided to
fit only those matrix elements <K,m|0‘K§m‘> where

m + m' < 3 holds.

Some problems of self-consistence now arise. The theo-
retical errors that affect the weighting factors depend on
the quantities to be fitted, viz. the single—-particle matrix
elements. In fact an iterative scheme has to be followed.
The first step is to make an initial guess for the SPME to
determine theoretical errors. The second step is to use the
errors in the weighting factors of the equations to determine

new SPME. This procedure is repeated until convergence

occurs.

3.1.1. The experimental data used in the fitting procedures
The experimental data used to fit the SPME were taken from
[7,8] . These references contain those experimentally known
E2 and M1 transition strengths the experimental errors of
which are not larger than 50 %Z. The static moments were de-

rived from [9]. In some cases we used more recent values which
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will be referred to explicitly. Neither the transitioms in-
volving high-spin states (J 2 6) nor transitions in neutron
rich nuclei (T > 3/2) were fitted since the necessary wave
functions were not available.

A point that should be considered is the dependence of
the results of the fitting procedures on the selection of
the experimental data. To investigate this dependence we
performed the fits for different sub-sets of the data
available. Each sub-set was labelled by the minimal experi-
mental strengths, Smin’ which was taken into account. If
the fitted value of a parameter is strongly dependent on
Smin’ then we must conclude that the way that was chosen

to parametrize the transition operator is not meaningful.

3.2. E2 TRANSITIONS AND QUADRUPOLE MOMENTS

In the second-quantization formalism the E2 transition

overator is given as:

T
<a||[|E27]]|b> 2,T
0(E2) = I el (-1)F nox y
a.b.T ab a bl -
2D /502T + 1) (3.1)

Here the summation extends over the single-particle states
a and b

and T

+
a

and over the isoscalar and isovector parts, T = 0

1 . The fermion creation operator

1q and the time-reversed destruction
i, +m, +i+T

. I T2,

i b
operator = = (=] n. -
P nb_an’mb,%:Tz}‘ (=1 Jb’ m] ’%’ sz

=]
il
]
e
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are coupled to the proper multipolarities in configuration
space and in isospin space. The reduced bére-nucleon SPME
<a[|[E2Tl[|b> are multiplied by state—dependent effective
charges eib to account for the renormalization of the E2
operator in the truncated configuration space.

The matrix element <a[!{E2T|||b> was calculated with
harmonic oscillator wave functions. The radial matrix
elements were calculated with the size parameter
b= (‘ﬁ/mm)é that was determined from the well-known empirical
relation fw = AIA—”3 MeV. It should be noted that effective
charges need not represent merely the renormalization
effects. They could be interpr-ted as alterations of the
radial matrix elements,since the latter always occur
multiplied with eZb' A discussion about whether this re-
interpretation is justified is beyond the scope of this
paper.

A procedure often followed is to take a state-indepen-
dent isoscalar charge e® and to use for the isovector part
of the E2 operator the bare-nucleon matrix elements, i.e.
e;b = +e for all a and b, which thus leaves one free para-
meter. We shall refer to this procedure as fit I.

In view of the large amount of experimental data available
in the mass region under consideration it might se.n worth-
while attempting a calculation without making this restric-
tion. Then for an sd-shell calculation one would deal with
a set of ten free parameters. However, there appeared to be
little point in considering the state-dependence of the
effective charge in its full generality. There are two
reasons for not considering the isovector charges as adjust-—
able parameters, i) Out of the 59 E2 matrix elements that

could be included in the fitting procedure, 19 are between

.,aﬂ,-’a“.n.ﬂsxvgi:zw Gadmt <
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T = 0 states, which thus determine eZb only. 1i) The

result of the fit for the remaining cases is quite

. . s . I ; .
insensitive to the choice of ey since most CIME for

both the MSDI and the ASDI case were determined largely

by the isoscalar contribution. The latter phenomenon is

demonstrated in fig. 3.1. In these histograms we plotted

=

the frequency with which a certain ratio between the bare-
nucleon isovector and isoscalar matrix elements occurs
within the set of E2 matrix elements that could be fitted.

Corresponding transitions between pairs of analogue states

are counted once.

MSDI ASDI
N1O
5t
l H I',; | ! | Ly
0.5 1.0 >10 0.5 1.0 >1.0
<0'(E2)>
c,(E ) 3
<0 (E2)>
Fig. 3.1. The number of cases N as a function of the absolute ratio between the

isovector and isoscalar parts of the E2 matrix elements.
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Two fits were actually considered, viz. the fit previous-—
ly called fit I with a state—independent effective charge
as a free parameter, and a fit, to be referred to as fit II,
where the state—dependent effective isoscalar charges were

allowed to vary independently.

3.2.1. The results of fit I. The procedure described
at the end of section 3.1 led after one iteration to effective
isoscalar charges e = 2.33e and e® = 2.15e for the MSDI and
the ASDI case, respectively. With these values entering into
the theoretical errors we performed the fit for a number
of sub-sets of the experimental data. The results are dis-
played in fig. 3.2. The error bars in this picture are the
statistical errors in the parameter eo; they result from

the fitting procedure.

ASDI

1 . I 1
5 10 15
——S . (W.u.)

: . . o . P
Fig. 3.2. The isoscalar effective charge e = e + e as a function of the minimal

experimental strength Smin used in the fit.
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Although there is a tendency for the large matrix elements
to require a larger effective charge we may conclude, es-—
pecially for the ASDI, that a state-independent effective
isoscalar charge is a meaningful quantity in the sense
described in section 3.1.2. It should be mentioned in this
connection that, especially for the MSDI, a different way
of calculating weighting factors (i.e. according to [6] )

gives a completely different value of e® for small values
of § . .
min
The results for individual transitions obtaimed with

fit I will be discussed in section 3.2.3.

3.2.2. The results of fit II. Although for fit II we have
a larger set of adjustable parameters at our disposal than
for fit I, there resulted no noticeable improvement. This
can be understood in the following way. In the first place
it proved impossible to fit the effective charges involving
the d3/2 state in a reliable way. The d3/2 content of the
MSDI and the ASDI wave functions was not large enough. The
total isoscalar transition matrix elements are thus mainly
determined by the d5/2 - d5/2 and the Sl/2 > d5/2 transition
amplitudes. It turns out that for the majority of the CTME
considered the interference between these amplitudes is con-
structive, which reduces the relative importance of the d3/2
amplitudes even further. The effective charges that involve
the d3/2 state were kept constant at a value e’

ab
remainder of the procedure. The behaviour of the two remaining
parameters, viz, e :

and e° » as a function of the
45295 /2 172952

minimal strength that was fitted, is shown in fig. 3.3.

= 2e for the

23

A T st i



24

)
€4si2—sda5r2

)
Csuz—sasi2

MSDI

)
€l —sds2

0
es'llz—ad Sr2

ASDI

5 G
— (WU )

Fig. 3.3. The state-dependent isoscalar effective charges as a function of the mini-

mal experimental strength smin used in the fit.

Thus, in view of the strong dependence on Smi » this way
cf parametrizing the operator seems not to be justified.

When one combines i) the afore-mentioned constructive
interference between the d5/2 > d5/2 and Sy/2 > d5/2 transi-
tion amplitudes and ii) the opposite trends of the respective
effective charges, one sees why the state—independent effec-
tive charge shows no strong dependence on Sm. .

It was decided not to pursue the idea of a state-dependent
charge any further.

8.2.3. Discussion of the E2 results. The E2 transition
strengths presented in table 3.1 and the quadrupole moments

in table 3.2 resulted from fit I described in the previous
section.
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Table 3

.1

Comparison between experimental and calculated E2 transition strengths

Transition E2 Strength (W.u.)
T T a) bl c)
Ji N Exi (MeV) Jf . Exf (MeV) MSDI ASDI EXP
Yg 2y L 0] o 19 + 2 18 +1 20 419
+ +
4 ka2 2 137 5+ 7 2 s 2 23 14
+ +
2, 4.2 o, o 0.8+ 1.7 0.9+ 0.4 1.1 #+0.1
2] 137 6 o+ 4 4 o+ 2 2.4 +0.3
+ +
3, 5.2 27 17 1 %2 1.7+ 0.7 2.0 +0.3
+ +
4 6.0l 27 137 19+ 8 0.2+ 0.6 1.0 +0.2
+ e) e)
2, 4% 2 s 4 + 9 9 +4
0, 6.43 2 137 3 £ 8 x0 + 0.05 0.2 +0.08
+ e) e)
2; 426 13 £16% 12 4 7 3.5 +1.3
Pug 1/2]  o.se  s2] o 0.6+ 1.9 0.5+ 1.3 0.5 + 0.0l
2] 091 st o 1.7+ 1.7 0.9 0.7 0.7 +0.3)
72, er si2b o 22 + 4 23 +1 35 4389
siy  L.es 52t o 0.2+ 1.4 0.2+ 0.3 0.4 +0.29
Uz 0.5 15 2 1 o+ 1 18 +79
12, 206 si2b o 2 + 3 0 + 0.04 0.16 +0.045)
327 057 15 £ 4 15 + 1 23 +39)
9/2;  4.06 s/2] 0 %0 + 1.0 1.1% 1.8 1.7 +0.3
2] 1.6 8 + 3 3+ 4 3.1 + 1.2
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Table 3.! (cont.)

Transition E2 Strength (W.u.)
37, E; (MeV) Jg» Ee(MeV). msp1®) aspr® Exe®)
Baro12] 045 s2] o 3 0+ 6 2 + 3 3.0 +0.1
32] 095  5/2) 0 3 0+ 3 2.0+ 1.3 1.8 +0.7
s/z; 179 12] 045 16 £ 3 15 o+ 1 3 5%
2] 095 5 x 2 5.5+ 1.0 8.1 +1.5
26 + + d)
Mg 2, 1.81 0] o 4 +5 1 + 1 126 *0.5
+ +
2, 2.9 o] o 1 +5 0.2+ 0.5 1.0 *+0.3
2] L8l 17 + 4  11.0% 05 13 +6
+ +
4] 4.32 2 18l  0.2: 1.5 9 + 2 5.8 +1.9
+ 4
4y 4.90 2, 181 17 &9 5 + 3 9 &3
%a 3] 0.2 5, 0 3 0+ 2 g8 + 3 7.4 +0.2
4] 2.07 51 0 7 0+ 04 2.6 + 1.1 3.1 +0.58
+ +
3, 237 1, 106 6 + 8 7 +12 4.7 +1.1
+ +
5,  3.40 5] 0 4 + 3 0.3+ 0.4 1.5 +0.4
3y 042 1 o+ 6 1.4+ 1.8 5.8 +1.6
%si 2l 1.8 o] o 15 +2 10 + 2 7 +3
+ +
0; 3.3 2] 1.80 0 & 3 1+ 3 8  +3
L™ 32 0.98 w2 o 8 + 3 8.4+ 0.9 6.3 +1.7
s/2] 1.0 1/2] 0 5 +5 10 + 3 9.6 + 1.6



Table 3.1 {cont.)

Transition E2 Strength (W.u.)}

- )
IT, E; (MeV) J;, E, ;(ite¥) usp1® aspr? EXP
27 + +
Mg 5/2, 1.9 1/2] o 7 &5 2 0+ 3 1.8 +0.3
ar 172 0.8 sy 0 4 +3 10 + 2 8.8 + 1.0
3/2]  1.01 5/2] o0 % + 3 7.7+ 1.3 9.5 + 1.7
/2] 2.21 5/ o 18 +# 1 13 +1 11 +1
5/2, 2.3 2] 101 5 + 3 13 % 2 7 +3
/2] 3.00 /2] 0 6.4+ 0.4 6.0+ 1.0 7.4 +0.7
11/2]  4.51 72] 21 1 %S 5 0+ 05 6.2 +0.6
9/2] 3.00 1 + 4 4+ 4 9.0 +1.4M
/2, 4.58 s/2; 0 0.5+ 0.6 0.6+ 0.4 0.18 + 0.09
9/2) 5.43 s/2; o 0.5 ¢ 04 9.9+ 1.0 0.41 +0.13
Tsi 12f 0.8 sizt o 7 0+ 4 o+ 2 11 +1
3/2]  0.96 s/2] 9 13 0+ 3 6.4+ 1.4 7.5 +1.8
/2] 2.16 s/2] 0 % o+ 1 9 + 1 9 +3
28 +
aL o] 0.97 2‘1‘ .03 1 o+ 3 1+ 3 3.8 +0.6
3
+ +
L, 1.3 3, © & +10 0.2+ 0.7 5 +1
+ + i
1, 162 ;o 2 +10 7.4+ 1.8 4.8 +1.1 5
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Table 3.1 (cont.)

28

Transition E2 Strength (W.u.)
b) c)
B " wsp1®) ASDI EXP
Ji, Exi(MeV) JE, Exf(HeV)
2si 2] 1.8 o o o+ 1 13.0 + 0.2 13.0 + 1
+ +
41 4,62 21 1.78 19 + 6 17 + 1 14 +1
+ +
02 4.98 21 1.78 3 + 5 5.8+ 1.8 11 + 2
+ +
4, 6.89 2, L7181 x5 0.2+ 0.5 0.57 + 0.09
+ +
2, 7.38 0 o 0.8 + 0.9 0.5+ 0.2 0.36 + 0.09
aj e0 = 2.33 e.
b) e = 2.15 e.
c) Experimental data from [7,8]; more recent data taken into account are
quoted explicitly.
d) Ref, II.
e) Not used in the fit; see discussion in the text.
f) Ref. 22.
g) Ref. 23.
h) Ref. 24.
i) Ref. 12,
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Table 3.2

Comparison between experimental and calculated quadrupole moments

Qefn’)
3", B (MeV) usn1®) asnr® eep®)
g 2] 1. A5 o+ 4 <16 +1 - +6D
g s12)" o 15 + 2 19 +1 2 +5
®ug 2] i1 =0 + 18 -l 14. P
o sr} oo 13 0+ 2 6.3 +0.5 151 +0.3
Bsi 2} 1 15 + 2 16.4 +0.5 16 +3

a) e = 2.33 .
b) €% = 2.15 e.
c) Ref. 9 unless indicated otherwise,

d) Ref. 10.

On inspection of tables 3.1 and 3.2 two conclusions can
be drawn. In the first place there is a reasonable correla-
tion between the size of the theoretical errors assigned and
the deviation between theory and experiment. This was for
the ASDI already mentioned in section 2 in connection with
fig. 2.1. In the second place the ASDI results are generally
better than the MSDI results. For 28 of the 62 transitions
considered the ASDI showed a marked improvement over the MSDI

results and for 6 matrix elements the opposite was the case.
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A =24

x MSDI ASDI

5.0 x 15.0
o 40 * 140
[<% x ]
)] x

3.0t * " . 30

2 .O_ x' ‘-:l. .""\ :‘l:::‘(gl, T 2 O

1.0 = 110

10 20 30 0O 10 20 30

—— 5 (W.u.)
Fig. 3.4. The isoscalar effective charge reproducing the experimental strength for
transitions between yrast levels.

An interesting difference between the E2 properties of
ASDI and MSDI wave functions is shown in fig. 3.4. The ab-
scissa of each cross represents the strength of a tramsition
between yrast levels. The ordinate is the isoscalar effec-—
tive charge e® needed to reproduce this strength theoreti~
cally. The spread is substantially smaller in the ASDI
case. There is no reason to ascribe this smooth behaviour
in the case of the ASDI to the fact that the yrast levels
of all spins considered were used in the energy fit in [1].

In the remainder of this subsection we shall disguss some

of the results presented in tables 3.1 and 3.2.

The improvement of the ASDI over the MSDI is
noteworthy, especially for the decay of the 4? level., Most
of the ASDI wave functions do not differ very much from the
corresponding MSDI wave functions; the 4? and 4; wave

functions, however, become completely mixed.
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A =25 In 25Mg and 25A1 one finds the strongest experi-

mental E2 transitions of the A = 24 = 28 mass region. They
are calculated too weak with both the MSDI and the ASDI wave
functions. We have, however, some doubts about the accuracy

of the experimental results for the case where agreement is
+

2
large isovector matrix element to explain the difference be-

worst, viz. the 5/2, - I/ZT transition in 25A1. One needs a
tween the strengths of this transition and the analogous
transition in 25Mg. The required value of this isovector ma—
trix element can easily be obtained by taking a linear com-
bination of ASDI 1/2+ wave functions to represent the 1/27
state and another linear combination of 5/2+ wave functions
to represent the 5/2; state. There is, however, no way of
doing this without at the same time reducing the isoscalar

contribution that must also be large to reproduce the data.

A =26 The large difference between the ASDI and MSDI
results for the quadrupole moment at the ZT level in 26Mg

are due to an accidental cancellation between large isoscalar
and isovector contributions. Here it may be mentioned that
the majority of the contributions to the right hand sides of

the histograms in fig. 3.1 are from transitions in 26Mg.

4 =27 Most of the results obtained for this mass are in

very good agreement with experiment. We shall comment on the

.. + . . . .
transition 5/2; > 3/2l in 27A1 and 27Sl in section 4.

A =28 The ZT - OT transition in 288i provides an exam-

ple where, in the case of the ASDI, the equations (2.8) hold
+
->

to a remarkable degree. Thus, since the 2l

+ e, .
0l transition
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exhausts virtually all E2 strength, and the energies are
well reproduced, the resulting theoretical error assigned to

this transition 1s very small.

3.3, M1 TRANSITIONS AND DIPOLE MOMEI™S

3.3.1. Effective Ml single—particle matrix elements.
Although there is a tendency to calculate Ml strengths too
large, the introduction of effective M1 single—particle ma-
trix elements did not turn out to be very successful. This
could be due to the fact that all first-order corrections
to M1 single—-particle matrix elements vanish because of
t~forbiddeness.

A too strong dependence of the fitted SPME on the sub-
set of the experimental data was found. If g—factors instead
of single-particle matrix elements were fitted, this depen-
dence turned.out to be even stronger. Furthermore, the agree-
ment obtained with fitted single-particle matrix elements
was not much better than with bare-nucleon matrix elements.
In the remainder of this paper we shall, in view of these
observations, use bare-nucleon M1 single-particle matrix
elements.

3.3.2. Discussion of the M1 ryesults. In this section we
discuss some of theuresults displayed in tables 3.3 and 3.4.
Comparing these tables with the analogous tables 3.1 and 3.2
for E2 transitions and quadrupole moments one sees that in
general the relative theoretical errors assigned to M1 ma-
trix elements are larger than those assigned to E2 matrix
elements.

For 24 of the 56 matrix elements considered the ASDI
showed a marked improvement over the MSDI results and in 15

cases the other way round. The agreement between experiment
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and theory for Ml transitions is not as good as in the E2
case. Towards the higher part of the mass region the agree- 4

ment obtained is in general better than for the lovwer masses. T

Ty

Very large differences are often visible between the ASDI

sty

and the MSDI results, this in spite of the large overlap

R DT,

between the low-lying ASDI and the corresponding MSDI wave

functions.

N

Table 3.3
Comparison between experimental and calculated Ml transition strengths 5
Transition Ml Strength (cW.u.)
7 7 ) ) )
3 By (MeV) 3, E (ev)  MsDP ASDP EXP
Zja 27 0.5 1 047 70 %0 13 +2 88 31°) 4
24 + + -4 - -
Mg 35 5.2 2, 137 (2+4)x10 (3:20)x10™*  (17+8)x107
1] 175 0] o 0.05 + 0.20 0.66 + 0.09 0.15 + 0.06 £
+ +
1} 983 0] O 0.4 + 0.20 0.10 + 0.07 5.5 + 1.6 K
Pug 312} 0.97 s/, 0 0.5 + 0.9 0.1 + 0.3 0.0+ o0.01%)
12} 059 2 % 2 11 + 1.0 1.6 + 0.9
/2] 1.61 siz; 0 nm o +8 2 +4 n 4+ &Y
5/2;  1.96 siz; O 0+ 1 0.02+ 0.2 0.08 + 0.03%
b
32 097 3 &5 3.0 0+ 2.0 10 + 0.9 j
1/2,  2.56 1/2] 0.5 S0 20 11+ 6 5 o+ 2
+ + -3d)
/2, 2.74 5f2, o 8 +1 0.1 + 0.4 (3+1)xl10

33
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Table 3.3 (cont.)

Transition M1 Strength (cW,u.)
37, E; (MeV) Jpe E (V) 1sp1?) aspr®) exp?)
wid
i
Bug 1725 2.74 5/2, 1.96 0.5 + 2.0 0.3 + 0.6 1.2 + 0% 4
i
32, 2.80 5/2, 1.96 4 o+ 9 Il s+ 4 7.2 + 1.7 5
- - g
ty
+ + >
9/2,  4.06 7/2] 161 7+ 30 5 + 8 15 + 0.3
Pa1 32 0.94 /2] o 0.9 *# 1.4 0.2 + 0.5 0.23+ 0.06 :
/2] 0.45 4+ 3 2.5 & 2.0 2.4 + 0.6 3
5/2,  1.79 527 0 20 + 6 30  + 0.7 0.16 + 0.04 i
= - i
32 096 4+ 7 33 + 2.0 3.5 + 0.6
Bug 25 2.9 2] 1.81 35 + 60 28 +20 25 + & :
+ +
3, 3.9 2] 1Bl 6 & 9 2+ 3 0.19 +0.04 ;
2, 2.9 3 + 7 L + T 3.0 +0.7 1
+ + ¢
3, 4.35 2, 1.81 1 + 4 0.8 + 1.0 0.76 +0.10 i
4
26 + + 3
AL 1] 1.06 0),T=1 0.23 100 + 60 150 + 20 140 + 30
+ +
1, 1.8 0,,T<l 0.23 6§ + 60 40 + 20 19 + 7
]
+ + ) [
2, T=1 2.07 1, 1.06 s +200 130 + 30 130 + 30° ]
+ +
3, 2.3 2;,T=1 2.07 40 +100 60 +200 43 + 9
27 + +
Mg 3/2]  0.98 /2] o 27+ 1.8 2.7% 1.0 2.3+0.5
27 *
a1 3/2] Lot si2] 0 2 o+ 4 3.1+ 1.0 1.4+ 0.2
1/2‘; 0.84 0.7+ 1.0 11 + 2 10 + 1 ;
34 i
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Table 3.3 (cont.)

Lo Transition Ml Strength (cW.u.)
- 1., E_.(MeV) 30, E L (MeV) ‘sn1?) asp1®) exp?
. 1 xi £’ “xf
27 + + .
AL 1/2] 2.2 /2] 0 1.2+ 1.2 7.1+ 2.0 6.1 *
s/2,  2.73 s2] 0 ~0 + 0.2 2 + 4 2.6 + 0.8
3/2]  1.01 13+ 20 8 + 4 32 + 9
+ + i
32,  2.98 5/2) 0 27 0+ 10 33 + 5 2 o+ 2 i
9/2]  3.00 7/2] 221 21+ 4 19+ 5 1.0 % L7 |
i
+ + £) %
/2] 4.51 9/2] 3.0 5 + & 0.5+ 2.0 0.57 + 0.07
- i
+ + i .
/2,  4.58 s/2; 0 6 + 9 4 + 3 13+ 0.4 i
) %
172] 221 1 o+ 7 5 + 4 1.9 + 0.7 :
9/2,  5.43  1/2] 2.21 =~0 % 0.5 8 + 4 1.0 + 0.3 §
Tsi 327 096 s/2] 0 2 0+ 3 4.1+ 1.0 1.8 + 0.2 !
+ +
1727 2.6 s/2) O 0.8+ 0.9 5 + 2 5.2+ 0.7 :
s/2, 2.65  5/2] 0 ~0 + 0.4 0.7+ 0.8 1.1 + 0.5
;
32]  0.96 11 18 6 + 3 21+ 8 ;
a1 27 0.03 ;0 80 20 %+ 6 37+ 1
+ +
3, Lo 3 0 8 +30 6 + 4 8.6 + 1.3
2 0.03 & +15 18 + 6 16 + 2
+ +
1 1y 2 003 1 5 5 + 6 2.2+ 0.4
0] 0.97 8 100 60 + 30 68 + 14

35
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Table 3.3 (cont.)
Transition M1 Strength (cW.u.)
n m a) a) c)
15 B, (MeV) Tgy E  (MeV) MSDI ASDT EXP
28 +
Al I2 1.62 2 0.03 I +7 12 +8 3.9 + 0.9
-7 - -
Bsi 3] 627 278 (135)x1072 (5+5)x1070 (26+3)x10 0

a) Bare-nucleon Ml single-particle matrix elements.

b) Experimental data from [7,8]; more recent data taken into account are

quoted

explicitly.

c) Ref. 12. d) Ref. 22. e) Ref. 23. £) Ref. 24.

Table 3.4

Comparison between experimental and calculated magnetic dipole moments

JT, E, (MeV)

» (n.m)

uspr?? aspr?! Exe?)

ZAHS

25Hg

26,

27Al

28Al

28y

2] 1.3
5/2] 0

2] 1.81
5/2] 0

M

2] 0.03

2] 1.8

1.0

-0.6

1.1

3.9

3.2

4.0

1.0

7+0.01 1.07 +0.01  1.02 + 0.04%)
1+0.09 -0.9 +0.10 -0.86%)
£1.7 1.9 +0.4 1.6 + 0.3%
£0.1 4.2 +0.1 1.64%)
+0.3 4.0 +0.1 2.79%)
+£0.2 3.7 +0.2 6.3 + 0.4

6+0.01 1.08+0.01 1.12 + o0.18%

a) Bare-nucleon M! single-particle matrix elements.

b) Experimental data from ref. 9 unless indicated otherwise.

c) Ref. 13. d) Ref. l4.
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e) Experimental error is negligible.
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We shall now discuss some of the cases presented in tables
3.3 and 3.4.

The ASDI wave functions to describe 24Na and 24Al are of
very poor quality when compared with the MSDI wave functioms.
This might be due to the fact that in the construction of
the ASDI matrix elements the equations for 24Na had a small
weighting factor.

The experimental strength of the 1; + 0; transition in

Mg cannot be reproduced in the given configuration space.
This was checked by the use of the method described in {5].
Since the energy difference between this 1; state and the
IT, T = 1 state amounts to only 0.14 MeV, an easy explana-
tion of the discrepancy is to be found in isospin mixing [8].

In CTME between levels in 26Mg or 26Si one encounters
the largest M1 isoscalar contributions for the mass region
under consideration. This applies especially to matrix ele-
ments between states with the same spin. An analogous anomaly,
regarding exceptionally large E2 isovector matrix elements,
was mentioned before. In section 4 we shall discuss an inter-
esting combination of these effects, viz. the mixing ratios
in 26Mg and 26Si. Most of the M1 transitions in A = 27 are
reproduced reasonably well, the worst exception being the
5/2; '*3/2{ transitions in both 27A1 and 27Si. We shall com—

ment on these transitions in section 4.

The Ml decay rates in A = 28 are calculated as well as
can be expected from the calculated errors. The erroneous
result for the magnetic moment of the BT state in 28Al is
at present not well understood. A large mixing with the 3;
state is required to obtain the experimental result, but
this would at the same time spoil the agreement obtained

. . . +
for the other properties involving the 31 state.
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4. Gamma—-decay schemes

In the remainder of this paper we shall concentrate on
the results obtained with the ASDI wave functions since,
as was shown in section 3, they are superior to the MSDI
wave functions. In line with the discussion presented in
section 3 we shall use a state independent effective charge
of e = 2.15e for the isoscalar matrix elements of the E2
operator and bare-nucleon matrix elements for the Ml opera-
tor. '

The quantities we shall consider are mixing and branching
ratios and lifetimes. These depend not only on transition
matrix elements but alsc on energy differences. For these
energy differences we use throughout the experimental values.
There are two reasons for considering all these quantities
instead of only transition matrix elements as in section 3.
The first reason is that comparaiively few of the latter can
be extracted meaningfully from the large amount of available
data presented in [9]. Toc large experimental errors would
result, thus rendering a comparison with theory useless. The

second reason will be dealt with in the next subsectionm.

4.1. ASSIGNMENT OF ERRORS TO QUANTITIES DEPENDING ON
SEVERAL MATRIX ELEMENTS

For a proper assignment of errors to quantities that
depend on more than one transition matrix element the pro-
cedure followed up to now needs some extension. Let a quan-
tity G(ea,mu) be a function of E2 and M! matrix elements e,
and m respectively, with a = 1,2,... A small change 6H in

the Hamiltonian will cause the change

i

L8

Lids

A S

M
-3

LFT e
DETIONE &L MR

b T el S5 T b 1 bR

B o Tt



= 5(3€ 36
86 = I( y Se + == om ). 4.1)

The changes GeOL and Gmu, given by eq. (2.2) in terms of the
matrix elements of 6H, are in general not independent., After
insertion of eq. (2.2) into eq. (4.1) and after taking to-
gether the coefficients that multiply the same matrix ele-
ment of SH, one may proceed in exactly the same way as in
section 2 to obtain the error in G.

If one follows this procedure it turns out that in many
cases the resulting error is smaller than the one obtained
by ignoring the coherenr- ontributing terms. This re-
mark applies in practice ' j;pecially to the E2/Ml1 mixing ra-
tios. Under a change 6H tie ratio (e + Se)/(m + Sm) will be
fairly constant in many cases.

We calculated, in the way described above, the errors in
the following quantities: mixing and branching ratios, life-
times and ratios of partial widths. These have one thing in
common in that they all involve matrix elements referring
to one and the same initial state. One quantity that could
be of interest is left for future consideration. It concerns
the ratio I'(a - +}. (b + ¢), i.e. the ratio between two
strengths following each other in a cascade. Such transitions

also have one state, b, in common.

4.2, RESULTS

In this sub-section we discuss the results displayed in
figs. 4.1 to 4.11., In these figures the positive-parity
states for the nuclei considered are included, with the fol-
lowing restrictions. i) Only up to three eigenvectors of a

certain spin value are used since the higher eigenvectors
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are very unreliable, as was discussed before. ii) Only those
states are given whose spin and eigenvector were unambiguous-
ly known.

Calculated branching ratios are given when they amount to
! % or more. Calculated mixing ratios are given if the ex-
perimental mixing ratio is known or if the experimental
branching ratio is larger than 10 Z. We did not venture to
calculate M3/E2 mixing ratios for the mass region under con-
sideration since none of them is experimentally known to be
different from zero with any degree of precision. Moreover,

a reasonable estimate for a renormalized M3 operator is not
available. Theoretical errors are qucted in figs. 4.1 to 4.11
if two conditioms are satisfied: i) the calculated error is
smaller than the value itself; ii) the eigenvector numbers of
the states J; involved obey m < 2.

4.2.1. Lifetimes. An impression of the overall agreement
between experiment and the results of the calculations with
ASDI wave functions can be obtained from table 4.1. In this
table we give for each mass the weighted average of the ra~
tio between the experimental and the calculated lifatimes.
The weighting factor of each ratio was calculated by adding
quadratically the experimental and theorstical errors. Table
4.1 shows that for the lifetimes considered the agreement is
in general very good. There is a slight tendencj to overes—
timate the lifetimes, but even for the worst case, A = 26,
the deviations are hardly meaningful. The averaging was done
over all those lifetimes for which the experimental and the
theoretical error were both smaller than the values them~
selves. Most of the lifetimes excluded from the averaging

procedure showed too large a tincoretical error. Thus a large
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number of lifetimes are excluded, as can be seen in the third

colum of table 4.1. We conclude that lifetimes are often

el

s

sensitive to the precise choice of the Hamiltonian.

el

S G5

Table 4.1 ' i

The average ratio between experimental and calculated lifetimes

MASS . Texphth K /x f

el 1.05 + 0.11 4/8 3

25 0.91 £ 0.15 4/15 j

26 0.82 + 0.08 10/21 4

27 0.93 + 0.07 14/16

i

28%) 0.98 + 0.09 4/15 |
total?:") 0.92 + 0.04 36/75

t

¢ the number of lifetimes for which the relative experimental and

]
i
}
i
.
'
§
i
i

theoretical errors are less than L00Z. The average is taken

over these cases only. :

N: the number of lifetimes for which the relative experimental

error is less than 100%.

a) 2; - OI transition in 24Hg omitted {weight too large).

+
b) 21 > OI transition in 28Si. omitted (weight too large).
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We shall now discuss some particular cases. Some striking
discrepancies will be discussed in comnection with mixing
ratios.

The lifetime of the 0; level at 3.59 MeV- in 26Mg. The
1ifetime calculated far too large for this state results
from an accidental cancellation between isoscalar and iso-
vector E2 matrix elements. This can be seen clearly if ome

makes a comparison with the lifetime of the corresponding

+
level in 263i. Small admixture of the 0: state in the 02
state would decrease considerably the lifetimes for both the

26

0; states in 26Mg and “ Si. Possible inaccuracies of the ZT 9
L]

wave functions will be discussed in the next sub-section.
The lifetime of the 1; and 1; levels in ZGAZ at 1.85 and

2.07 MeV, respectively. It was found on inspection that

small changes in the Hamiltonian tend to worsen the poor

agreement with experiment still further.

4.2.2. E2/M1 mixing ratios. In table 4.2 we show the
weighted average of §(exp)/8(th), the ratio between the ex—
perimental and calculated mixing ratios. The procedure fol-
lowed was the same as for table 4.1. Some values of §(exp)/
6(th) were not included in the averaging procedure since
they differed greatly from the average value of the remaining
cases; they will be discussed in detail below.

As one sees from table 4.2, the agreement is in general
very good. It was mentioned before that one often finds sur-
prisingly small theoretical errors for E2/MI mixing ratios.
It should also be noted that, when compared with lifetimes,
relacively few cases had to be excluded from the averaging
procedure because the theoretical errors are too large. This

indicates that the results had a relatively weak dependence

et
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Table 4.2

The average ratio between experimental and calculated mixing ratios

MASS Sexp/Sen N /N
2 0/2
25 1.09 + 0.09 9/15
26%) 1.1 +0.3 /3
2% 1.04 + 0.08 8/9
28 0.9 +0.4 3/3

tota1?"?) 1.06 + 0.06 21/34

See caption for Table 4.1 with “mixing ratio" replacing "lifetime".
a) 6(2; + 2) in 2°si omicted.

B) &(5/2; + 3/2}) in Al and ?7si omitred (weight too large).

on the choice of the Hamiltonian. Indeed it was found that
the results, when compared with earlier calculations (see
e.g. [15]), did not show any dramatic improvement.

We shall now discuss some particular cases shown in
figures 4.1 to 4.11. The phase convention for the mixing ra-
tiv 1s that of Brink and Rose [16].

Tn only two cases was the experimental sign reproduced
improperly. In one of them, viz. 6(2; -+ ZT) in 24Mg, extreme-
ly small changes in the wave functions would give agreement
with experiment. The second case where the sign of the mixing
ratio was not reproduced, i.e. 6(2+-+ 2;) in 26Si, deserves

2
closer attention. This is one of the two cases where we

’
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assigned a small error to a completely wrong result. The mix-

. . o .2
ing ratio for the amalogous transition in

6Mg is well repro-

duced. The calculated result follows the normal pattern, i.e.

the E2/M1 mixing ratios of analogous transitions have opposite

signs. In view of the small theoretical error we conclude that

n
JTE(Mev) tits) AEL{MeV) Tofts)
b)
4; B4 ——[—63!5—23!3-——7:|-5:|—|325 ) 5s—r——za—|9—-—3|———za——9
| I l \

V, 7 75-25t5—7525 <6—1124 0 17-68017—238:7 zi1 63106
2; 7 35 -6225—3825 ~— <3 —— <2 —— <3 —2015 0.97 —19 ——7a 2 —— 4—50

. ! . lc) |c) +400
0, 643 83%3 1723 190260 -003 ' 99 320 o

I ! |

a, 60 —T—9323 <3——7¢3—<1—85220 002 8712 13212 360

. I I ! l . . 82 ~80
3] s2a ——9enr— «a1——21 nons 009 9831 2 130 0

1734 _q=) ’ .
2; 424-7622—24%2 100210 0.19-60t20-40520 —— 9019
23%9 4'6:)
4] an2 100 55210 014 l 100 595
2, 137 —00 2002007ps* 010 —100 2342008ps
o, o -0.15
EXPERIMEN1 24 THEORY
Mg

Fig. 4.1

Comparison between the experimental and the calculated decay scheme
for positive parity states with low spin values. Lifetimes, branchings
and E2/M! mixing ratios are given; AEb represents the difference be-
tween the experimental and calculated energies. Experimental data are
from [9] unless indicated otherwise. Calculated results were obtained
with the ASDI wave functions, bare-nulceon Ml single-particle matrix
elements and an isoscalar effective charge e’ = 2.15 e. The convention
for quoting theoretical errors is given in the text.

a) Ref. 11. b) | Z branch to 3; state. c) Discussed in the text.
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the configuration space used was not appropriate to describe
+ + . . . .

both the 2l and the 22 states. Especially in this case this ;

conclusion could be made plausible even without using the an- i

satz 2.5 that underlies our error calculations. It turned out 3

. . . +
that all unitary transformations among the first four 2

states yielded an even more negative value or the mixing ra-—
. i +. . 2
tio 6(2; - 21) in

of the 27 - O? transitions in 26Mg and

6Si if at the same time the large strengths i

2681 were maintained.
. . . + .

Mixing with states 2 (m > 5) would decrease still further the

+ + .. .2
strengths of the 27 + 0, and 22 > 0; transitions 1in 6Mg that

1
were calculated too weak already. Equivalently, cf. eq. (2.7),
it was found that off-diagonal matrix element:'s of 8H to the

high-lying states of the order 1.0 MeV were needed to influ~

+
ence the strengths of the 2,

i

+ ..
-+ Ol transition to any substan-—

tial extent.

s st LRSI 2 G Do i 4

14 |
J E  (MeV) Trits) AER{MeV) Tnifs) :
912, 406-5572 4522 53210 023 —22 76 33 )
‘ 0451010 l 026:008 :
92]  340-18%3 I 8433 <25 .002 ~19%7 8127 1122
. l i 015002 I I I 0142001 70
Uz, 2.60-23%2—38!3——c3 ——<2—38}3— 2320 013 -42%20—1 —a5%30 ——-—uie—so'zo
e o 07306 l 002 -
7, 27a—7%2 [——8522~— <2~—8%2—400%60 014 —25 73 2—>530 |
] «
29305 -0470.16 0gs® -0.20t0.19
uzz' 256 —2:1—78:2—2022 — 60230 01 —4:2—51:|a—35';|7 23:%
=0
. )
512,  196-2812— 4634—2612—— <3—% _10:04 ps® 0120 —5—27%18—68 700
]
05620.03 02st007 o 10 016006 ;
72, 161 —100 2423 003 —100 2514
0.20:002 ) 0sgioMm
) C
a2, oe7 —51;2—49;.2—“—————-— 161 ‘012 —57—— 43— 215
-0.3430.09 ! N
. 1 =015:C 05 -04 -0182010
2, 059 —100 2. 4 861008ns -038 —100 5.3ns
siz, o ozz
EXPERIMENT 25 THEORY
Mg
Fig. 4.2. See caption for fig. 4.1.
a) Discussed in the text. b) Ref. 22. ¢) Ref. 12.
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. . . 2
There 1s one more case, viz. 6(5/2; > 3/2:) in 7A1 and

27Si, where a serious discrepancy between theory and experi-
ment occurs. This discrepancy is due to too small a value for
the calculated Ml matrix element. The rather small errors that )
are assigned to this mixing ratio and to the lifetime .of the !
5/2; level indicate that one cannot expect too much from
changes in the Hamiltonian. It is not clear at present if the
appropriateness of the configuration space should be questioned

or if a reasonable Hamiltonian reproducing the data can still

be found.
I ExiMev) Tfts) AE {MeV) Trts) s
i
512;:” 386 —12%3 <!—-65:.d—2:2 63— |32) 068 —2'5 3|6——|7'——-20— 6 ‘
-0082005% -0 | -0}3 oos | i
9:2; 342 -16%4 aata 5 \ 10:6 .002 -1336 051723.20‘ 101 -
-0.14:004 1
712;" 2.72 -w0ts 6527 2525— 360190 -on4 —34 55-——2—— 9~ 350
0;‘ I v40°%
vz, 2 67 -27:13-—3235-— 111 ——"——40%5— 73217% -013 -50120—— 3 ——35120 ——— 1219~ 40 ‘
-0630.4 -002 o :
w2, 249 —3:2——82:3—15:3 <tao® o011 —si2—6atla—31ti3 1523
0.03
sr2) 179 -2432—39:3—37:3 520170 030 ——?—32220—59::40 09_';295
-08%0.2 2172001 o'z l -014:006
712"2) 161 —»90 22:7 003 —uéo 2213
-0182005 I -0162001 I
32, 094 -4433—56;3-—‘;-————- 6.221.6ps3 -042 —3'4——5.5—‘L———— 7ps
0342006 b 0.4 016006
w2} 045 —100 3130200503 -0.38 —100 a9ns
5&; o] 0.22
EXPERIMENT 25Al THEORY

Fig. 4.3. See caption for fig. 4.1.
a) Spin not known within 0.1 Z confidence limit.
b) § = 0.05 + 0.04 or § = -0.15 + 0.05 are quoted imn [9].
¢) Erroneous sign quoted in [9].
d) Branches to high lying states not displayed.
e) Partial lifetimes h/I‘Y.



In the other cases where theory and experiment are in
disagreement, the theoretical results turned out to be very
sensitive to little admixtures of other states. For example,
6(7/22 - 5/27) in stg will be in agreement with experiment

+
if one mixes 0.2 7 of the 7/21 wave functiom into the 7/2;

wave function.

T
J7 Ex(MeV) Tmifs) BE(Mev) Tifs)
3y s 34 66 — <S50 004 5 3 45 12—2a— 7
\ I E o
. :
43 547 —1 10 ——76 — 14 —t+— <100 001 2 l 5]5——7—32*" 60
I i 02
o, 497 >90 650170 -0 40 —}——— ) —— 99 ! 600
: TR
43 490 100— <10 7025 <0 08—t 56113 5 ——B:4--=32110 ——— 66 116
3; 435 —f——59j2— 4122 150220 -0.1% 88 6 6 210
0||3lOOs 009 .olls ‘
2, 433 —7:2—83'4—1033—————— <70 0.46 —27 7——64——2 ——— 35
0os -002 I
4, 432 ‘10_—‘<5 30090 001 9412 l 62 190140
3, 394 — 1 asi2—62t2——F¥ 650t150 003 -——ez;so-ae::o——l——— 90' 180
001:005 |} 0092009 | - 40
. | o08:006 .8 | oiwsioos a)
0, 359 100— <2 77 ,Ps 014 —}——90——10 ———————————— 600ps
2, 294 -10:1—90%1 8020 019 ~—2——08 80 220
011:002 01020 02
2" 181 —100 48050 0.13 —100 640%40
=X M) -D.28 l
EXPERIMENT THEQRY

Fig. 4.4. See caption for fig. 4.1.
a) Discussed in the text.

b) 11 % branch to 2.

3 state not shown.
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4.2.3. Branching ratios. The overall agreement obtained

for branching ratios is quite satisfactory although it is

not as good as for lifetimes and mixing ratios. In most cases

there is still a reasonable correlation between the agreement

obtained and the theoretical errors assigned. The errors found,

however, are often large, indicating the sensitivity of the

result

or the choice of the Hamiltonian. This may seem re-

markable since one would expect branching ratios to be deter—

mined largely by the high powers of emergy differences that

enter the relevant formulae. If however one notes that mixing

n
J Ex{Mev) Teplts)
5; 1.40 -'zeft——-—ﬁslh 70 2 7249
A I B
z;.m 316 89;5 B8f2-1122—7:3— 52— 18%20
0 =0 |
3 255 3zi2 522 ——6311 1030 1ps
-15:04
3y 237 —2nt 3424-15%2 4983~ 1.4103ps
. ]
1, 2072——100——<10 550¢100
. a)
zl.'ﬂ 2070-———312-2452-73"2 1|ta
0
. . ' )
4, 2069-3013 ——70%3— <3 450170
2
1, 185 100 40%15
2, 176 100 38:07ps
1y 108 100 367
3} 042 —1w00 181200803
oy 023
.
s, o
EXPERIMENT 26,

Fig. 4.5. See caption of fig. 4.1.

a) 742 7 branch to 3

3

BEp(MeV) Taits)
- . 15812 306120
-022 2..5_—|_60I-3°—|_—]— : 140
.3tz
M b) .17
o1 1m—22——da-zaite — L
0 0 50
<049 ~19 46— —2—T—32- 07p3
= |
-0.45 =27 —f— 26— 10 —1 ——~36- 07ps
L 0
0 08 —{—100—+- 30¢!
0 13 ~——2%1-49:40~45240 w0
§0-45; -
0 =0
-028 43718 s7718 700t300
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014 ——100 1972
oaa 93t6—7 s_|L_. 7::
os l
-0 02 ——100 a7te
0.35-+100 18:06ns
-0.26
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THEORY

+
level not shown.

b) 5 % branch to 1.85 MeV level not shown; another 4 % is fragmented over

many higher states.

¢) Discussed in the text.

d) Ref. 23.

Az g e

ot s ot B i

P



TERI A e - e

ratios are quite insensitive to changes in the Hamiltonian,
as was shown before, it will be clear that at the same time
partial widths of mixed transitions will be particularly
sensitive to changes in the Hamiltonian.

We shall now discuss some special cases.

The 3; state in 24Mg at 5.24 MeV. The properties of this
state are well reproduced. It is interesting to note that the
calculated E2 strength for the transition to the 2; state at
4,24 MeV is the largest found in the mass region under con-
sideration, viz. 24 + 3 W.u. Experimental information about
the mixing ratio of this weak branch is lacking however. The

calculation yields a nearly pure E2 character for this trans-

ition.
T EL(Mev) TmiPs) BE R (MeV) Tm(ps)
0; 3.33 00— 2723 014 100— 19
‘ ‘ -1.0 ‘ ‘

2; 278 —21:3—69:3— 0.20 2016 019 -23116—7716- 009:002

021010 -010%002%
2] 180 —100 1.4 206 0.3 —100 090014
o; o -0.26

EXPERIMENT 26¢; THEORY

Fig. 4.6. See caption of fig. 4.1.
a) M3/E2 mixing ratio: 0.14+0,19.

J* Ex(MeV) TS,  AEg(MeV) Tr(ps)
52, 194 —332—67;2—<1— 11202 0.43 — 9——89 2— 025008
0.052004 0063002
512, 170 —100Lcr 1.220.2 -0.02 —96—— 4 12106
32 098 —100 14203 -0.01 —100 12205
-0.222002 -0.2430.06

N o 0.04

EXPERIMENT THEORY

27Mg

Fig. 4.7. See caption fig. &4.1.
a) M3/E2 mixing ratio: 0.14+0.19.
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The 0‘2“ state at 6.43 MeV in “*Mg. The ratio r(o; + 2 by,
F(O M ) depends strongly on the choice of the Hamlltonlan.
In fact an admixture of 5 % of the 2] state and the 22 state
into each other would give agreement with experiment. As a
by-product of this transformation it is then found that the
lifetime of the 2T state comes out in agreement with the

experimental value.

The 4; state at 4.90 MeV in 26My. An improbably large
mixing of the 4+ states is needed to suppress the large
calculated Ml matrix element of the transition to the 4;
level at 4.32 MeV. No experimental upper limit is, however,

available for this unobserved branch.

JUELiMev) Tmits) AEg(MeV) Tnl1s)
n2:™ ase —7503 322 —1523— <2 — 1916 <013 -80}13 — 2811217 6'_2
: | _‘ I | -024:008 -008:003 !
w2y as 7622—2432— 320130 -0.n I 70 ~=-30~= 370
l -05820.07 .06
w2, 368 —<3—s832—37%2 <25 -0.04 —x:'—ao:e—-sggos — s
o] 300 -9z 9{2-4'— aste .0a3 75242 2534" 85115
0012002 003001
JIZ; 298 -100 59206 -003 —98———1 ! 36105
i3 3 |
szl 273 -24 e——<1—7672 1424 0.18 ~41320—4%1-—53320——2% 369
2 022t 004” -012002 024008 ozg'ooe”
na. 221 ——100 <c=1 4 4 -0.02 —88 1 1527
! ~04|oo1 -Q4ﬁ005 I
a2, 101 9732 01 293501 19:0.2ps -0 05 -98%1 H 09:03ps
034i002 =0 022005 =0
1/2; 084 —u:lx) FrELY .0 24 —100 arle
LEN o l 0.09
EXPERIMENT 27 THEORY

Al

Fig. 4.8. See caption of fig., 4.1,
a) Ref. 25.
b) Branch to 2.73 MeV level; exp.: 7+2 Z, calc.: 6+6 7.

c) Discussed in the text.
d) Ref. 24,
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The 9/2; state at 3.00 MeV in 27AZ. The decay of this
state provides one of the few cases where the branching ra-
tios are more stable under changes of the Hamiltonian than

the matrix elements involved.

T
Jn Ex(MeVv) Tmits) AER(MeV) Tmits)
912, * 2919223 83— 76%8 -043 —az:lz-——]——-l——w!r- 6419
512, 2.65 -19:4——321—7815 25210 o1a —32120-5:1—50124——311—— 61216
o4oio.oa 008002 055023 o;n'imo"’
n2; 2153—m|o 507 ~0.02 99.4'10.2 0.620.2 51312
0382005 Qasrlo.os
3123 0.95—95?2—-—422_—_!—— 1.820.2ps  -005 -98311——'2!1 0.8¢0.3ps
-027:0.03 o.19io.03
]
12} 078~—100—% _ _ __ 50l6ps -0.24 —100 39¢5ps
512] o 0.09
EXPERIMENT 27 . THEQRY
Si
Fig. 4.9. See caption of fig. 4.1.
a) Spin assignment from [20].
b) Discussed in the text.
4
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3, 101 ~II—6321 L 130220 fs 004 —2627-—7417 L 140240 s i
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2PAl

Fig. 4.10. See caption of fig. 4.1.
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The 21; and 27 states at 7.38 and 7.42 MeV. In section 2
& D)
we noted already that the assignment of these two experimen-

tal states to the calculated ones was erroneous. Let us con-

sider linear combinations of the calculated 2; and the 2;
states of the form:
+! + +
|22 > = 0.6|22> + 0,8123>,
+! + +
[23 > = —0.8122> + 0.6[23>. (4.2)

This means that the two states are to a large extent inter-
changed. The properties of the new states |2;'> and IZ;'> are
in amazing agreement with experiment, as shown in table ”.3.
The experimental values of the E2 matrix elements for the

. St . .
transitions 2 - Zl were obtained on the assumption thkat

+
2,3
the purely isoscalar Ml matrix elements could be neglected.

Clearly we now have a set of good wave functions, with-

out however knowing a Hamiltonian of which they are the eigen-

functions Table 4.3

+
Decay of the 22 and the 2; states in 285i

<£|]oCE2) | |i> Cefm?)

i - £
[Exp. | ASDI Mixed®!
¥ +
2 0] 3.0 + 0.4 ~3.5 -3.1
S b
2 7.3 + 1.1%) 4.0 6.1
+
0, c) 6.8 0.5
+ +
2] 0] 2.2 + 0.1 -1.3 2.1
2, 0.8 + 0.3% 4.6 -0.5
+
0, 9.6 + 1.9 ~4.c -8.1

a) C.f. eq. (4.2).
b) Pure E? character assumed.

c) Not observed.
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The 1 level at 8.33 MeV in 28Si. The calculated branching

ek

ratios are very semsitive to admixtures of higher 1t states; 3
small admixtures of the l2 state give agreement with experi-~

ment. To reproduce the experimental lifetime, however, a

. + + .
nearly complete interchange of the 11 and 1 3 Wave functions B
is required. It is concluded that either the experimental
lifetime 1is about one order of magnitude too large, or we

have here an interesting case for future theoretical consi- ;

.
deration.
. .
dn Ex{Mev) Tmits)  AEpiMev) Tlts)
3; 859 —l—lolo 527 0.51 85-—12 :i— 16
3 I
N . . b | b
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] 19 0.4 -2 2t 0 5
2 742~90:z“3i"’——L7:z~———— 3624 017 —23——75—-—1—1 — 1 2%
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Fig. 4.11. See caption of fig. 4.1.
a) Discussed in the text.
b) Ref. 21.
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5. Predictions for static moments.

In this section we present predictions for magnetic di-
pole moments and electric quadrupole moments. The calcula-

tions were performed with ASDI wave functions.

5.1.MAGNETIC DIPOLE MOMENTS

Magnetic dipole moments were calculated with the bare-
nucleon Ml single-particle matrix elements. In table 5.1 the
predictions for the magnetic moments and their theoretical
errors are shown for a number of states. The table includes
only those states whose moment one would expect to be measur-
able by present-day techniques. This implies that i) only
states with a lifetime T 2 0.3 ps are considered and ii)
only the first few, i.e. about five levels of each nucleus
are considered. It should be mentioned that particularly in
the case of magnetic moments the assigned theoretical errors
tend to be quite small. This is because eq. (2.8) is satis-
fied to a remarkable degree. As yet there is no satisfactory

explanation for this phenomenon.

5.2. ELECTRIC QUADRUPOLE MOMENTS

Electric quadrupole moments were calculated with an iso-
scalar effective charge eo = 2,15 e, Table 5.2 shows the
results. For the B-instable nuclei we give the quadrupole
moment of the ground state only. Theoretical errors were not
quoted if they turned out te be larger than 100 %. The large
errors were in all cases due to very big E2 matrix elements
of the type <JT[0(E2){J;>.

RN B

i

ot R A e



Table 5.1

The ASDI predictions for magnetic dipole moments

u(n.m) o

0.87 + 0.10 i

S PN TP

I, E (MeV) u(n.m) 7", E_(MeV)
Bug U2l 0.5 - 0.2 Mg w3} o ~0.36 + 0.03
32y 0.97 0.99 +0.18 32 0.9 1.74 + 0.16
+* +
512, 1.96 0.40 + 0.12 5/2, 1.70 0.1
25 + +
AL sl o 3.83 + 0.12 5/2,  1.94 1.13 + 0.63
2] 045 0.8 0.2 L VRS V7 M 2.61 + 0.04
5 +
32]  0.95  0.52+0.18 v Lo 1.48 + 0.06
5/2y  1.79 2,49 + 0.13 Tsi s o -1.28 + 0.06
26, + +
Mg 3} 3.9 L7 0. 2, 0.8 -1.80 + 0.04
651 st 0 2.9 +0.01 37, 0.96 0.06 + 0.04
3 0. 1.82 + 0%04 8y 1 1.7
2} 1.76 1.18 + 0.03 By 1 6.2 1.61 * 0.01
2%,
8si 27 1.80 0.3 28y ;0 -0.53 + 0,07

i
fis

[ T O SR PR s s

JONCIP AV

5!.'

2T e e et



56

The ASDI predictions fcr electric quadrupole moments

Table 5.2

3", E_(Mev) Qefn?) 3", E (Hev) Q(efn?)

Pug 32, 0.97 -u6+02 2 3 o 16.1 * 0.3

s/2}  1.96 -6 r2 B4l s 18.6 + 1.2
Baospp oo 17.1 + 1.3 3] 6.28 9 +3
Bug 37 3.0 1 4, 6.89 4 +3
4] 4.32 2® 2, 7.38 8 +8
®a st oo 25.7 + 0.7 -11%
SV VoA W -12.6 + 0.1 2, 7.42 9 +7
OEER! 8.4 + 0.4 )

9/2]  3.00 23.8 £ 04 Pa a3} o 16.1 + 1.3

Tsi s} o 1Boro7 ¥ 3 oo 13.1 + 1.5

a)} Extremely sensitive to admixtures of other states with the same spin.

b) Values obtained with mixed states defined in eq. (4.2).

e e it e s

-t

Ve EEAFALGE St

.
|
1

be

Ll 2t = 4

:

=



6. Allowed B-decay

In this section we present log ft values for allowed
B—decay calculated with ASDI wave fumctions.
The ft value of a transition from an initial state |I>

to a final state |F> is defined as:
ft = D -B2 {G‘2,<l>2 + G§<o>2}-1 (6.1)

where <1> and -« s> denote the usual Fermi and Gamov-Teller

matrix elements.

For the vector coupling constant, GV’ we shall adopt the

value:

cé = 2.00 x 1028 ergen®. (6.2)

With this choice of G2 one obtains a good fit to the It values

for the pure Fermi tran51t10ns ot » 0 14 an 26 1™,

A proper choice of G, is less trivial. The ratio GA/GV
for free neutron decay is experimentally known to be 1.53.
A value of 1.29 for this ratio is obtained by Wilkinson [17]
from a fit to odd-mass nuclei with A = 11 - 21. We shall use
the latter value for the presentation of our results. On in-
sertion of the numerical values of all constants the expres-

sion (6.1) therefore becomes:

6155

ft = S. (6.3)
<1>% 4 1.29<g>2

We also considered the ratio GA/GV as a free parameter

in order to obtain the walue that would best fit our results
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to the experimental data; the fitting procedure used is des-
cribed in section 3. In this way it was found that the sur-
prisingly low value Gi/Gé = 0.65 gives best agreement. It is
seen that for the mass region under consideration a large
reduction of the axial vector coupling constant is required.
It should be mentioned, however, that part of the large
reduction factor might be due to deficiencies in our wave
functions. The calculation of spectroscopic factors in [1]
indicated that the d content is too small. The Gamow-

3/2

Teller matrix elements are more sensitive to the d3/2 content

dS/Z_dB/Z spin-orbit splitting one enlarges the d content

3/2
of the wave functions and decreases the Gamow-Teller matrix

element. The precise argument leading to this last conclusion

is discussed in detail in [18] and will not be repeated here.

The same point was also stressed in another recent calculation
of allowed R-decay in the s-d shell [19].

The results of our calculations are presented in table
6.1, The experimental log ft values are taken from [9]. The
effect of using the fitted value Gi/G% = 0.65 would be to
enlarge the log ft values of the pure Gamow-Teller transitioms
by the amount 0.30; the log ft value of the two mixed trans-
itions, i.e. the 25Al -+ 25Mg and the 27Si -+ 27A1 ground state
transition increase by 0.12 and 0.14, respectively.

The convention for quoting theoretical errors is as before.
As seen from table 6.1, in many cases the theoretical errors
are not sufficiently large to explain the often large (and
positive) differences between the experimental and calculated
log ft values. Thus we conclude that it will be difficult to

find a Hamiltonian in the given configuration space that will

Hiw
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b
4
&
3
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yield good agreement with experiment. This seems to contra-
dict our previous remark that when the spin-orbit splitting
is dimished, the calc .ated Gamow-Teller matrix elements
will decrease. One should however bear in mind that in doing
this a drastic change of our configuration space will result
as a consequence of the procedure followed in [1] for deter-

nining the configuration space.

Table 6.1

Comparison between calculated and experimemntal log ft values for allowed

B~decay
log ft
3 JF E OV asp1?) xe®)

Piga a7 g 4] sa2 5.6 6.12 + 0.02
3 s 6.0 100 677+ 0.0

Paoal g 4 sa2 s 6.2 +0.2
3 5.2 6.0 100 69 so7

4, 6.0 3.6 +0.2 6.4 + 0.2

4] 8.4 4.8 3.99 + 0.05

Paoay g o) o0 4.2 +0.2  6.01 + 0.15
2 1.3 4.3 +0.15  6.18 + 0.15

2} 2 5.2 110 eo7xous

Pua sy Pwg sy 0 4.6 +0.2  5.25 + 0.02
2] 097 4.9 £0.2  5.05 + 0.03

772] 1.1 4.7 +0.2 5.03 + 0.03

5/2,  1.96 5.8 5.99 * 0.07

2, 280 5.5 it 5.9+ 0.08
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Table 6.1 (comnt.)

log ft
a] T Eev)  asr? Exe®)
Ba osr2y Pug sz 0 3.50 + 0.03  3.555
3/2 0.97 6.5 6.27 + 0.15
7/2] 1.61  4.24 + 0.05  4.35 * 0.04
®m0 0  *wg o] 0 3.49 3.49
%5i o] ¥ o] 023 3.9 3.49 + 0.0
1] 1.06 3.5 2011  3.53+0.02
1; 1.85  3.65+0.17 3.8l + 0.03
13 207 4.3 4.47 % 0.10
g 172 Fmo12] 0w 7.1 4.62 + 0.02
3/2]  1.01 4.8 $0.2 4.9 0.0
Psi spzy Fmos;ap o 3.44 + 0.02  3.61 + 0,02
3/2] 1.01 5.8 +0.3 7.4 +0.2
7/2] 2.21  4.75 +0.11  4.76 + 0.03
512, 2,73 5.1 * 0.4 5.10 + 0.06
312, 2,98 4.22 % 0.04  4.41 + 0.04
Ba 37 Bsi 2l 18 48 204 4.87 +0.02
28p 3;  Bsi 2] 178 4.8 204 4.85+0.02
4] 4.62 5.0 +0.2 5.82 + 0.05
3 6.28  4.18 $0.08  4.78 + 0.06
3, 7.80  4.09 + 0.09  4.76 + 0.05

a) Calculated with Gi/GS = 1.29.

b) Experimental data from ref. 9.
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7. Conclusions

The main conclusions of this paper can be summarized as

follows.

i)

ii)

iii)

iv)

The correlation assumed to exist between the agreement for
the energies on the one hand and the agreement for the
transition properties on the other hand is corroborated
by the results presented. Thus the results obtained with
the ASDI wave functions are in better agreement with ex-—
periment than the MSDI results.

The theoretical errors that were introduced account in

a quantitative way for the correlation mentioned sub 1i).
When one determines the phenomenological matrix elements
of operators in a least—squares fit, one should pay

more attention to the weighting factors than is usually
done. Thus the dependence of the resulting matrix ele-
ments on the set of experimental data taken into account
should be considered. As the suppression of particular
data is equivalent to the assignment of zero weight,
there is an obvious connection with weighting factors.
If such a dependence is found one should conclude that
the chosen parametrization of the operator is inappro-
priate. In this paper this situation was encountered,
e.g. on considering state—dependent effective charges.
Furthermore, the weighting factor should depend also

on the reliability of the wave functions. The last ponint
was accounted for in this paper by including the theo=-
retical errors in the weighting factors.

There is as yet no compelling reason either to use a
state—dependent effective charge for the E2 operator or

to use renormalized M1 matrix elements for a calculation

61

RO



62

v)

vi)

in the mass region considered.

If a theoretical error is far too small to explain the
difference between the calculated and experimental
result, it may be concluded that at least cne of the
levels involved cannot be described in the given con-
figuration space. In fact, in some cases it was verified
explicitly that no linear combination of the calculated
wave functions could be found which reproduced the
experimental data.

It was shown that particular combinations of the matrix
elements, e.g. mixing ratios, can be quite insensitive
to changes in the Hamiltonian. On the other hand certain
combinations can be indicated, e.g. branching ratios

and lifetimes, that are particularly sensitive to changes
in the Hamiltonian. In such cases a good testing ground
for the comparison between models is available, provided

the experimental data are sufficiently accurate.
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CHAPTER |1

THE USE OF y-DECAY PROPERTIES FOR THE CONSTRUCTION OF A
PHENOMENOLGGICAL SHELL-MODEL HAMILTONIAN

G.A. TIMMER, F. MEURDERS, P.J. BRUSSAARD, P.W.M. GLAUDEMANS
and H.F. DE VRIES

Abstract: Unitary transformations have been applied to shell-model wave funcrioms in
the mass region A = 24 - 28 in order to fit the experimental y-decay properties.
It is found that usually only small rotations are needed to obtain very good
agreement with experiment. Several attempts are described to obtain a Hamiltonian
that generates these new wave functions. The results of one approach applied to
some levels in - %Si are discussed in more detaii. Some extensions of this tech-

nique are proposed.

1. Introduction

When one constructs a phenomenological shell-model Hamil-
tonian, the final results are affected by: i) the choice of
the configuration space, ii) the particular parametrization
of the Hamiltonian, iii) the choice of the experimental data
to which the parameters of the Hamiltonian are fitted and
iv) the relative weight that is assigned to the data in the fit.
It is current practice to determine the parameters of such

a Hamiltonian from a fit to experimental energies only. The

main objective of this paper is to present the results of an



attempt to use experimental information on other observables
as well, in particular y-decay properties.

In a previous paper [l] a Hamiltonian was obtained. This
Adjusted Surface Delta Interaction (ASDI) resulted from a
fit to the experimental energies of the low-lying positive-
parity states in the mass region A = 24-28 for a truncated
0d5/2151/20d3/2 configuration space. In a subsequent paper
[2] the y-decay properties were calculated with the ASDI wave
functions. The agreement with experiment was found to be good
for strong transitions and of varying quality for weak trans-—
itions.

The present approach is motivated by the observation that
the y-decay properties are often very sensitive to small
changes in the Hamiltonian. This point was stressed in [2] ,
where this sensitivity was described in terms of a theoretical
error. This applies in particular to weak transitions and to
the decay properties of closely lying levels with the same
(JN,T). Hence one can try to find a Hamiltonian whicﬁ, while
differing only slightly from the ASDI Hamiltonian, leads to
an improvement over the ASDI results for weak tramsitions
but at the same time does not spoil the agreement obtained for
strong transitions. Also the agreement for the energies should
be maintained. A recent observation [3] may be of help, i.e.
that only a relatively smzl! number of linear combinations of
the one- and two-body matrix elements of the Hamiltonian are
well determined by a least-squares fit to experimental ener-
gies.

The present idea is that, at least initially, the empha-
sis is shifted from energies to wave functions., In current

approaches the wave functions are abtained as a by-product
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from a calculation focused on energies. Here we shall start
with the construction of wave functions reproducing the ex-
perimental y-decay properties as well as possible in the gi-
ven configuration space. In sect. 2 a systematic search will
be described for the amplitudes of these wave functions in a
basis of ASDI wave functions. It is then found that one can
obtain a considerable improvement of the y-decay properties
as a result of only minor changes in the original ASDI wave
functions.

In sect. 3 methods are discussed which may lead to a
Hamiltonian generating the wave functions obtained in sect.
2, Some results will be presented.

Finally, in sect. 4, some of the possible refinements and

extensions of the techniques presented will be discussed.

2. The construction of wave functions

Let {‘G,So>} with @ = 1,...M denote a given complete set
So of orthonormal states in a configuration space of dimension
M for given values of A,J“,T. Suppose that a set of states
{[a,31>} in the same configuration space provides a better
description of the y—decay properties than the set So' We
determine the states Iu,S]> by varying the coefficients
2.8 in

M

iu,Sl> = Bil aaB‘B,SO>. (2.1)

In subsect. 2.1 some arguments are presented leading to

a confinement of the space of the parameters a _. In subsect. 2.2
62
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the construction of the matrix 3.8 is discussed. For this
construction a quantity Q(aas) is minimized, defined in
subsect. 2.3, which provides an indication for the agreement
between the y~decay properties of the states ia,Sl> with the
experimental data. Finally, in subsect. 2.4 some of the re-

sults obtained with this procedure are discussed.

2.1 RESTRICTIONS ON auB

Two arguments are presented that lead to a substantial
reduction of the number of states \a,S]> to be considered.

The first argument relies on the existence of wvery strong
E2 transitions between low-lying states. Let |Y> denote a
state providing a good description for the experimentally
observed level y. Suppose that the level y is fed by a strong
E2 transition from another level y'. The largest possible E2
strength I<Y|0(E2)|Y'>|2 with O(E2) denoting the E2 operator
is obtained when the relation [Y'> = PO(E2)|Y> holds. The ope-
rator P projects onto the configuration space available for
the description of y'. When this E2 strength is not larger
than the experimental value then it is clear that any serious
candidate for the description of Y' should have a large over-

lap with |Y'> as defined auove.

The second argument that leads to a reduction of the num-—

ber of matrices a8 to be considered arises from the fact that

eventually one would like to obtain a Hamiltonian for which
the states lu,Sl>, defined in eq. (2.1), are eigenstates. One
may try to achieve this by comsidering only Hamiltonians

H = HASDI + V with V being small. Since then to first order

in V the state |a,S > is given by

1
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ia,Sl> = la> + % <B]V]e> B> (2.2)

B#a Ea—E8
with HASDI|B> = EB[B>, it is clear that, provided the ener-
gy differences EQ—EB are small, the transformation matrix
a in eq. (2.1) should be close to unity.

afB
In practice only mixtures of the four ASDI states that

correspond with the lowest four eigenvalues for each combi-
nation A, Jﬂ, T were considered. We are interested mainly in re-
producing the y—-decay properties of the lowest two states of
each spin. Hence the restriction to the lowest four states
(M=4) will not noticeably affect the results according to the
argument just presented, since the energy differences with
higher-lying ASDI states are usually sufficiently large. It
may be noted that the same argument was used for the construc-
tion of theoretical errors [2].

The two arguments presented in this subsection did not
lead to contvadictory requirements since the ASDI wave func-
tions already produce very strong E2 transitions for low-
lying states. The main practical consequence of the argument
concerning strong E2 transitions was that it allowed us to
abandon any search for a set of strongly deviating wave func-
tions that may lead to a Hamiltonian that differs substantially
from HASDI' Such wave functions would invalidate the appli-

cability of the first-order perturbational argument.

2.2 THE SEARCH PROCEDURE FOR aOLB
Let Q(auB) denote a non-negative quantity measuring the
overall agreement between the experimental y—-decay properties

and those calculated with the states |a0,S >, defined in

1



eq. (2.1). This quantity Q, to be discussed in the next sub-
sectiocn, is constructed in such a way that Q = 0 indicates
perfect agreement. Here it will be described how 2.a was
varied in order to minimize Q.

The general rotation matrix, of which 348 provides an

example, can be written as the direct product

M
TT Rsle,s) (2.3)
y<§
where
(cos ¢ -sin ¢
= (2.4)
R 5(®)

sin ¢ cos ¢

is a rotation over an angle ¢ in the plane spanned by the
basis vectors Y,SO> and \B,SO> . The rotations considered
here are a direct product of rotations in the spaces of each
combination J",T separately, each of them with dimension
M=4, as mentioned in the previous subsection.

The search for minimal Q in the space of the parameters
¢Y5 was conducted by the use of the method of steepest descent.
‘thus one may, and probably will, find a local minimum for Q.
This procedure is a compromise betweer finding the absolute
minimum and the requirement that t* .otation matrix should

be kept close to unity, ac discussed in the previous sub-

section. Successive rotations of the form

R}2(¢12)R23(¢?3)R34(¢34) (2.5)
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for one Jﬂ,T combination and unity for the other spin values
were employed. One can prove that a repeated application of
this transformation for each J“,T separately is equivalent to
the six-parameter transformation given in eq. (2.3) in the

space with M = 4.

2.3 THE QUANTITY Q(aaﬂ)

Here the quantity Q will be discussed which measures the
agreement between theory and experiment.

There are three points to be considered: 1) the selection
of the calculated observables {wi} that are to be compared
with experiment, ii) the functional dependence of Q on
wi(aaB) and iii) the single-particle matrix elements of the
transition operators. The quantities {wi} considered were
lifetimes, E2/M] mixing ratios and branching ratios. For the
mass region under consideration, i.e. A = 24-28, a very large
amount of experimental informaticn exists on these quantities,
with often very small experimental errors. The experimental
data used in the search were taksn from [4], supplemented by
many recent values that will be included in [5].

For computational convenience it would have been desirable
to compare reduced matrix elements instead of the quantities
listed above. The main reason for not comsidering these matrix
elements follows from the fact that the errors in the moduli
of matrix elements extracted from experiment are .in general
rather large and, even worse, strongly correlated. It should
be mentioned that such a reduction of the experimental data
is even impossible when the lifetime or the mixing ratio is
unknown. In the present approach, however, the information on

branching ratios can always be take.. into account. Other



possible candidates for comparison with experiment, like
spectroscopic factors, will be considered in the fimal section
of this paper.

The next point to be discussed is the functional depen-

dence of Q on W.os which is taken as

|, = wSeP
Q=31 — z g. (2.5)
ifw,| + |w P i’
1 1

where the summation over i covers the lifetimes, branching
ratios and mixing ratios that can be compared with experi-
ment. The most satisfactory results have been obtained so far

with the weighting factor g: given by

_ _ 1 i i i 1
g = (5 m])(S m2)/A for mp,m, < 2 (2.6)

where m? and m; are the eigenvector numbers of the states
involved. States are ordered according to increasing energy
such that yrast levels get m = 1. For Ai either a value 0.1
was usad or the relative experimental error, provided the lat-
ter is larger than 0.1. The dependence of g, on the eigen-
vector numbers reflects the decreasing conf;dence one should
have in the wave functions of higher-lying sta.es. In pre-
liminary calculations it was found that lifetimes were not
reproduced well enough. In order to improve the results for
the lifetimes it was decided to employ for these quantities

twice the weighting factor given in eq. (2.6) withm, = m

1 2

the eigenvector number of the decaying state.

The E2 single-particle matrix elements were calculated

with harmonic-oscillator wave functions; the size parameter

/2

1 . .
b = (B/mw) was determined from the well-known relation

-1/3 . .
fw = 41A / MeV. Furthermore an effective isoscalar charge
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e’ = 2.2e was employed. For the Ml single-particle matrix

elements bare—nucleon values have baen used. The presumably
very small admixtures of M3 or E4 radiation have been ignored
for the calculation of the decay properties. The energy dif-
ferences entering the calculation of transition rates were

taken from experiment.

2.4 SOME RESULTS

With the technique presented in the previous subsections
wave functions were constructed for the low-lying positive-
parity states in the mass region A = 24-28. The number of
steps required to reach a minimum for Q varied between 20
and 100. Mirror nuclei were considered simultaneously. Be-
cause of the occurrence of low-lying T = 1 states in 26Al,
the three nuclei 26Mg, 26Al and 2651 were treated together.

As an example the results obtained for 27Al are displayed
in fig. 2.1. One should note the considerable improvement ob—
tained with respect to the ASDI results. In table 2.1 the
rotation matrices aaB for the 27Al case are shown. It is re-
markable that- often rather small rotations of the criginal
ASDI wave functions lead to a considerable improvement for
the v-decay properties, especially for branching ratios.

The results obtained for the nuclei not displayed are of
comparable quality, although some striking disagreements with
experiment remained. It i3 conceivable that these poor fits

are due to an irtproper truncation of the configuration space.
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Table 2.1

The amplitudes of the fitted wave functions of 27Al

in an ASDI basis.

T Amplitudes in ASDI basis

J Ex (MeV)
(n (2) (3) (4)
5/2] 0 0.998  0.062  -0.011 0
/27 0.84 .0.982  0.191  =0.005  ~0.005
3/2] 1.0l 0.997  0.076 0.007 0
7127 2.21 0.999  -0.054  =-0.004 -0.002
5/25  2.73 -0.061 0.920  -0.380 0.066
3/25 2.98 -0.076 0.963 0.259 -0.022
9/27  3.00 0.951 0.239 0.195 0
1/25 3.68 -0.173 0.898 0.009 0.406
11/2]  4.51 0.998  -0.070  -0.003 0
7125 4.58 0.054 0.987 0.120 0.091

3. Construction of a Hamiltonian

The rotated states |a,Sl>, obtained in the previous sec-
tion, are no longer eigenstates of the original Hamiltonian
H, except, of course, in the case of exact degeneracy.

Here some attempts will be discusgsed to construct a Ha-
miltonian H] that in good approximation satisfies the eigen-—
value equation Hllu,S

= ESXP‘Q,SI>. An obvious procedure

to consider is a fit of Hl to satisfy the equation



- w&Xp
<B,S]|H1{u,Sl> B, Sy (3.1)

provided of course that a reasonably complete set of states
‘B,Sl> is available. The use of eq. (3.1) in its general
form did not lead to satisfactory results., It turned out to
be possible to fit either the diagonal matrix elements or
the off~diagonal matrix elements separately, but not simul-
taneously.-

5 somewhat more restricted approach that led to rather
promising results will now be introduced.

When the ASDI states are employed instead of ]a,S >,

1

eq. (3.1) is solved by construction in good approximation
with H1 = HASDI' The effects of replacing only a few of the

ASDI wave functions were considered. The choice of this sub—

set was restricted by the obvious requirement that the states

considered should be orthogonal to the remaining ASDI states.

A new Hamiltonian H was then determined from a fit of the
diagonal matrix elements of eq. (3.1) only. In order to
keep the “lamiltonian close to HASDI the approach discussed
in [1] was followed.

As this case was best investigated, the results will be
presented that were obtained when the ASDI wave functions
for the 2; and 2; levels in 285i at 7.38 and 7.42 MeV, res-
pectively, were replaced by rotated wave functions. The
Hamiltonian H then obtained indeed differed only slightly
from HASDI’ i.e. an average absolute deviation of only 40
keV in the onme- and two-body matrix elements was found,
whereas the average absolute value is 1.4 MeV. The largest
differences of the order of 100 keV occurred for the two-

body matrix elements <ls |ﬁ|ls

1/2%43/2 1/2%4327 51
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28,. . .
Fig. 3.1 displays the decay scheme of "Si obtained with
the eigenfunctions J; that resulted from the diagonalization %

of H. One should note the large improvement obtained for the

Aoy, i D i

y-decay properties of the 7.38 and 7.42 MeV levels, whereas

RO

the calculated properties of the remaining states are barely
affected. From fig. 3.2 one obtains a clear impression of the
sensitivity of the y-decay properties of the 2;,3 levels

to changes in the wave functions. In this figure we show the
decay properties of the 2; level as a function of the mixing
of the eigenfunctions 52 and 53 of the second and third 2"
levels, respectively. The ASDI wave functions for these
levels happen to be very nearly linear combinations of 52
and ¥,. Hence the ASDI results could be indicated in fig.
3.2. Rll other eigenfunctions of H coincided closely with
the ASDI wave functions with the exception of the 2; and

2; wave functions for A = 28, T = 1. These levels, however,
were neither taken into account in [1] nor in the present
fit because of the uncertain spin : sigmments in the experi-

mental level scheme of 28A1.

4. Discussion

In this section some of the possible refinements and
extensions of the techniques presented are discussed.

A first point concerns the effective single-particle
transition matrix elements (SPME) that should be used. The
SPME used in this calculation resulted, apart from a slight

enhancement of the effective isoscalar charge for the E2
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operators, from a fit to experimental reduced transition
strengths as described in [2]. It seems desirable to fit the
SPME directly to quantities like lifetimes, branching ratios
and mixing ratios for the same reasons that were mentioned in
sect. 2.3. It is clear that such a procedure interferes with
the line followed in this péper. In fact one should follow

an itervative scheme by fitting in small steps alternately
wave functions with given SPME and determine new SPME with
the wave functions thus obtained. A possible oscillatory be-
haviour of the solution of course must be envisaged.

A second remark concerns the . ..:~+ of the configuration
space. In the procedure of section 2 linear combinations of
wave functions in a given configuration space were considered.
One also may consider the effect of mixing with wave functions
outside the initial space. For example, the effect-of adding
(Of7/2)2 components to the A = 24-28 wave functions might
show up rather strongly in view of the large values of the
SPME <0f7/2|0pl0f7/2>, where Op denotes eithér the E2 or the
M1 operator.

A further remark concerns the experimental data that
should be taken into account in the search for good wave
functions. The wain reason for not considering Gamov-Teller
matrix elemencs ig a consequence of the fact that it is pro-
bably a shortcoming of the configuration space employed that
log ft values are not well described by the ASDI wave func-
tions as discussed in [2]. Spectroscopic factors should cer-
tainly be included in searches as described in section 2.

In order to get rid of the large experimental errors in in-

dividual spectroscopic factors one should for a given %-value

consider their ratios.



Other quantities that may be included are elcctric and magne-
tic static moments. In view of the rather scanty experimen-—
tal information they were not yet considered. Very intriguing
quantities to consider along these lines are (e,e') form
factors. All kinds of interference effects ccommected with the
rotation of wave functions may show up much clearer when one
considers the momentum dependence instead of only the photon
point. Furthermore form factors allow the consideration of
separate E2 and Ml matrix elements, a property they share
with static moments.

A last remark concerns the construction of the Hamil-
tonian. Up to now it turned out to be impossible to construct
a Hamiltonian that generates all wave functions desired. There
are of course effects from the truncation of the configuration
space that frustrate such an endeavour, i.e., as mentioned
before, the "true' wave function may have a substantial com—
ponent outside the configuration space and the underlying
assumption that the effective Hamiltonian may be given as a
one— and two-body interaction may be erroneous. Nevertheless,
a procedure that actually may be considered is a repeated
application of the technique presented here, i.e., instead
of considering ASDI wave functions as a starting point one

may use the wave functions of the Hamiltonian generated here.
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CHAPTER 111

CALCULATION OF SPURIOUS ADMIKTURES IN
SHELL-MODEL WAVE FUNCTIONS

G.A. TIMMER, P.J. BRUSSAARD and G.F. DELEN

Abstract: The ¢xpectation value of the square of the centre-of-mass position operator
is calculazed and used to ohtain an estimate for the intensity of spurious centre-
of-mass ¢ mponents in shell-model wave functions. The method is applied to some

wave functions for nepative-parity levels in A = 32 nuclei.

1. Introduction

The Hilbert space in which one usually describes the nu-
clear A-particle system allows 3A translational degrees of
freedom, whereas the description of the intrinsic motion of
the nucleus requires only 3A-3 translational degrees of free-
dom. The superfluous degrees of freedom in the description of
the intrinsic motion lead to the presence of the spurious
states, i.e. states for which the centre~of-mass (C!I) is not
in its ground state.

Several methods have been devised to cope with the problem
of the spurious states. In sect.2 some comments om a few of

them will be given. This will lead to the conclusion that at
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present there is no satisfactory procedure to treat this
problem rigorcusly. The main part of this chapter is devoted
to the presentation of a somewhat more modest approach to the
problem of the spurious states. The method presented will
provide no way to separate the consequences of CM motion from
those cf the intrinsic motion for quantities of interest as
e.g. transition rates. The only aim is to give a measure for
the admixture of spurious states in a given shell-model wave
function. In sect.3 expressions for the matrix element of the
square of the CM position operator between multishell jj-—
coupled basis states are derived. In sect.4 it is shown how
these matrix elements, on some additional assumptions, can

be used to obtain the intensity of the spurious admixture in
a given state. The method is applied finally to shell-model

wave functions of A = 32 nuclei.

2. Other methods

In this section some methods to treat the spurious-state
problem will be mentioned.

If one assumes a harmonic—oscillator (h.o.) potential with-
out spin-orbit splitting for the single-particle states, the
Hamiltonian can be separated in an intrinsic and a CM part
[1]. The latter has again the h.o. form. It was shown by Lee
and Baranger [2] how one may then proceed to construct all
states with the CM in an excited state, i.e. one constructs

the spurious state:;. This is achieved by introducing an iso-

scalar vector operator

K
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A+=§ 5 AT, | (2.1)
k=1
where
HORE \/%g- 70 - == 3 (2.1)
’ vV2mhw

is the single-particle operator that excites particle k to
the next higher oscillator shell (see e.g. ref. [3]).

This approach has been applied in the following way. If P
denotes the projection operator onto the spurious states, the
operator (1-P)H(1-P) was diagonalized for 18Q and 18F in a
(Opl/Z)n(Od5/2)6-n-m(131/2)m configuration space. The matrix
elements given in [4] were used for the effective Hamiltoni-
an H. The resulting changes in the spectra and transition
properties of the wave functions, when compared with the re-
sults of diagonalizing H, turned out to be unsatisfactory.
The main reason for this failure is to be found in the fact
that in this calculation, as in most other calculations, the
configuration space is too small to accommodate most spuri-—
ous states completel§. Thus, since model states in a trunca=-
ted configuration épace are the projections of the true
states in the complete Hilbert space, one is faced with
the serious problem that the two projections involved here
- i.e. projecting off the spurious states and projecting onto
the truncated model-space - do not commute.

Two other, in principle very promising, approaches to the

spurious—state p.ublem should be mentioned. The first approach

¢l
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is directed towards the exp11c1t constructlon of translatl—
onally invariant wave functions [5] This, however, requlres
the introduction of singular operators that dg not seem to
be very well suited for application in a shell-model calcu~
lation. In [6] this approach is criticized from a mathemati-
cal point of view.

Finally we would like to mention the approach [7-9] in
which one imposes a constraint on the CM motion by adding a
h.o. potential of extremely high energy thM. This method
has been criticized recently in [10]. The arguments need not

be repeated here.

3. The matrix elements of R2

In this section expressions will be given for the matrix
elements of the operator Rz, i.e. the square of the position

operator of the CM of A particles of equal mass

n~p
]

)<. (3.1)

>
o1

In the next section the matrix elements of R2 will be used to
obtain an estimate for spurious content in shell-model wave

functions. In the second—quantization formalism this operator

reads:

1
H
F
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R™ = — " [AT2<r|e®|u> < +
A MJ 0
A BT
A T
2 3 A B
- = T [al* z,. G A A
A2 Agu AugT AN OT (3.2)
O<THA 0

The indices A and p cover a complete set of single—~particle

states. A direct product notation is employed; e.g.

1= 15,1 [g,] = 25, + 1) g, + 1), (3.3)

. . A . .
and the fermion creation operator A and time-reversed anni-
. . H . g . .
hilation operator B are coupled as indicated in the diagrams
in both configuration and isospin space. The normalization

constants Clu are given by

1
Cku = (1 + GAU) 2, (3.4)

Further details on this formalism can be found in [iﬂ . The

two-body matrix element Wﬁucr is given by

WQUOT = <Au;A!?l-¥2|or;A>. (3.5)

it 2 il
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The two-particle states in eq.(3.5) are antisymmetric and.

normalized. The matrix element can be factorized into

w+g+A AuA

W= SN (1—(—1)APGT){T§v}<x\1¥\lc><ull¥1|r>,

AUOT ot

(3.6)

where PUT interchanges the labels o and T and the quantity
v assumes the value v = 1 in configuration space and v = 0
in isospace.

Many-body matrix elements of the type
)
" |r?(z" > (3.7)

wi11 be evaluated, where it is assumed that some shell AC
exists so that the shells A < A, in both the initial and
the final state are closed. Furthermore, only those cases
are considered where the configuration space is truncated in
such a way that the single-particle states |n1jm> are uni-
quely determined by 1,j and m, i.e. for each set 1,j,m only
one value of the radial quantum number n occurs. In virtual-
ly all shell-model calculations this restriction is made and
therefore no severe limitations are introduced in this way.
After insertion of the right~hand side of eq.(3.2) the

matrix element (3.7) can be divided into three parts:

<R2> = <Sl> + <52> + <53>, (3.8)

The operator S1 stands for the single-particle part of RZ.
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The operators 82 and 53 are obtained. when: the summations in
the two-particle terms of eq.(3.2) are written as partial
summations over A £ Ac and A > Ac’ respeptivelj.-

Owing to (i) parity conservation by the operator r2, (ii)
closure of the core and (iii) the previous assumption con-—
cerning the truncation of the configuration space, one can

derive the result:

ZP

1
S |zr >=1_ sn <A|r2|)\>6 v (3.9)
1 A2 5 A r,T

Here n, represents the number of particles in shell A.
As the closed shells of the core are coupled to zero spin

and isospin, the contribution <82> in eq.(3.8) can be reduced
to

r r'._ 2 -1 > 2

<z {s,|z" > 2 xix n [u] RSREIRITY Sp ot (3.10)
Cc

u>A

For future reference the result for <S]> + <82> is quoted in

the form

u
Ac<u Askc
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where use is made of the relation.nl = [A] that holds for-a.

R LA T TSP PSS YRNE
’4

closed shell x. o A
A lengthy but straightforward calculation yields for the

third contribution to eq.(3.8):

T N

==L x el ae [l [ x
/34 A <Asu
)\c<0'<'l'
B  AY
A T
A B
< LA W] T -F o alElealF et
AT A <A<y }
0 A
;1
% B
[ A ]% < A A >, (3.12)
AAu 0

Again, this equation holds only provided the limitations on the
configuration space that were described before are satisfied.
Furthermore, in order to obtain the simple restrictions on the
summations in eq.(3.12) it was assumed that the coupling order
of the active'shells is such that all states of onme parity =«
precede all those shells with the opposite parity =-w. For nume-

. . 2, . .
rical evaluations of <R"> it is, as far as <S_,> is concerned,

3




easier to use eq.(3.2):direct1¥3»provided1one,basiaaqomputer
code for calculating matrix eiemeﬂté of one- agd.;ﬁéf?ééy
scalar oPératbrs at oné‘s disposai, e.g. thé.bdk Ri&ge—Roches—
ter code [11]. In such a calculation the terms between the

second set of curly braces in eq.(3.11) may be included to

play the role of single-particle energies. |

4. Spurious content of shell-model states

On the assumption that CM excitations of energy 2he (or

higher) may be neglected, one can write a shell-model state

Y et e e 2

as

-
m -> - _ +1 m
\PJM’.Y(rl""!rA) - OLXOOO(R)'#JM,Y(E) +

->
+ T8 (3w anxg, (R¢" (). (4.1)
JIm.YI JI.Y.YI JIM_m’.YI

>
In this expression lem(R) represents the h.o. wave function

for the CM motion, whereas {¢EM’;(E)} denotes a complete set
tf wave functions dependiug on the intrinsic coordinates &. The i
explicit dependence [12] of £ on the laboratory coordinates ; . ﬁ
need not be known.

The expectation value of R2 in the state defined by eq.(4.1) ;

is given by

83




90

T 2. 3b 2 .2
} == — + = 4.2
2 . .
where BY is defined as
2= g% (4.3)
Y J‘Y' JIY.Y'
. and use is made of the relation
m 2, b2
<anm‘R anlm? = (2n+1+3/2) A (4.4)

The quantity 83 gives the intensity of the spurious admixture
in ng,Y' By calculating the left-hand side of eq.(4.2) with
the expressions given in sect.3, it is thus possible to ob-~
tain 83 for given shell-model wave functions.

The technique described above was applied to some wave
functions of negative-parity states in 32P and 32S. These
wave functions were obtained [13] in the configuration space
(1sl/2~0d5/2)3(0f7/2-1p3/2)1 employing a modified surface-
delta interaction.

The results shown in table 1 indicate the small spurious
content of these wave functions. This is not very surprising,
though, since with h.o. wave functions all states conmsisting
of a closed 190 core and the other nucleons occupying the

O0d-1s shell are known to be free of spuriosity [1,2]. The

e D e e bt g 7200 L s Ll A P
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some shell-model wave functioms from ref.[13]

Table 1|

2
The spurious content B8  of

state

]

32p

323

0.009
0.031
0.017

0.029
0.012
0.018

0.001
0.008
0.007

0.009
0.017

0.007
0.042
0.012

0.002
0.020
0.005
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1hw CM excited states are then ohpg@pgd_gpgp the operator
given in eq.(2.1) is applied. Tﬁe-exgitatiqns that the vector
operator KT can produce in a model Spaée:wifhwa clbééd:OdS/Z—
subshell, are given by 151/2 -+ ]p1/2,1p3/2 and 0d3/2 > 1p1/2,
Ip3/2,0f5/2. Since only the Of:,/2 and the lp3/2 subshells are
considerad in the fp shell, only the components of the wave
functions with a particle in the lp3/2 orbit will contribute
to the spuriosity.

In principle it is of interest to investigate the relation
between the amount of spuriosity in a given wave function and
the quality of the agreement one obtains on calculating de-—
cay properties using the same wave function. It should, how—
ever, be mentioned that the El transition strengths calcula-
ted with the wave functions of [13] zave such poor agreement
with experiment that this discrepancy cannot be attributed to

spurious states effects only but it arises also from an appa-

rent inadequate model space.
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SAMENVATT ING

De in dit proefschrift beschreven berekeninger hebben
betrekking op twee vérschilleﬁ&e“aébébféﬁ'Qaﬁ?ﬁéﬁ kéfﬁépecm
troscopisch onderzoek. In de eerste twee hoofdstukkéﬁ worden
voornamelijk electromagnetische eigenschappen berekend van
kernen in het massagebiad A = 24 - 28 en wordt ingegaan op
mogelijke verbeteringen in bestaande golffuncties. In het
derde hoofdstuk besteden we aandacht aan het probleem wvan de
onechte toestanden ('spurious states').

Van elk der hoofdstukken volgt nu een korte samenvatting.
Hoofdstuk I. Hierin worden electrische quadrupool- en mag-
netische dipoolmatrixelementen berekend met twee stelsels
golffuncties die bij respectievelijk de 'modified surface—
delta interaction' (MSDI) en de 'adjusted surface-delta
interaction' (ASDI) behoren. Het blijkt dat de ASDI-golf-—-
functies een betere beschrijving van de experimentele ei-
genschappen geven dan de MSDI-golffuncties.

De éé&n—deeltjes matrixelementen van de overgangsoperatoren
worden bepaald door een aanpassing aan experimentele over-—
gangssterkten en statische momenten. Het tlijkt dat volstaan
kan worden met een toestandsonsfhankelijke effectieve lading
en een ongerenormeerde magnetische dipocloperator.

In dit eerste hoofdstuk wordt verder het begrip theore-
tische fout geintroduceerd. Deze theoretische fouten geven
een aanwijzing omtrent de gevoeligheid van berekende electro~

magnetische eigenschappen voor veranderingen in de Hamilto-

niaan. Het blijkt dat deze fouten in het algemeen de verschil-

len tussen experiment en theorie verklaren.
Tenslotte worden met behulp van de ASDI-golffuncties voor=-

spellingen gegeven voor statische momenten en worden log ft
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waarden berekend voor toegestaan beta-verval.

Hoofdstuk IT. Reeds in het eerste hoofdstuk wordt in som-
mige gevallen expliciet aangegeven hoe lineaire combinaties
van ASDI~golffuncties tot een betere beschrijving van de
experimentele vervalseigenschappen kunnen leiden dan met

de oorspronkelijke golffuncties mogelijk is. In dit hoofd-
stuk wordt dit effect op een meer systematische wijze onder-
zocht. Het blijkt dat in het massagebied A = 24-28 golf-
functies gevonden kunnen worden die, hoeuel slechts weinig
afwijkend van de ASDI~golffuncties, tot een grote verbete-
ring van de berekende eigenschappen van gammaverval leiden.
In het laatste deel van het tweede hoofdstuk worden enige
pogingen beschreven om een Hamiltoniaan te vinden die deze
nieuwe golffuncties als eigenfuncties voortbrengt. Voor
enige gevallen in 2881 is dat inderdaad gelukt.

Hoofdstuk ITI.  In dit hoofdstuk worden formules afgeleid
voor de berekening van de verwachtingswaarde van het kwa-
draat van de zwaartepuntscoordinaat. Vervolgens wordt aan—
getoond hoe deze verwachtingswaarden gebruikt kunnen worden
om de intensiteit van onechte toestanden in schillen—model-
golffuncties te berekenen. De methode wordt toegepast op
enige reeds uit de literatuur beschikbare golffuncties in

32P on 32S
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