2. International conference on clustering phenomena in nuclei. College Pardk, USA, 21-25 April 1975

FR7600155

Y RAYS FROM PROTON BOMBARDMENT OF NUCLEI

0. Artun, Y. Cassagnou, R. Legrain, N. Lisbenna, L. Roussel CEN Saclay, FP nº2, 91190 Gif-sur-Yvette, France.

J.P.Alard, A.Baldit, J.P.Costilhes, J.Fargeix, C.Roche, J.C.Tamain Université de Clermont-Ferrand, 63170 Aubière, France.

Y rays from nuclei bombarded by high energy protons (from 100 HeV to 1 GeV) lead to mass distributions of stable nuclei where 4n-nuclei are the most abundant. With calcium an energy dependence is found. A few evidence for direct or semidirect processes are reported. ※ 米 型

We have measured the γ rays emitted by various light and medium-mass nuclei bombarded by high energy protons (from 100 MeV to 1 GeV). We used a 85 cc Ge(Li) detector in coincidence with protons of the beam and in anticoincidence with protons scattered by the target. Unfolding of the γ spectra gives transition energies to better than \pm 1 keV and cross sections within \pm 20% accuracy.

Large cross sections for 4n-nuclei (N and Z even) are observed suggesting single and multiple α (or 2p-2n) removal from the target. As shown by the table, in the case of a Ca target (97% 40 Ca), this process corresponds to nearly one half of the total cross-section. Increasing the incident energy seems to enhance the pheno-. menon (column 3 and 5).

Comparison of our 600 MeV data (column 5) with experiments performed with fast pions on the same target (column 6) shows a strong similarity between these data, except that proton cross-sections are much smaller than pion cross-sections. On the contrary, at lower energies, a large cross-section for 3 lle removal is measured in analogy with stopped pions.

Experiments performed on Al, Si and Fe does not show a sensitive dependence of the relative eross-sections versus incident energy as on calcium. Large crosssections are measured for production of ²⁴Mg and ²⁰Ne from Al and Si. This means that t and t + α removal from Al and α and α removal from Si proceeds to lead to the same 4n-nuclei. Other residual nuclei identified on Al and Si spectra are isobars of the valley of stability. From this, we infer that binding energy differences are a very important parameter of the process and that the reaction mechanism is most probably direct since a de-excitation of the nucleus by successive evaporation of nucleons would hardly reproduce the strong selectivity of residual nuclei which is observed in these experiments.

Another support for the assumption of a direct production of these nuclei is given by the Doppler-broadening of a few of the γ rays. As an exemple, with an O target, two lines coming from the de-excitation of the second level of¹⁴N were measured with widths of 20 keV and 28 keV proportionnal to the 1632 MeV and 2312 NeV transition energies.

Many of these results strongly suggest direct or semi-direct procerses. Confirmation would give hopes of studying clustering in nuclei from the abundant a particle removal observed in these experiments.

Table

Final	Equivalent	Cross-section (mb)			
nucleus	removed particles	$E_p = 210$. NeV $\mathbb{E}_{\mathbf{p}}$ =110 HeV		$E = 600$ NeV E_{π^-} =220MeV	
$\overrightarrow{1}$	(2)	(3)	(4)	(5)	$(6) *$
40 Ca(3 ⁻)		20	13.4	5.2	45.9
39_{Ca}	−n	20.7	8.5	2.9	32.1
39 _K	$-p$	15.2	9.7'	3.2	
38 _K	$-(p+n)$.12.7	8.3	4	
$^{38}\!_{\Lambda \rm r}$	$-2p$	12	10.9	3.4	
37 _{Ar}	-3 _{He}	21.3	13.6	5.4	21.7
\cdot 36 $_{\text{Ar}}$	$-\alpha$	29.6	28.4	14.1	137.9
32 _S	-2α	18	16.6 ^o	7.6	114.8
28_{Si}	-3α	19.5	16.7	6.9	66.1
24_{Hg}	-4α			3.6	36.2
20_{Ne}	-5α			\leq 1	27.4

$$
\mathbf{L} = \mathbf{L} \mathbf{L} + \mathbf{L} \mathbf{L}
$$

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$