FRAGCOSSR

SECTION EFFICACE DE FISSION ET PARAMETRES DE RESONANCE DE ²⁴¹ Am

B. Lucas, H. Derrien, D. Paya Département de Physique Nucléaire

CEN-SACLAY, B. P.2, 91190 Gif-sur-Yvette (France). -

RESUME :

La section efficace totale de ²⁴¹Am a fourni les paramètres de résonance jusqu'à 150 eV. La section efficace de fission a été mesurée au moyen d'un détecteur de neutrons rapides. Elle a permis d'obtenir les largeurs de fission jusqu'à 40 eV. Les résultats sont comparés à ceux des mesures effectuées dans d'autres laboratoires.

ABSTRACT :

The analysis of the total cross section of ²⁴¹Am has provided the resonance parameters up to 150 eV. A measurement of the fission cross section has been performed using a fast neutron detector. The fission widths can be extracted from this cross section up to 40 eV. The results are compared with those calculated from other laboratories data.

. . . / . . .

La mesure de la section efficace de fission de ²⁴¹Am a été entreprise afin de chercher une éventuelle structure intermédiaire semblable à celle qui existe dans ²³⁷Np et plusieurs autres noyaux. Cependant, comme les mesures précédentes /17 ne montraient pas un effet très prononcé, il fallait s'attendre à devoir faire une anaiyse très serrée des paramètres de résonances. D'autre part, ces derniers, en dépit-de leur intérêt dans le calcul des réacteurs, étaient peu ou mal connus. C'est pourquoi nous avons entrepris de mesurer successivement la section efficace totale et la section efficace de fission de ²⁴¹Am au moyen du spectromètre de neutrons installé auprès de l'accélérateur A L 60 de Saclay.

La section efficace totale a été mesurée entre 0, 8 eV et 1 keV. Les conditions expérimentales ont été décrites lors de la précédente conférence de KIEV $\frac{1}{2}$ où quelques résultats préliminaires étaient présentés. L'analyse est maintenant complètement terminée [3]. Le tableau 1 donne, pour toutes les résonances identifiées entre 0 et 150 eV : l'énergie E, la largeur neutronique 2 g Γ_n , l'erreur statistique $\Delta (2 g \prod_{n=1}^{n})_{1}$ et l'erreur due à l'évaluation du bruit de fond Δ (2 g \prod_{n})₂. En outre, quand cela a été possible, les largeurs radiatives Γ_{γ} ont été calculées par la différence $\Gamma_{\gamma} = \Gamma - 2 g \Gamma_n$ en supposant Γ_n et Γ_f suffisamment petits pour que l'approximation introduite par cette relation soit meilleure que la précision expérimentale. Les valeurs de Γ_v ainsi que l'erreur statistique $\Delta\Gamma_v$ figurent aussi dans le tableau I. Des calculs de Monte-Carlo, visant à reproduire une section efficace semblable à celle qui est mesurée, montrent que (18 + 4) % des niveaux ne sont pas observés dans la section efficace expérimentale, Environ 80 % de ces niveaux sont perdus parce qu'ils ont une largeur neutronique inférieure au dixième de la largeur moyenne. En tenant compte des résonances perdues,

l'espacement réel moyen est $\langle D \rangle = (0, 55 + 0, 05) eV$.

La mesure de la section efficace de fission a nécessité la mise au point d'un détecteur de type nouveau. En effet, la forte activité α de Am réduit considérablement la quantité de cet élément que l'on peut introduire dans une chambre à ionisation ou un scintillateur gazeux. Etant donné la faible section efficace et le flux dont nous disposions, il nous fallait utiliser un échantillon de plusieurs grammes d'américium. Nous avons donc choisi un détecteur à protons de recul, sensible aux neutrons de fission et insensible aux neutrons de résonance et aux particules a. Ce détecteur est constitué d'un cylindre tronconique contenant 45 litres de liquide scintillant NE 213 et divisé en quatre parties optiquement indépendantes. Chaque partie est vue par un photomultiplicateur XP 1040. L'axe du détecteur est percé d'un tube qui permet d'insérer l'échantillon d'américium en son centre et de laisser passer le faisceau de neutrons incident. Différentes protections de plomb et de bore réduisent les échanges de rayons y et de neutrons ralentis entre le liquide et l'échantillon. Un système de discrimination de sorme élimine les impulsions dues aux rayons y avec un taux de réjection de 10⁵ pour un seuil de 800 keV sur l'énergie des neutrons. Les expériences préliminaires ont été faites avec un échantillon de 1,5 g d'oxyde d'américium. Malheureusement les réactions (α, n) dans l'oxyde créent un bruit de fond de neutrons rapides qu'on ne peut éliminer qu'en imposant des colncidences entre deux parties diamétralement opposées du détecteur, ce qui a pour inconvénient de diminuer fortement l'efficacité. Dans les conditions expérimentales indiquées dans le tableau II, les taux de comptage était de 10 fissions par heure au sommet de la résonance à 5,4 eV :

La section efficace a été normalisée sur celle de Bowman [4] entre 0 et 1^e eV. Le tableau III donne les largeurs de fission obtenues pour 38 résonances au-dessous de 40 eV. Elles ont été calculées au

- 3 -

moyen des paramètres du tableau I. L'accord avec Bowman est bon pour 7 résonances, il est mauvais pour quatre autres. Pour les résonances à 3,97 eV, 4,97 eV, 6,12 eV, 9,11 eV, en effet, Bowman donne des surfaces de résonance environ dix fois plus faibles que les nôtres bien qu'il n'y ait pas de désaccord apparent dans les sections efficaces. Les largeurs de fission ont une valeur moyenne.

 $\Gamma_{\rm f} = 0,23$ meV avec une distribution en χ^2 à 4 degrés de liberté (fig. 1). Il y a donc un nombre assez important de voies qui contribuent à la fission sous le seuil du noyau composé ²⁴²Am, ce qui n'est pas impossible étant donné que, dans un tel noyau impair - impair, les états de transition doivent être très rapprochés.

Les résultats du tableau I ont aussi permis d'analyser la section efficace de fission mesurée à Les Alamos [1] (et obtenue par l'intermédiaire du CCDN à Saclay). Les largeurs de fission obtenues entre 22 eV et 52 eV sont données dans le tableau IV. Leur valeur moyenne est $\langle \Gamma_f \rangle = 0,52$ meV et elles sont distribuées suivant une loi en χ^2 à 15 degrés de liberté. Il est difficile d'interpréter ce résultat dans le cadre de la théorie des voies de fission. Une explication pourrait être trouvée dans une contamination de la section efficace de fission par la capture. Il suffit en effet d'une contribution à la fission de 0,7 % de la capture tetale pour faire passer la largeur moyenne de 0,23 meV à 0,52 meV. Si, à chaque largeur de fission, on applique la correction de 0,30 meV correspondante, le nombre de degrés de liberté passe de 15 à 3 (fig. 2).

Compte tenu de ces remarques, pas plus nos mesures que celles de Los Alamos ne montrent d'anomalies dans la distribution des largeurs qui pourraient suggérer un effet de structure intermédiaire, au moins au-dessous de 50 eV. A plus haute énergie, rien n'apparaît à l'inspection visuelle de la section efficace et la statistique recueillie dans cette expérience préliminaire est trop faible pour perinettre l'analyse en termes de paramètres de résonances.

- 5 -

Il faut souligner cependant que, si cette expérience a permis de mesurer un certain nombre de largeurs de fission, son but était essentiellement de vérifier, dans des conditions expérimentales particulièrement sévères, les qualités du détecteur de neutrons de fission. Celui-ci ayant confirmé les espoirs qui avaient été mis en lui, il serait très intéressant de reprendre la mesure en utilisant, cette fois, un échantillon d'américium métallique enfermé dans un boftier fait d'un matériau de numéro atomique élevé. Ainsi débarrassé des neutrons produits par réactions (α , n), le détecteur pourrait fonctionner sans coincidences. Le gain qui en résulte sur l'efficacité de détection permet alors de travailler à des distances de vol plus longues et d'étendre la zone d'analyse en énergie.

•

REFERENCES

- [1] P.A. Seeger et al. Nucl. Phys. <u>A 96</u> (1967), 605.
 [2] H. Derrien. 2nd National Soviet Conf. Kiev (1973), vol.2, p 246.
- [3] H. Derrien et B. Lucas. Conf. on Nucl. Cross Section and Technology, Washington (1975).

[4] C.D. Bowman et al. Phys. Rev. 137 B (1965) 326.

LEGENDES DES FIGURES

Fig. 1. Nombre de résonances pour les quelles $\sqrt{\Gamma_f}$ est supérieure à la valeur portée en abscisse (cette expérience).

Fig. 2. Nombre de résonances pour lesquelles VI, est supérieure à la valeur portée en abscisse :
(a) analyse des données de /1/

(b) résultats précédents après soustraction de 0,30 meV.

LEGENDE DES TABLEAUX

17 - <u>)</u> ,] 1		241
l'ableau l	:	Parametres de resonances de Am,
T ableau II	:	Conditions expérimentales de la mesure de section
		de fission.
Tableau III	:	Largeurs de fission de ²⁴¹ Am.
Tableau IV	:	Largeurs de fission déduites des données de /17

- 8 -

. . .

•

•

•

•

•

•

. .

TABLEAU I

P					-				<u>.</u>		
E (eV)	29[n (m=V)	Λ(2 g[.), (mev)	Λ(29Fx), (meV)	Ty (meV)	or (mini)	۲ («۷)	295 (m(V)	6 (25 F.). (- eV)	[(2 gī,); (meV)	۲ <u>.</u> (۳۰۰۷)	ΔFr (mev)
1.276	0.322	0.006	0.075	41.5	0.4	31.020	0.334	0.010	0.004		
1.428	10.113	0.001	0.006	44.3	0.3	31.251	0.996	0.019	0.015	47.6	4.2
2.372	0.073	0.001	0.004	47.4	0.3	32.030	0.300	0.010	0.003	47.4	6.6
2.598	0.147	0.001	0.010	41.0	0.3	33.510	0.060	1	·		1.
3.973	0.210	0.001	0.006	44.5	0.3	34.02A	0.628	0.012	0.008	45.4	4.9
4.96A	0.175	0.001	0.004	43.8	0.4	34.450	0.125	0.007			
5.415	0.760	0.003	0.019	44.2	0.1	34.929	0.612	0.012	0.006	42.8	5.4
5.800	0.002	1.	•		1	31.495	0.427	0-012	0.004	50.6	k.1
6.117	0.124	0.001	0-002	43.R	0.7	3 250	0.167	1 0.007	0.001		
6.745	0.028	0.001	•			36.483	0.100	1			
7.659	0.037	0.001			1	36.979	2.995	0.017	0.075	52.0	1.5
8.173	0.108	0.001	0.001	47.7	1.2	38.356	2.260	0.015	0.044	47.0	2.0
9.113	0.389	0.002	0.009	44.2	1.0	38.830	0.055	1			
9.R51	0.406	0.002	0.009	43.9	0.4	39.617	1.295	0.020	0.020	40.2	4.2
10.116	0.026	0.001		1		40.067	0.541	0.040	0.005	77.9	20.1
10.403	0.326	0.005	0.005	47.4	0.P	40.3944	0.948	0.034	0.012	64.0	P. 6
10.997	0.413	0.002	0.006	44.5	0.8	41.298	0.084	· ·	•		
11.5R3	0.01	0.001				41,791	0.355		0.003		
12.137	0.007	0.001				42.130	0.150	1 0.000	0.001		
12. F79	0.121	0.001	0.001			43.294	0.505	0.033	0.010	18.0	8.9
13.674	0.012	0.001				43.574	0.582	0.035	0.006	34.2	13.6
14.360	0.071	0.002	0.001			44.416	0.114	0.009			
14.682	2.482	0.011	0.075	40.3	0.5	44.921	0.074	0.000			•
15.489	0.744	L0000	0.003	39.3	2.9	46.073	0.665	0.015	0.007	43.8	P.6
14.388	1.277	0.005	0.034	41.8	0.9	45.566	0.371	0.018	0.003	27.B	14.0
36.849	0.646	0.004	0.012	41.2	1.5	47.535	1.053	0.017	0.012	41.6	5.2
17.729	0.391	0.004	0.006	37.3	2.4	49.765	0.713	0.07b	0.007	40.0	P.0
18-167	0.017					49.332	0.220	0.011	0.002		
19.445	6.213	0.003	0.002			50.27A	2.442	0.022	0.042	51.8	3.0
20.333	0.034					50.847	0.353	0.020	0.003	35.8	16.4
20.880	0.059	0.001				51.934	1.385	0.021	0.017	50.2	4.9
21.740	2.021	6.003				53.014	0.165	0.012	0.001	•	
22.748	0-069	0.003				53.493	0.184	0+012	0.001		
23.079	0.4:7	0.012	0.005	47.2	A.0	54.407	0.073	0.012			
23.337	0.445	0.012	0.006	47.5	5.4	54.990	1.443	0.025	0.002	108.5	6.9
24.192	1.304	0.007	0.028	39.2	1.5	55.595	0.213	0.014	0.002		
25.008	0.014	0.001	0.001			22.945	1.432	0.034	0.010		
25.634	1.258	0.008	0.025	37.6	1.7	56-158	0.979	n-034	0.010		
26.498	0.447	0.014	0.006	22.0	· · · 1	51.312	4.3-5	0.029	0.082	61.0	2.1
20.559	0.217	0.010	0.004	· ·		29.056	0.589	0.028	0+004	107.2	14.4
21.215	0.165	0.071	0.007		{	AU-045	0.285	0.017			
21.126	0.509	0.029	0.006	70.6	8-8	60.351	0.140	0.017	0.001	, l	
28.355	0.570	0.009	0.008	44.7	3.7	NJ-25H	1.672	0.025	0.017	14.1	7.5
28.903	0.467	0.009	0.006	48.6	4.7	01.013	0.434	0.025	0.004		
29.504	0.701	0.009	0.009	44.6	3.2	52 507	0.222	0,016	0.001		
20 0 27	0.050					44 0201	6 61 3	0.015	0.07		
20.022	0.120	0.010	0.007	1	1	07.037	7.042	0.049	0.014	~ ' • '	· ·"
•	•				•			•	•	•	•

TABLEAU I (suite)

۱ <u> </u>				1		n			•	· · · · · · · · · · · · · · · · · · ·	•
E	295.	A(- T.).	$\Delta(2 + \Gamma_{1})_{1}$	5	Δ٢.	ε	205	60.50	ACT.	5	ΔΓ,
(«V)	(mev)	(meV)	(mev)	(((eV)	1-14)	(mev)	(mev)	(may)	(1)
					· ·					-	
64.539	1.554	0.052	0.025	3A.3	9.2	106.396	13.352	0.140	0.054		
65.164	5.187	0.048	0 109	40.7	3.7	107.615	1.975	0.038	0.01)		
65.733	1.090	0.044	0.010	14.8	14.0	109.624	3.256	0.144	0.042		
66.314	1.036	0.052	0.010	75.2	19.6	110.093	3.337	0.144	0.043		
66.874	2.105	0.044	0.025	71.9	8.1	0111.110	0.374	0.059	0.003		
68.525	0.431	0.019	0.0.5			111.627	.5.200	0.102	0.068	94.3	10.4
69.585	1.116	0.051	0.013	•	1	112.752	0.414	5.042	0.003		
69.824	2.661	0.053	0.040	•	(113.200	0.300				
71.253	0.583	0.085	0.006			113.907	1.741	0.078	0.014	77.6	23.0
71.463	1.109	0.079	0.011	Í		115.084	1.800	0.081	0.014	79.3	23.R
71.841	1.034	0.025	0.010		i I	115.777	0.701	0.049	0.004		
12.276	0.226	0.021	0.001			116.396	2.623	0.081	0.023	42.0	15.6
74.969	0.491	0.020	0-004			117.656	0.030				1
75.715	0.378	0.034	0.003			11A.522	0.805	0.046	0.005		
12.943	0.515	0.027	0.003			119.A23	2.237	0.131	0.022		· ·
16.119	0.104	0.000				120-123	1.930	0.131	0. 776		
78-191	1.466	0.033	0.015	10.3	1/.4	121.942	3.216	0.138	0.033	36.9	19.0
74.551	0 720	0 6.23	0.011	1 10.0	20.0	122-662	3.893	0.727	0.040	64.2	21.5
19.255	0.544	0.020	0.000			173.743	3.334	0.155	0.035	20.3	1
80.000	0.528	0.027	0.004			124.944	1.040	0.054	0.013		
B1 077	0 106	0.039	0.004			123.414	1.035	0.055	0.007		
E1 450	1 042	0.061	n óna	104 4	35.0	127 /16	2.035	0.057	0.017		
A2 089	1.454	0.254	0.015	21. 7	14 0	127.415	1 (90	0.054	0 012		
82.900	0.4.9	0.024	0.003			129 677	0 225	0.0.0	0.002		
83.370	0.431	0.024	0.003			130.720	1.358	0.072	0.009		
84.006	1.456	0.027	0.015	38.1	8.7	131,310	3.121	0.132	0.032	56.0	23.2
\$4.695	2.141	0.044	0.072			132.180	0. 875	0.062	0.006		
86.610	0.225	0.025	0.001			132.754	1.100	0.059	0.008		
67.49)	0.126	0.029				133.657	1.784	0.100	0.014	52.1	30.5
67.994	3.919	0.053	0.055	70.7	6.3	1 4.967	8.015	0.317	0.104		i
89.297	0.332	0.061	0.002			13.449	4.131	0.348	0.042		
69.602	2.364	0.093	0.024	86.7	14.1	136.435	5.757	0,145	0.048	45.7	14.1
93.412	6.294	0.055	0.115	53.7	4.0	137.103	1.794	0.077	0.009		
94.610	0.754	0.030	0.006			137.613	1.728	0.064	0.012		
45.245	0.360	0.035	0.003			138.774	3. 2.86	0.108	0.040	40.6	15.4
95.696	2.863	0.041	0.034			139.943	1.253	0.071	0.008		
96.100	2.906	0.048	0.037			140.498	2.434	0.073	0.021		
96.450	Z.834	0.052	0.035			141.310	4.229	0.108	0.055		
. 97-423	0.271	0.030	0.001			141.520	3.256	0.106	0.039		
94.35%	0.265	0.030	0.001			143.036	0.331	0.046	0.002		
100.156	1.075	0.033	0.009			144.869	1.421	0.048	0.010		
101.599	2.825	0.058	0.028	51.1	10.0	145.438	0.350	1			
102.555	0.249	0.035	0.001			146.436	1.739	0.070	0.012		
103.203	6.980	0.063	0.120	40.2	4.5	148.031	12.302	0.138	0.198		
104.7PA	2.196	0.059	0.027	40.2	12.A	149.141	3.926	0.076	0.039		
106.148	6. R24	0.185	0-1.6			1	•		I 1		
	L					1			•		·

- 19 -

TABLEAU H

Lornes en énergie (eV)	Largeur des canaux du secteur de temps de vol (ns)	- Largeur des impulsions de l'accélérateur : 100 ns
0.8 - 3.8 3.8 - 9.7 9.7 - 23.6 23.6 - 86.7 86.7 - 152	800 400 200 100 50	 Fréquence de répétition 500 Hz. Longueur de la base de vol : 13.945 m. Durée d'accumulation : 200 H.

•

•

.

• ·

•

TABLEAU III

E (eV)	(inév)	E (eV)	Γ_{f}	E (cV)	(mev)
1.28	0.37	10.12	0.16	24,19	- 0.14
1.93	0.08	10.40	0.06	25.63	0.29
2.37	0.18	10.99	0.13	26.50	0.05
2,60	0.17	12.88	0.06	26.67	0.19
3.97	0.16	14.68	0.27	28.36	0.16
4.97	0.44	15.69	0.10	28,90	0.16
5.42	0.60	16.39	0.11	29.50	0.10
6.12	0.42 ·	16.85	0.32	31.25	0.22
6.74	0,22	17.73	0,30	32.03	0.28
7.66	.:0,10	19.44	0.03	36.98	0.51
8.17	0,12	21.74	0.27	38.37	0.30
9.11	0,18	23.08	0.27	39.62	0.23
9,85	0,95	23.34	0.17		· ·

度に などの いろうかい

TABLEAU IV

,

E (eV)	۲ (meV)	E (eV)	۲ (mcV)	E (eV)	(meV)
An air ann an Anna an Anna ann ann ann ann ann		a ganganaya yi manan yan saddi silitana vani ⁹⁶ 19 - Binggina dawa	· · · · · · · · · · · · · · · · · · ·		ana ina katalan da angkanan katalan katalan katalan da sa
22.75	0,58	30.8i	1.20	40,07	0.79
23.08	0.77	31.02	0.51	40,41	Q. 34
23.34	0.31	31,25	0.57	43.29	0.35
24.19	0.48	32.03	0.56	43.57	0.49
25.63	0.82	34.03	0.22	46.07	0,27
26.50	0.47	34.46	0.74	46.57	0,28
26.67	0.48	34,93	0.41	47.54	0,25
27.57	2,54	35,49	0.36	48.76	0,49
27.73	0.44	36.25	0,57	49.33	0,54
28.36	0.55	36.99	0.66	50.28	0,37
28.90	0.36	38,37	0,53	50.85	0.47
29.50	0.45	39.62	0,56	51,98	0, 38
· · ·					

• .

- 13 -

ì

••

