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ABSTRACT

The interaction of a cold electron beam-plasma rysteu is investigated numerie

cally ip the region of densities ratio ’7‘I.B / ‘n_,r = 2::410-J - 2110-‘. The one-
«~dimensional model of a collisionless plasma is used. The time develogwment of
the wave with smzimal growing rate and its spatial harmonics is studied. The
Plasma effect is siumulated by the direct computation of plasmms particle trajec-
tories (this being different from the usual plasma simulation by means of a
dielectric). These calculations show the following ei1fects of the finite para~
me ter (11.,}11’)4/3 ! the ratio of the plasma energy co the electric field energy
is increased, the dauping character of field and mmocoroscopic amplitudes appears

and the influence of the second harmonic is not negliginrle for ‘n, /nzz_ 10-2.



1. INTRODUCTION

Th're have dbeen considerable series of papers devoted to the numerical si-
sulation of cold electron besm-plasaa intersction, e.g. (MATSIBOREO et al., 1972;
O’NEIL et al., 1971; THOMPSON, 1971; JUNGWIRTH et al., 1973 o¢ 3 JUNGWIRTH et al.,
1973 /b ). The authors MAISIDORXO et al., (1972), O°'NEIL et al. (1971), THOMPSON
(1971) have investigsted the tiwe development of the heam-plasma instability, the
authors JUNGVIRTH et al. (1973¢cx ), JUNGVIRTH et al. (1973 /3 ) have dealt with
a stationary space development of this instability. The general feature of these
papers is tln'/;odol of m oflnglo wave and the assumption of t“e saallness of the
parame ter ‘Z € (’l’/n’) b((’!. In the paper of HATSIBORKO et al. (1972) the
weaker condition ﬂl LL 1 has been 4/..-\-od, nevertheless the results of their
paper are valid only in the limit /z” << 41 . In the actual experiments it
is 7 ~ um‘z, henoe the parameter Z‘Vs possesses a finite value. The
results of our paper shov the effects of the finite parameter 73 s which are

L/
negleoted in the papers considering only the limit 'Z /3<< { .

The approximation of tke single wave (with neglecting of higher harmonics)
s priori does not fulfil the energy-momentum conservation laws. Thus the system
of the plasma, the Leam and of the single wave (eventually zatelites including)
is pot a oconservative one. The systeam is conservative only if higher haruonics
are included. As far as the approximation of '1’/’ <L 1 is concerned, it con-
sists in the papers of MATSIBORKO et al. (1972}, 0 NEIL et al. \1971), THOMPSON
(1971), JUNGWIRTH et al. (1973 o ), JUNGVIRTH et al. (1973 /5 } in the two fol=-
lowing simplifioations. The first: from them replaces the system of the plasma
and the wave by the wave propagating in & dielectric, the second one uses only

the linear expansion of the dielectric function near the plasma frequency,

The aim of our paper is the investigation of the interaction of the beaw
with the plassa for the wvalues of "Z ., which corresponds to resl experiments,
the effeots of higher harmonics including. Similarly as in papers of MATSIBORKO
ot al, (1972), O'NEIL et al. (1971), TEOMPSON (1971), JUNGWIRTH et al. (1973 o ),
JUNGVIRTH ot al, (1973 /5 )'_tho sateliteus are neglected, The influence of finite-
1 1

3 - -
ness of the parameter "Z is investigated in the region 1, 26x10 - 2,72x10

(whioh ocorrespondsto '7‘ = 2x107) - 2:10-2).

We shall therefore deal with the time development of the collisinnless in-
teraction of the following system: the ocold eleotron beam, the cold plasma with
the immobile ion baokground, the mode with maximus growing rate (further only

besio mode) mnd,its second snd third mpsoce harmonics, The mathematioal formula~
tion of this problem is following: ‘
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where ¢ is the charge of an electron, 7”1 is the mass of amn eleotronm, is
the Hamiltonian of a jartiole, ?; is the particle momentus, {“ are the distri-
bution funotions, 7, are the unperiurbed partiocle densities, \4 is the unper-
turbed beam velocity, U is the posential of the electrostatic waves, k, ie the
wavepusber of the basic modej the index ol = P and &= B denotes plasma par-

tioles and beam particles, respectively.

2. BASIC EQUATIONS
Mathematiosl formulation
The following wethod presentsd by one of the authors (lacina, 1y73) was used
for the numserical ocaloulations. The prinoiple of this method oonsisets in the so-~
lution of the motion of beam and plasma partioles as funotions of the time and
initial conditions, Using this method for our starting equations (1) we get the

following set of equations,

! ’
The time evolution of the complex wave amplitudes LL” (t) is given by the

particle trajectories in the following way:
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where A{‘n are the complex density amplitudes and whers the partiole smotion is

(2)

given by camonical sugations (3)
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The particle initial conditions are determined as follows:
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The initiel conditions (4) were deterained in such a way as to correspond

(%)

]
to the unstable wave with a soall aaplitude u, (0) developing in the linear
!
region with the maximal growving rate &“1’ (0) . The values —n-; (0) ’ é‘-, (0),

’
k4 were obtainsd from the expressions, given in the paper of ’l‘BOMPSON,(1971).

The somentua of the plasua ¢, and that of the benx ¢, are given as fol=-

, fP( O t)dyX Q$ L 'Ll '(X;,t)dx,’

Similarly the plassa kinetic emergy P and the beam kinzetic energy W both

in the initial plasms frame (i.e., ’n the laboratory frawe) are given in the fol-
Iy

W+ o, I[P (%, 1] dx;

WB’ZP f[? (x, t)]dx + @), WoW, -7 1Y

7
The expression Wls deteraines the smearing energy of the bean, The eleotric

lowing way:

field energy is given as follows
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The set of equatinns {(2)<{%) is expressed in a useful dimensionless foru by weans
of similarity laws (LACINA, 1971). The relation hetween the dimensionless [@dashed)

quantities and the dimensional quantities is given by the following tranaformation

m=m m | e-e'lel, Nyt ", >
) / % /
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From this transforamtior it follows:

(6) e'=-1 m-f oy nyen, W1

which was used 1n equatioms (2)-(4).

The transformation (5) appears very useful due to the fact that an arbitrary
physical quantity and aleoc an arbitrary equation for physical quantities are
inveriant with respect to the trensformation (5). This weans that for the trane-
formation of an arbitrary physical quantity or an equation we need not use the
transformation (5), but it is sufficient to carry out the normslisation with
respect to the equatiom (6)., Purther, due to the above sentioned transforsation
our reeults are invariant with reepect to the choios of the beam velocity and

the plasma density.

The set of equations (2), (3), (4) has been solved numerioally using the
computer IBM )70/135, Ueing the metho nt starting Eqs. (2)=(4) obtain a
useful form for the computer caloulations. The advantage consiste in the poss.bi-
1ity of the use of the mors precise numerical msthods for space integrals in
Eg. (2) and thus this method substantially reduces the pumber of numerical par-
tioles. (By the numerical particles we define here particles, the trajectory of
whioch are necessary to compute in order to obtain the desired mccurscy.) Thie
differs from the nuwrical sxperiwents (e.g. MORSE et al., 1969) and frou the
wethod of O'NELL et al. (1971), where the sumation over physical particles is
oarried out; thus it is not possible to reduce ths mumber of particles hy means
of pumeriocal prooedure,

In our equations (2)=(4) the plasma quantitiee are related to the laboratory
frame whereas the bea.. quantities are related to the initisl beas frame,

In wvhat follows we shall omit the dashes above the dimensionless quantities,



The numerioal procedure

The time integration of the canonical Eqs. ()) has beer carried out by wmears
of Runge«Nutte method with accuracy “L‘ . The Simpson ssthod has been used for
the epace integration in Eq. (2), differing from the sizple sum of particles used
by O°NEIL et al. (1971). The energy-momentm conservation lave heve been checked
in order to be sure about the aocurecy of the ocaloulation., Using the Simpeon
method it was suffioient to oalculate the trajectoriee of only 100 numerical par-
ticles in the ocase of simple mode approximation and 300 numericel particles ir
the oase of three modes approximation (the basic mode, the seoond, the third har-

monia).

3. NUMERICAL RESULTS

The computer output

The following quantities have been computed in order to appreciate the given

physical wmodel sufficiently:

W

(L%
WE(TW} = the total electric field energy

the electriu field energy of the n-th mode

W, = the plassa kinetic energy
WB = the beam kinetic energy
Wyg - the swearing beam kinetic energy ("thermal® energy)
V"‘ = the phase velocity of the basic mode
VB - the averauge beam velocity
d),’ ¢' - the total plasma womentuw, the total beam momentum, respeotively
Uﬂ. = the ocomplex frequency of the neth mode
u.-n = the complex auplitude of the potential of the neth mode
Ivr“ = the ocomplex awplitude of the neth mode of the plasua density
M‘n' the oomplex auplitude of the n-~th mode of the heam demsity
er = the total emergy
¢T'DT « the total womentwa,

To be able to oompare the influence of higher harmonics, we have cowputed
both the case of basio mode omnly and the ocase of basio mode and the sscond and
the third barmonios inoluding for various values of '7' . As it is wentioned
above, the initial oonditions were determined in agresament with linear theory.
In order to start the oomputation in the linear rsgion we bave put U‘,(f'()) = 10"’
for the initial oonditions. This value is at least two orders of sagnitude lower
than that of mazisus wvalue U,,,,“ .



Single mode approximation
-3 -3 -2
This model has been computed for the values Z = 2x10 7; 6x10 " 1x1G

and zu.o'z. The review of the lipear wave parazeters ias presented in the Table I.

- - -2 -2
M {2210 | 6m02 | 1m0 2x10

k, §3.5981 1 3.6555 1 3.7008 § 3.7917

Re (w4,'.o. 2038 } -0.3110 } -0,3808 } =0.3053

H
In [“J 0.2917 | o.4108 | o.8801 | o0.5902

4

Table I. Linear wave paraseters

The review of obtained results for l = 2x10-3, 6210"2 10 given in the

Fig. 1 and Pig. 2.
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The influencé of higher harworics for demsities 7 = 107 and 7 = 22107
cannot be meglected in the strong nonlinear region and hence the single wave
approximation is for the above mentioned densities insufficient. Therefore we
did not put the respeotive results of single wave approximation separately. In
order to be adble to compare the single wave approximation with that of higher
baruonios, the course of th and V frou the single wave model is plotted

B
in the corresponding figure for higher haruonics (Fig. 3).

Higher harwmonions approximation

This model bas been computed for OL = 1:10-2 and ’)l le.o"z; for /z s
= 2210~ and "l s 6210”7 the influencs of higher harmonics appears to be neg-
ligible. The results are plotted in the Fise. 3,4 for 1] a 221072,
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Fig. 3 ( ’7Z = 2x10'2), Tiwe variation of WE(TVT)' Wr ’ W)S ’ V. I
the quantitieas WE1 ’ VB from the single wave spproximmtion are

plotted with a dashed line.

4. THI. DISCUSSION OF THE RESULTS
9
3
The effecs: of finite values of ’Z and of higher harmoniocs

Comparing papers of MATSIBORKO et al. (1972), O’NEIL et al. (1971) and
THOMPSON (1971) with our results presented in the previous chapter, the following
differences appear. First of all we have found the "nomequipartition of energy
distribution”, by whioh we understand the unequal transfer of beam ensrgy to the
electric field and to the plasma. The finite ’7_{/3 effect appears also in the
dauping of uwaximwn value of quantities, oscillating with the charsoteristic
bounce frequency. Further, for densities ’7 > 1x102 the energy of the second

haroonio WLZ is not negligible in comparison with the energy of the first
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Fig. &4 ( 'z = 2:10'2). Time variation of harmonic field energies M/En
( m =1, 2, 3) plotted in the logarithmio scale.

haruonioc W£1 ( WEz d WE‘I are of the ssme order in the region of the
firet minimus for Y = 2x10"%), The second harmonic effects a decay of field
energy in the range of gecond uaxiwum (this effect hbeing rether strong for

” = 2x107%),

Nonequipartioity of energy transfer

Frow the approximation "l’/’« { (used by MATSIBOIXO et al, (1972},
O’NEIL et al. (1971) and DRUMMOND et al. (1970)) the equipartioity of the beam
energy transfer to the eleotric field and to the plasma follows, That means:
one half of beam energy is tranifered to the plasma and the seoond half to the
electrio field, The aoctual energy diuribuu:on between the plasma and the field
following frow our results is plotted in Figs, 1 and 2 for the single wave appros
ximntion and in Fig. 3 for the higher haruoniocs approximation, As we can see

frow iiie3s figures, the ratio K/’ /WB strongly ohanges its value in time

(ror)

(especially in the regions of minimum values otkéam_)); generally this ratio is



growing with growing density ratio ., In the time, when the energy Wz
possesses the winisum values the ratio w? /M/E possesses maximun values froa

1.3 for "Z = 2x10™) up to 1.95 for Y = 2210”2,

Couparing the time-dependence of M/? /NE with the time-dependance of the
phase velocity V,‘. (see Figs. 1, 2) we can find that tle time development of
W? /WE is strongly influenced by the change in the i histantaneous phase veloe
city in the single wave case, The equipartition energy distribution is usually
derived in the theory for (u)~LJ (vhich Le valid in the limit 4 "3 35 0).
Since for finite values >f ’Z 7 the difference between ?c(l;))-.nd U? iz not
negligible, the equiparticity of energy distribution is violated, as follows from
our results. ASTRELIN et ai. (197)) have dealt also with the beam-plasim inter-
action for 02 = 2:10-2. Differently from us they started from the single-wave
model, however they considered a finite temperature of the beas and of the plasma.
They also have found the nunequiparticity of energy distribution V/T/\A/‘ . The
higher value of V‘/? /h/[ y in their case, appears to be dus to trapped plasma

particles,

The damping of oscilliations

As it follows from Fig. 2, the ovscillations of quantities with the charace
teristic frequency of trapped beam partiolss exhilhit damped character. This effect
-ppears both in t'ie single wave and high¢r harmonice approximetions; in the latter
orse th.;'oio an additional decay due <o the influence of higher harmoniocs (as it
follows from Fig. 3). In this Chapt, we shall only deal with the damping appea-
ring in the single wave ap,~oximation (with the supposed negligible effect of
higher harmonics).

The maximum values of the following quantities exhibit the demped charactersi
the field onergy W s the plasma snergy WI s the phase velooity KA
and th~ average beas nlooity V . The damping rate reaches its largest va-
1lue for ")l = 621072 {for the discussed set of parameters ’Z ). As it fol=-
lows from thie omse, the damping does not appear to be entirely irreversible;
the valuss of quantities in the fourth saximum sxhibit again growing charaoter.
This growing may be caused by some slower osoillation process, not yet kmown.
However, tie single vave approximation oesses its accuracy behind the third maxie
wum due to the effect of higher harmonios and satelites, Usually it is supposed
(DRUMMOND ot al., 1970; MATSIBORKO et al., 1972) that such a daaping ie oaused

by means of & smearing prooees in trapped partioles, Nevertheless, as it follows
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from the tise behaviocur of the beam smearing energy W.’ y this effact is

inswfficient for the explamation of such & damping rate.

The influenoe of higher harmoniocs

O‘NEIL ot al. (1971) bave estimated in their paper the emergy of the higher
harmonios on the assumption Z s << l . Since they have supposed a priori that
the snergy of the higher harmonics is negligible in oomparison with the energy of
tha basic mode, they have mot oaloulated the amplitudes of higher harmonics self-
-coniistently. The amplitudes of the higher harwonics have been determined in
their omse by means of Fourier analysis of the beam density and the influence of
plassa has been simulated by a dieleotric with e-'( i the backward effect of

the higher harwmonics on the particle motion has been negleoted.

WVe have solved the higher harmonios approximation eelf-consistently; it
means that we have caloulated their influence on the motion of particles and at
the same time the influence of the beam and plasma particle motion on the higher
bharmonios generation (differently from the simulation of the influence of plasma
by means of a dielectrioc)., The effeot of higher harmonics is negligible for den-
aities 4Z(( 104 j§ and i® not negligible for densities ’Z > 40‘1 as it can
be deduced from our results. The influenoce of the higher harmonios is obvious

from Figs, 3, b.

The energy !0f the =n-th harmonic is growing in time with the initial in-
crement r‘ -n. l"q , where ‘L, = the linear incresent (see Tab. I). Ia the
pajsr of O'NEIL et al. (1971) the initial growth rates for the higher harmonins

are lower, whioch is probably due to the model of plasua (é L4 1) used there.

Vhereas the difference for the first saxiwum between the single wode and
higher harmonios approximations is not essential, consi{derable differences appear
for the second maximum. The energy of eleotric field in the higher harmoniocs
approxzimation deoreases socording to the single wave approximation for 'z =1x10™2
up to 88% and for QL = 21].0"2 already up to 49%, The sams situation appears
for the plasua energy and for the average beam velocity. The strong influenoe of
bigher harmonios in the oase » 2x1072 is given Ly relatively high value of
enersy of the seoond and third harwonics, #s oan be seen from Fig. 4. The energy
of the seocond harmonio approaches the first harmonio energy and the ratio of the

energy of the third to the firat harmonioc reduces up to one order.
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The comparison of our results with references

The coaparison of our results with corresponding results, presented in
cited papers is given in the summary Tub. II. The comparison is oarried out both
with theoretical papers (MATSIBORKO et al., 19723 O°NEIL et al., 1971) and with
experimentel paper (APEL, 1967). The compared papers are referred in the first
column of the Table II. Since in different papers different normalisation of
physical quantities has been used, we have oarried out the following comson renor-

mlisation

" y .4 - -1/3
N Wz'zwf'q/,’ A1~ e L (”7%'7

where WE , .[2 and &" are physical quantitiee recaloulated in the CGSE

system of unijts.

We have chosen for the comparison both the first maximal values of M/E . _(l
which the system reaches durinz its time development and the linear walues of
_n.(O) 8"(0 . The corresponding renormalized values given LY the relation

(7) wre given in Tab, II in the colummns 2-5; our data are computed for 7 221072,
The 6-th and the 7-th oolumn contain relative inorements (i.e. the ratio of the
second and of the third haruonic increment to the first harmonic inorement) for
the beginning of the interaction. The 8-th and the 9-th oolumn present the ratio
f the 2-nd and of the )-rd harmonic energy to the emergy of tbe leet harmonio;
‘all of them are taken for the first maximal values of “/51 » %1 » M/ES in the
course of time, Sinoce there were mainly graphiocal results in cited papers to ouwr

disposal, the values presented in the Table II possess some degree of inaccuraoy.

1 References WE4HM ﬁ»fHAX ﬁ4 (D) F»f(o) “'I. /“'4 “’/“4 wld“/l( %’ /%j

MATSIBORKO | 1,06 | 1,05 | 0,40

0’NEIL 1,12 11,00 toko 1o,70 | 1,69 | 2,52 | 6,3x10°3]3,1510"7
-2 -3

APEL 3,3510 11,3510

OURS 0,80 | 2,9 0,53 10,62 | 2,00 | 3,00 { 6,8s10"2 6,8.10'3

Table II, The couparison of our results with references
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The differences of V‘éﬂ"hx' ‘Q'fHAx , .ﬂ1 (O)And £Cq (0) between our values
end those in the papers of MATSIBORKO et al. (1972), O°NEIL et al. (1971) are
‘ .
obviously dus to the approximation ')Z 3<< 1 , used in these papers. Owr rela-
tive ensrgies El/\qu ) “és /lﬁé’&r- in guod agreewent with the experimental
sesults of APEL (1967).

In the paper of O'NEIL et el. (1971) the comparison of the haruonic energies
with the experimental values of APEL (1967) is carried out, too. Let us note,
however, that in the paper of O’NEIL et al. (1971) the spproxiuation ,24/1 << 1
has been used, vhu"ou in the paper of APEL (1967) the quantity 'Z% equals

approximately ’Z = 0,26 (for 'z = 0.018),

S. CONCLUSION

This paper presents theoretical results of the nonlinear besu-plasua inter-

action in the region of the paraweter ol-n)/‘nr, olosely related to experimental

valuss.

Frow the given resulte it follows that

’

in the region 0 < 'L < 1077 the approxiiation based on tha model of the linear
dielectric (MATSOBORKO et al., 1972; O’NEIL et al.,
1971) is valid,

in the region 10-3 < ”Z new effects appear f£he nonequipartioity of energy
distribution and the damped oharacter of the oscil-

lations) and

in the region 10-2< "l there are further effects caused by higher haruo-

nics,

p)
These new effects, oaused by the finiteness of "Z/s , will obviously appear
in the case of dense beacs (o g. in relativistic beams whioh are usually working

in the higher density region),
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