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A theory is Given describing the propagrtion of high-

-i'requency electromagnetic waves In a plane-stratified weakly 

inhomogeneous plasma. The density gradient is supposed to be 

perpendicular to the external magnetic field and the wave 

vector is expected not to be generally parallel to the plane 

given oy both the preceding vectors. The analysis poin;s out 

ttiat the ordinary wave can penetrate through the plasma reso­

nance region if the direction of vacuum wave vector is chosen 

appropriately. Analytical expressions for the reflexion and 

transmission coefficients are obtained and their dependence 

on the direction cosines of the wave vector of the incident 

wave is studied. The paper further shows in outline that, 

after transmission through the plasma resonance, the ordina­

ry wave is transformed into an extraordinary wave and the 

latter is reflected baok to the region of the hybrid resonan­

ce. In this region the extraordinary wave is fully transfor­

med into the Bernstein modes. 
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i. итооооспся 
Vhen we «ant to beat a plaeaa effectively by high-fre-

quenoy нате» ve encounter wltb great obataolea at the trans­
fer of high-frequency energy from vaouuai to a plaaam. To 
solve thie ргоЫеш we may utilise a well known effeot of the 
linear transformation of wavea. In thia oaae an eleotroaag-
netie wave penetrating into a plaeaa auet get over an eve-
neaoent layer before it reaohee a plaoe in whioh it ia trane-
foraed into an electroatatlo ware. Owing to a ilas.iiIiifl incur­
red In tunnelling aucb a layer the transformation ooeffioient 
oan be of the order of unity only in oaae that a ware-length 
of an incident wave i a comparable with the width of the eva-
neaoent layer. In a nuaber of experimental devioea the oha-
raoteriatio paraaetere, auoh aa a plaaaa denaity or aninten-
aity ot the aagnetio field, reach, however, high value*. It 
ia therefore neoeaaary for the heating ot eleotrone to apply 
wavea with wave-lengtLa much ehorter than the dimensions of 
devioea. Such a aituation ia typioal for example for the 
Tokaaak-devioes, It turna out, however, that the appropria­
tely polarised wavea obliquely incident on a plaama get over 
only * narrow evaneeoent layer before they penetrate In the 
region of the linear transformation. 

The linear transformation of wavea as well aa the wave 
propagation in an inhoaogeneou* plaaaa have already been 
treated in many paper a, moat ot then quoted in [2], Among 
many problems studied so far little attention was paid until 
lately to the penetration and transformation of waves obli­
quely incident on an lnhenogsneous magnetized plaeaa. The 

http://ilas.ii
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authors of. paper [ 1] dealt with the speoial oase of oblique 

Incidence and supposed that the plane of incidence la paral­

lel to the plane given by the density gradient and by* the 

external magnetic flald. In that paper. It was shorn that the 

ordinary wave having the appropriate angle of inoidenoe oan 

be transmitted through region of the plasaa resonanoe. A 

survey of the wave propagation in an Inhonogsnooue piss— 

at oblique lncidenoe was given there and the original r*t»~ 

renoes were mentioned,too. The oblique inoidenoe of a long 

wave length extraordinary wave on a plasam with steep den­

sity gradient has been disoussed in f 5]. It baa been shown 

there that the transformation ooeff ioient of this wave into 

the Bernstein mode is small in this case. 

In our paper we study the propagation of high-frequency 

waves of a small amplitude obliquely inoident oa a oollis ion­

ises magnetised plasma. The density gradient in supposed to 

be perpendicular to the magnetic field. We confine ourselves 

to the waves with frequencies (J granted than the electron 

cyclotron frequency (Jc and we assume that the vacuum wave-

-length is essentially smaller thHn the characteristic length 

of the density inhoaogeneity i£ (^ *a mm/dv J , Accor­

ding to the first assumption we neglect the ion motiony 

according to the second one we solve the problem, using the 

VKB method. The penetration of the ordinary ware Into a 

dense plasma is treated in the oold plasma approximation. 

The transformation of the ordinary ware to an extraordinary 

one and t'j.e transformation of his wave to the Bernstein 

mode oan be investigated in a similar way as it was dona 

in [l]. Thus, we disoues this problems only; Ы Д efiy at the 
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end of our paper. 

I I , FUlffiANENTAL EQUATIONS 

In thle chapter we collect the equations and the boun­
dary oomditiona governing the electrie field of waves in a 
plaae-etretifled magnetised plasma. We assume the plasma to 
be inboaomaneow* alone the y-direotion and the uniform sta­
tic magnetic field to be directed alone the z-axis. Let the 
electromagnetic wave of the form 

be incident froci vacuum on the plasma; /Ьж and "* are ma; A - and **jg 

the ,x «ad у oompcemm* os* Ми wave veetor, respect ive ly; / *> T 
Аеь * . Г is to be chosen in accordance with Г* П the eoMtttiea diY t. * 0 . The electric field within 
the plasms can than be supposed to have the form 

— Щ - * 

Uelae; tne Maxwell equations and the linearised equations of 
oold msgasti hjdinilji—toe we obtain* for the vsotor, 

(3) 
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where 

CJ0 ie the plasma frequency, If 
and A^ * */^г ' i o a a k e notation simpler, we have 
omitted the indices Ц , M* and bJ in the components 
of the electric field. 

The conservation law of the energy flow can be derived 
from che system of eq, (3) and its oomplex conjugate 

4 dj *-д df * dj L* df 

The expression on the left-hand side of (4) is proportional 
to the component of the energy flow which is parallel to the 
density gradient. 

III, THE WKB SOLUTIONS AND THE PROPAGATION OF WAVES 

The derivation of the solution of the system (3) is 
very complicated in orfse of the general dependence of the 
density on y. The problem is considerably sinplified if the 
vacuum wave-length of incident wave. i. « ц oo-par.,, w i t n 
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the oharaoteristlo length of inhoaoeeneity i.e.»/4y« 7 

Then the VKB approximation oan be uaed and a eolation oan be 

found in the fora a the fora J 

(5) 

£, and ** are the aero order quantities in the para-

aeter /ЛЬ and C#j» i» tue first order quantity in the eaae 
parameter. All the three quantities are assuaed to be slowly 
varying f motions of y. Us ins; (з) we obtain froa (3) the 
equations iur the aero and first order VKB approximations 
(see also [з]) 

(«i <**a f«a '°• *.y Ш 

where the ooeff io ients Ф^ a hare the fora 

с 
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г - ?Л1 dBí*)% + i dN* F -/71/ d ^ i V ^ df ' dj L«»* *"* df 

The system (6) haa a solution different froa the trivial 

solution if its determinant /l 

From (5) we can obtain for the dimensionless wave vector 

/1»/ ; 
Introducing dimensionless quantities J? ш °/^c a n 6 

the expression (9) may be rewritten as 

(10) ' 

In (9) or (10) the Indeces 1 and 2 correspond to the ordina­
ry and extraordinary wave, respectively. The second term on 
the right-hand side of (10) representing a square of the 
y-comporent of dimensioneIss wave vector at N-0 has 

A/2 
been studied in [ lj. Thus, to plot the dependence of AL 
on the dimensionless density p , it is suffioieut to carry 
out a translation of the point 0 on the ordinate axis by an 
amount Nj( in figure 1 of that paper. 

If the dispersion equation (8) is fulfilled we can 
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exprese t be y-and s-ooaponents of the e l e c t r i c f i e l d as fvmo-

t ione o f SajJT 

г -̂ д* r г х *̂3 г 
( 1 1 ) Holy* # м ^W* » Cft#* / * я ^WX ' 

wbere ' % Q т е minors of the eye tea determinant /* . Tbe 
dependence of t/»»^ on у oan be determined from the solva­
bility condition of tne system (7) 

Us Ins (11) we obtain from (12) a linear first order differen­
tial equation for C-fajx . The solution of this equation is 
given in tbe appendix. 

Hs>1ng use of (A5) we oan write tbe general VKB solution 
of the system (3) in the form у 

(13) 

г ч ( "« . fir /f?+ij\An 

Let us notioe one interesting feature of tbe solution 
(13). Ve can see that the phase of wave In addition to the 
usual quiokly varying term ] A aV contains the slowly 

NÁ ^ J 4 0 

varying term —j J , too. Such a term is Just typical of 

tbe general oblique incidence and is absent in the majority 

of oases solved till now. This is also dear from the deep­

-rooted term for tfoix $ namely the amplitude. It nay 

be shown that the slowly-varying phase appears in the VKB 
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solutions only when the elipse of polarisation ia twisting 
in its own piano as a result of the wave translation alone 
its ray in an inhomogeneous plasmrv. 

Tiie VKB solutions cannot be used in the neighbourhood 
of the points where /V - * U , N • - o« o r N4 • i J * 
Considering that the reflexion or transformation of waves 
can occur only in these points we must specify their looation 
in the dependence on the plasuia density. It is only the wave 
vector of the extraordinary wave that is infinite, viz., 
in the Hybride resonance 

'.1 ш P ' * 
The extraordinary and ordinary wave branches intersect in 
the points О s U and 

<»> r - — - щ — 
Nothing but the location of the points where AL • e U 

depends on >\ , From (9) we obteiin for these points . 

Tlie equation (l6) is an algebraio equation of degree 3 in p 

and it шау be solved only numerically. The analysis of this 
equation and some solutions in special cases can be found . 
in [*0. Г о г ог«г purpose it is, however, sufficient to deter­
mine the roots of (16) for small values of /Vy (/V « 7 ). 
Then, the smallest root corresponding to t,ie extraordinary 
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wave l a g iven approximately b. 

(17, ?i - «U-4 H-N>)-if*U-4(1+ i.*"*1)Ni)-

On the assumption that JN '£77' **.-̂  a n d *> < < ' t w o re~ 

lainlng root* of (16) correspond to the ordinary wave and 

are looated In the vicinity of the plasma resonanoe 

ив» д . * * '•flrfa-tH'sUrf^ 
The evanescent layer situated between the points BL ила а 

prevent* partly the penetration of the ordinary wave into 
a dense plasma. 

If //\L - • j J **•''/ , we could- derive the expressions 
similar to (17) for 0. . . The thickness of the evanescent 
layer vould be, however, comparable with m> in this 
case and the ordinary wave would be reflected here practi­
cally completely. The same situation oould be found also 
for N ** I . Deriving the transmission coefficient of the 
ordinary wave through this layer in the next chapter we 
shall, therefore, suppose that N << j t Mu - •• sj« 4 . 

Ve «hall now briefly discuss the situation arising if 
the wave (l) la incident on the plasma-vacuum boundary. Sup­
posing the density and its first derivative to be continu­
ous in this region We can negleot the reflexion of wave 
there. On entering the plasma the inoident wave is split 
into an ordinary and an extraordinary wave propagating in­
dependently afterwards. The amplitudes and phases of theso 
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waves may ue expressed as functions of C 0 . The expressi­

ons lor these quantities are very complicated but supposing 

that N << 7 , they turn out practically the satue as tho­

se in [ ll. The extraordinary wave is mostly reflected in the 

point (17) back to the boundary of a plasma. 

IV. PLTLEAION AND TRANSMISSION COEFFICIENTS OF THE ORDINARY 

WAVE 

Provided that Nx « j and /4 ~ ZLTTI** * t w o Points 

p9 and fíL ,where Л . *. Q , are located in the vicinity 
of the plasma resonance. The ordinary wave is evanescent 
between these points and the validity of the УКВ approxiua-
tj on is violated in this region. To obtain the transmission 
coerficient of the wave through the evanescent layer we uust 
continue the solutions (13) to the y-complex plane. To this 
purpose we deduce the approximate iorm of (13) for this re­
gion and шаке it clear where it шау L>e used. We suppose that 
the plasma density near tht plasma resonance has a linear 
profile 

(19) p - o<2 (1* **]) , X >0. 

The wave vector of the ordinary wave can be then rewritten 
as 

<ao> ^ - *«**(}-fj( J - j ^ 
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Jotli the 'ЖЗ approxioation and the expansion (19) are valid 
simultaneously if the variable у fulfils the inequality 

(21) f"£-J «lť]l«1 
On the basis oi* the previous assumptions we can see that the 
points y_ and y» are close together and thus it (4~ fj2) <*• j . 

In the region of th<t plasaa resonance the expression for 
.slowly varying phase (A5) гаау be put into a simple form 

(22) к 

Jerivint; (22) we have uade use of the approximate formulae 

for Mu , F „<: t,x С ^< - ^ í i 

Tne root -Л1- of И^ i s s ituated oetween the points y 2 and 

y , , If the conditions (21) are f u l f i l l e d we &-et tfto expres­

sion for the e l e c t r i c f i e l d of t!ie ordinary wave 

where i Г i t 
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Now ve sbalí prooeéd to deduce the transmission and reflexion 

coefficients* of the ordinary wave. To tble purpose we look 

for a solution representing, in the region N > M. - , a wave 

transferring aaargy to tne region of a denaer'plaaaa, i.e. a 

wave driven by 

HA%MtmiL * ' (25) £ 7 - / / A : c y * 7»' * * у >af3-
Continuing the aolution (25) into the lower half plana and 
going around the turning pointa 9-. and 7- va get a ooabine-
tion of an inoident and a raf leotad ordinary war» for N< *J2 

(»ee[6j) 

R is the Stokes constant corresponding to the 9$aÍBM lina r 
from figure 1. The absolute value of this constant can be 

determined oy the conservation law of the energy flow (k). 

From (26) it is dear that represents also iim abaolute 

value of the reflexion coefficient. Our method doaa not make 

it possible to find the phase of the Stokes constant; there­

fore the phase of the reflected wave cannot be determined 

either. Using (ll),(25) and (26) we get the relation for№1 

from {k) jj 

(„, 1- IRf. MffaflfyJ]] 
I 'it 

On substituting for /L/ from (20) we obtain for 

Эу kieans of the relations (18) the former expression oan be 
written in form 
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х г/ťil/2 

Tlie amplitude of the transolssion coef f ic ient T i s 

Vhen «latchine (26) to (13) and ( l ) we could get the 
P 

relation between the constant H and the vector C-0 . Assu^in;; 
N *< 7 the expression tornOCPfJ »>*«// JM j is, houever, 

approximately the saue as the expression (25) for Л in [lj. 
It is thus clear tliat in this case it is only the coefficients 
of transuiission and reflexion tLiat depend on /V, strongly. 

Having passed through the evanescent layer, the ordinary 
wave propagates further Into a dense plasua up to the point 
(15) where Řfqf m &*% . In an analogous way as in ( lj it 
uiuht 00 cc.onstrated that in this place the baclcward ordi­
nary wave is fully transformed into a forward extraordinary 
wave, Tiiis wave travels then back to lower densities up to 
tue region of the hyoride resonance. 

uvinu' to the siiió-ularity of f**2. in the hy.jrioc resonan­
ce both the Ш:л approximation and the approximation of cold 
liiaoitetohydrodynaulos break down in this region. To obtain 
an adequate descriptiu 1 of tlie electric field of the extra­
ordinary wave in the vicinity of the resonance we should 
include the effect oi a finite toupex^ature of electrons in 
the systeu(3). Li.':o in [!"} wo could then derive a sixth-order 
differential equation for С~ applicable for waves with 
bJ£[<Jc 1 Hb'« ^o-1 the analysis of this equation It would 
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follow that the full transformation of the extraordinary waves 
into the Jemstein modes takes piece in the hybride resonance 
also if . These short-wavelength Bernstein modes 
are practically electrostatic and they propagate back to a 
denser plasiua. 

V. CONCLUSION 

In the foregoing chapters we have investigated the pro­
curation of electrouagnetic waves in an innomogeneous mag­
netized plasua at oblique incidence. Main attention have 
been paid to the propagation of the ordinary wave in a weakly 
inhoaogeneous plasma and to the transmission of this wave 
through the region of the plasua resonance. Ye have discus­
sed the general case of oblique incidence and obtained also 
the new form for the VK3 solutions of this problem. Problems 
connected with the transformation of the ordinary wave to an 
extraordinary one and with the transformation of this wave 
to the Jernstein mode have oeen treated in outline as the 
results of f 1J uay be used to solve them. 

Now, analysing the transmission coefficient T, we shall 
clear up somewhat the conditions at which the ordinary wave 
can penetrate through the region of the plasma resonanoe. If 
we о one i der that/у,. and/Vg represent the direction oosinea of 
an incident Г*У0Ц"Ю1* ^%mi%) w e raay <*•*•*•*»• the vertex 
angle and the axis direotion of the cone consisting of those 
raya that oan penetrate into a denser plaama. Hie wave is ful* 
ly transmitted if/Jp* у ^ d/Žp^^/2Ťrab»o*u»» Г* У for 
this ray. It is seen froui (30) that T is greater than /Л 
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when ť* and jfc fullfil the inequality 

Supposing /Л^, not to be too small we илу deduce from (31) 
that the waves having >*, and ̂ j» fairly different froai 

/
, у oan be transmitted through the region of the 

plasua resonance. For instance if Ot • 1,5 and • у Л - s ^ 

the maximum differences of ť% and Л are 2 dť^ %^9 and 
Zújfi - 2 Г ; if *jkv • *>~l then ZáfK ш 4V and 
2лд - V » i f ^ r * 4о'Ъ tnen / Л Л - *" and 

On the whole, we conclude that electromagnetic waves 
having their angles of incidence in a fairly wide range can 
penetrate into a denser plasma and eventually be transformed 
Into the 3ernstein modes. Owing to the fact thac these uodes 
have a small group velooity and are damped much strongly they 
can effectively heat a plasma. 
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APPENDIX 

Fro» (12) we get for Ц Щ* 
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(«> *' 

o . 

Deriving thia equation we have ueed the relation between the 
minora Hb ^M m 1* It* • Making uee of diaper-
aion relation (9) and the expreaeione for ^pm wo oan rewrite 
(Al) in a fora 

(A2) 

in wfaieh F la given by 

ff(^mfc'. 

After «one algebra we oan ehow that Г ha* relatively eiaple 
fora 

To obtain (A4) we had to ooneider that y 2с ' k » " ^ ZtfT * 

from the right-hand aide of (A3) by uaing the diaperalon 
relation, The eolution of the equation (A2) amy then be 
written aa 
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where С la a oonatant of integration, the minor n^j 

To clarify a little tho origin and structure of tba olowly-
-rarying term in the pfaaee of wave wo afaall 
derive tho expression* (Аб) in another vay In a simple oaao 
that Л^ • (7 , »or tbo 'лтв having tho oloctric rootor 
par alio 1 to tho piano oi inoidonco wo obtain froa (3) this 
equation for 

*A W Д ' d p ^f J/ 

(A7) [ik^)[(4^)4^h^^}^o. 
Tho VKB solution of tni* equation has a form 

(*8) £ 

where 4 * l/te'k-Ni'l/e^ . It lo thue dear that tho 
slowly-varying phaoe lo oomected with tho term Ц(1-Ц,) ^ijdš 
in the oooffioiont at £* in (A7). In general оме when 
NM + 0 it io aloo poooiblo to doduoo from tho ayetorn (3) 
tho difforontial equation of tho fourth order for £ д and 
•iaillar toruo of tho firot order in the parameter &/Л-, may 
be found out in the ooeffioiente at even derivatives of FM . 



- 20 -

REFERENCES 

[ l ] Proinhaoltor J. , Kopecký V. , J . P laso* Phy». 10 (1973) , 

pert 1 , 1. 

[2] Golant V . S . , P i l i * A . D . , U»p. P i s . Vm*k. Ipk (1971)» *13. 

[3] Mitiakor M.A.., Radlofyzika 2. ( 1 9 5 9 ) , 159. 

[k] Bookar H . 0 . , R t i l , Iran*. Roy. Soe. of London 2374 

(1938) , 411 . 

[5] Peratt A . L . , Kaahl И.Н., Radio S o l . 2 ( * 9 7 2 ) , 309. 

|б] goading J . , an In troduc t ion t o Phaaa-Intogral. Matbaé», 

V i lay , 1962. 



- 21 -

Fig. 1 Tha y-complex plana with out* (wavy l ina) and 

Stoka* l ina* (maooth) corresponding to the 

axpraa*ion (2k) for £. 
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