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A theory is given descrivbing the propage tion of Ligh-
-i'requency electromagnetic waves in a plane-stratified weakly
inhomogeneous plasma, The density gradient is supposed %o be
perpendicular to the external magnetic field and the wave
vector is expected not to be gonerally parallel to the plane
given oy voth the preceding vectors., The analysis poinis out
tuat tihe ordinary wave can penetrate through the plasma reso-
nance region if the direction of vacuum wave vector is chosen
appropriateli. Analytical expressions for the reflexion and
transuission coefficients are obtained and their dependence
on the direction cosines of the wave vector of the incident
wave is studied. The paper further siiows in outline that,
af ter transmission through the plasma resonance, the ordina-
ry wave is transtforuwed into an extraordinary wave and the
latter is reflected back to the region of the hybrid resonan-
ce, In this region the extraordinary wave is fully transfor-

med imto the Bernstein wodes,



I. INTRODUCTICYH

Yhen we want to heat a plasma effectively by high-fre-~
quency waves we enocoumder with croat obstacles at the trans-
fer of high-frequency emergy from vacuum to a plasma, To
solve this problem ve may utilise a well known effect of the
linear transformation of waves, In this case an electromag-
netic wave psnetrating imso a plasma must get over an eva-
nesoent layer before it reaches s place in whioh it is trans-
formed into an electrostatic wave, Owing to a dmmping inocur-
red in tunnelling such a layer the tramsformation coefficient
oan be of the order of unity only in ou'o that a wvave-length
of an incident wave is ooglp-rablo with the width of the eva-
nescent layer, In a number of experimental devices the cha-
raoteristic parameters, such as a plassa density or an inten-
sity of the magnetic field, resch, however, high values, It
is therefore Jnooo--ury for the heating of electrons to apply
waves with wave-lengtLs much shorter than the dimensions of
devices. Such a situation is typical for example for the
Tokamak~-devices, It turns out, however, that the appropria-
tely polarized waves oﬁl:l.qnoly incident on a plasma get over
only a narrow ovnndloont layer before they penetrate 1n the

region of the limear transforamation,

The linear transforation of waves a3 well as the wave
propagation im an inhomogeneous plasme have already been
treated in many papers, most of them quoted in [ 2], Auwong
sany problems studied so far little attention was paid until
lately to the penetrstion sad transformation of waves obii-

quely inocident om an inhomogeneous megnetized plasma. The
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authors of paper [ 1] dealt with the speoial oase of oblique
incidence and supposed that the plame of inoidence is paral-
lel to the plane given by the demsity gradiemt and by the
extermal magnetic field. In that paper it wes shown that the
ordinary wave having the apperopriate angle of imcidence ocam
be transmitted through regiom of the plassa resonance, A
survey of the wave propagation in am inhomogeneocus plasma
at oblique incidence was gi'vnn there and the original refe-
rences were mentiomed,too, The oblique incidencve of a long
wave length extraordinary wave on a plasma with steep den-
sity grad%ont has been discussed in( 5). It has been oh:nrn

there that the transformation coefficiemt of this wave into

the Bernstein mode is small in this case.

3

In our paper we study the propagation of high-freguenoy
waves of a small amplitude obliguely incidemt on a collision-
less magnetized plasma, The dersity gradient in -uppt‘nod to
be perpendicular to the megnetic field. We confine ourselves
to the waves with frequencies @ gro_.to!d tban the electrom '
cyclotron frequenoy (J, and we ‘uu-o that the vacuum uv;.— |
=length is easontigll; wsn;llor t.han the characteristic length
of the density inhomogeneity x-l(x ‘d&"n/dj) . Aoocor-
ding to the first assumption we negleot the iom motiom,
according to the second one we solve the problem using the
WKB method., The plenetration of ths ordinary wave into a
Gense plasma is treated in the cold plasma approximation.

The transformation of the ordinary wave to an extraordimary
one and t.e transformation of .his wave tv the Bermstein

mode oan be investigated in a similar way as it was dome

in [1], Thus, we disouss this problems only:briefly at the



end of our paper,

I1. FUMDAMENTAL EQUATIONS

In this chapter we collect the squations and the boun-
dary ocomditionas govo.rn.tnc the electric fielé of waves in a
plame-gtratified magnetined plasma. Ve assume the plasma to
be inhomogenecus along the y~direction and the unifora sta-
tic magmetic field to be directed along the z-axis, Let the

electrommgnetic wave of the form
(1) E‘a up (-iutu’éx +r"22 + {(lf-l"-,{:)@)

be imident frou wvacuum on the 'plu—; ‘X and ‘l are

the .x and y ooqo-_.’nt of the wave vector, respectively;

Py .
" b "E'-' v 60-0 is to be chosen in accordance with
the comiition dt'v F - 0 . The electric field within

the plassma can then be supposed to have the form

(2) E'[F; ".,U(g) 20 (—t'c/t-ﬁl",x +i:€! 2).

Using the Naxwell equations and the lineariszed equations of
old sagasrtchydrodynand .
cold 8 we obtain‘for the vectorLlg r‘z""(J)

e )EI 13[ NNE, = 0,

d
”x-:-" tgf (t:J ) /Y,%; -0,



£, o,
¢MN,EX-1M—;‘—J:*-+3:‘—?+(5._N;)£2 -0,

2
where En - o 2 ‘L 2—6):

W), ()
— 0
w (Q - Ug )

—_ JQ//
C.Ja is the plasma frequency, g - ﬁfj ’ Nx' X ‘f
and Nz * ‘2/‘, . 10 make notation simpler, we have
omitted the indices ‘x ’ ZZ and @/ ir the components

of the electric field.

The conservation law of the energy flow can be derived

from the system of eq., {3) and its complex conjugate

. dE dES vdE dES
X halind 2R -z 2
E, dy Exdg +£, dy £, 43
(4)

N EEEE) - MG E, 6 ES) - cont

The expression on the left-hand side of (4) is proportional

to the component of the energy flow which is parallel to the
density gradient,

III, THE WKB SOLUTIONS AND THE PROPAGATION OF WAVES

‘

The derivation of the solution of the system (3) is
very oomplicated in ocdse of the general dependence of the

density on y, The problem is oconsiderably sinplified if the

VYaouus wave-length of incident waves is small compared with
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the characteristic length of inhomogeneity i.e.d/" << 4
Then the WKB approxisation can be used and a solutiom can be

found in the form

J
- = 2 "/‘ ( ”djl
sy E=(Eqtp *ba ‘7))’ 77

E“I and ‘J are the sero order gquantities in the para-
meter /k and E“) is tue first order quantity in the same
parameter, All the three gquantities are assumed to be slowly
varying funotions of y. Using (5) we obtain from (3) the
equations iur the zero and firet order WKB approximations
(see also [3]) '

6 g Ewg 0. mg= 14l

(7) a, E“,ii "-6‘, fﬂx,ZHJ,JHz,

where the coefficien’s aﬂ' l have the form

a,, --N’ Nee, ; Hg ay" a, MM ;
2
am"MrNiﬁ.? ' “zz’Mz'M & sty -N7A‘/'r'

by (v
aye €,-Ne ‘Ngz i NJ- &

v

The sbesolute terms Y, are given by

dh, “E«zz
G “2iN 47 o)X ‘#me A{: d’, ,

G'tN-J“- i, 2wz

X d7 d} ’



-8 -~

PR VIR-LIOT I & dEuy
GJ'Z‘/Y’ dy ( E(on /Vz dy -

The svstew (6) has a ,olution different from the trivial

solution it its determinant A
(8) A = /a41/ = 0

From (%) we can obtain for the dimensionless wave vector

N;uz {0 N )ere)-9- 2K 2

(9)
[(( Nz)'n".)? th) ‘re( ((Q'N) 72} M((QEJG M}f&g)]é

Introducing dimensionless quantities 0 = (‘)/02 and

/"J the expression (9) may be rewritten as

/
N fz R A {ZPZ'P["“”"V:(Q“Z")]

(10) A

» 2L AN £ p[(-N)+ 4N (o /")]4}

In (9) or (10) the indeces 1 and 2 correspond to the ordina-

ry and extraordinary wave, respectiveiy. The second term on
the right-hand side of (10) representing a square of the

y=compor.ent of dimensionelss wave vector_ at N‘, - 0 has
been studied in[ 1], Thus, to plot the dependence of N’2
on the dimensionless density 0 , 1t is sufficieat to carry
out a translation of the point U on the ordinate axis by an

2
awount Nx in figure 1 of that paper,

If the cispersion equation (8) is fulfilled we can
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express the y-and z-components of the electric field as fumoc-
tions of ©) x

May
(11) E(O)" N,‘ me R Ew’,—ﬁ;_E(o)x ?

where PLS are minors of the systeam determinant A . The

dopendence of on y oan be determined from the solva-

(0)x
bility condition of the system (7)

(12) 6, M, - G, M, + GMyy=0

Using (11) we obtain from (12) a linear first order differen-
tial equation for EWX . The solution of this equation is

given in the appendix.

Making use of (A5) we can write the general WKB solutiom
of the ly-to- (3) in the form y

(N s N, (6 ¢ Z”/:‘dv?'*

+6—L ‘+l2 ];-i/‘,md ’

NL‘Q

(13)

let us notice one interesting feature of the solution
(13). Ve can see that the e of wave in addition to the
usual quiokly vﬁryinc torm ? Jy contains tho slowly
varying term "'2" f , too. Suoh a term is jJust typiocal of
the general oblique incidence and is absent in the majority
of oases solved till now, This is also olear from the deep-

~rooted term for E s namely tho amplitude, It may

(o) x
be showm that the slowvly-varying phase appears in the WKB



- 10 -

solutions only when the elipse of polarisation is twisting
in its own plane as a result of the wave translation along

its ray in an inhomogeneocus plasmn,

The WKB solutions cannot be used in the neighbourhood
\
of the points where N" = 0 , N" ® ©9 or N,(" ’t”;’, .
Considering that the rerflexion o1 transformation of wavea
can occur only in these points we must specify their location
in the dependence on the plaswa density, It is only the wave
vector of the extraordinary wave that is infinite, viz,,
in the hybride resonance
t .4
= X -

(14) F
The extraordinary and ordinary wave oranches intersect in

the points P= 0 and

(1-N) b Y
(15) p = ItNT
‘ |

Nothing out the location of the points where Nl = 0

J

depends on M . From (9) we obtain for these points

a6, ((6-NY-g7)- N} (50,6 M)-g2 Mg,

Tae equation (16) is an algebraic equation of degree 3 in 1 4
and it wmay be solved only numerically, The analysis of this
equation and some solutions in special casos can be féund .

in [14] For our purpose it is, however, au.fi’iozient to deter-
2
mine the roots of (16) for small values of Nx (Nx < ', ).

Then, the swallest root corresponding to tae exfraordinury
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wave is given approximately b,

ct/V"
_4)Nzi)'

(17) Py = « (- 1) (1-N, }-—u(d- 4)(1

2 4 2

- < -
On the asasumption that IM “.‘W I 4 and Nx << " twu re
rmaining roots of (16) correspond to the ordinary wave and

are looated in the vicinity of the plasma resonance

1
2 1
2 of Jasd -M} 2Ny
(18) B,3‘ ol #? -—3( d’ N} [ 1‘4 ) =

The evanescent layer situated between the points Pz a.nd/a,

prevents partly the penetration of the ordinary wave into

a dense plasma,

Ir }A‘z_;T/..'i , We could derive the expressions
similar to (17) for Py K The thickness of the evanescent
layer vould be, however, comparable with bﬂ in this
case and the ordinary wave would be reflected here practi-
cally completely. The same situation ocould be found also
for N’ N” . Deriving the transmission coefficient of the
ordinary wave tlu;ough this layer in the next chapter we

2
shall, therefore, suppose that M,z << 'f ,/A{' - 0-‘—:17/<< 4 .

Ve shkell now briefly diacﬁn the situation arising if
the wave (1) is imcident on the plasua-vacuum boundary, Sup-
posing the density and its first derivative to be continu-
ous in this region we can negleot the reflexion of wave
there, On entering the plaswa the incident wave is eplit
into an ordinary and an extraordinary wave propagating in-

depsndently afterwards. The awplitudes and phases of the,sd
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waves may ve expressed as functions of é; . The expressi-
ons for these quantities are very coumplicated but supposing
that NX2 << 4 , they turn out practically the saue as tho-
se in [ 1]. The extraordinary wave is mostly reflected in the

point (17) back to the boundary of a plasma.

IV, RLFLEAION AND TRANSMISSLON COEIFFICIENTS OF THE ORDINARY

WAVE

N - /<A

Provided that /¥ <« 1 and [ ~ 23 /« two points

p, and o, ,where A ,» 0 , are located in the vicinity

2 3 ’f

of the plasua rcsonance, The ordinary wave is evanescent
vetween these points and the validity of the WKB approxiua-
tion is viclated in this region, To obtain the transmission
coelfficient of the wave through the evanescent layer we wust
continue the solutions (13) to the y-complex plane. To this
purpose we deduce the approximate form of (13) tor this re-
gion and wake it clear where it may e used, We suppose that
the plasua density near the plasma resonance has a linear

profile

(19) p'dz(/"a{“J) ] )t)U

The wave vector of the ordinary wave can be then rewritten

'(20) Nﬂj - gux2(7_72)(g_73)
w.ere }‘z,s = )‘% ("%‘f_' 'I)



-1’-

Jothh the WK3 approximation and the expansion (19) are valid

simultaneously if the variable y fulfils the inequa.ity

£ % /
(7o) < 1oyl <

3 7
On the basis oi the previous assuuptions we can see that the
points y, and y, are close together and thus af(ys- ﬂz) << 4.

In the region of the plasma resonance the expression for

slowly varying phase (Aj) way be put into a siuple form

o [
f(J} &(Zok)" (?‘76)[(3' 320y~ 7’))’/2 ]
(22) L(_ZM)_M ‘5,))42[4‘7 51),__]

x(2otu) &] (Y- 3:) (34 30)
2 2
(x-1) . N,
where o™ %t—_ , W= —(7z&g')_(73+7,)= z;-—’;—e-i—
Jeriving (22) we have wuade use of the approxiuate foruulae

for M“ ’ F anc 5‘ (A/Jf -A(;;)

. d)_{_ A 2_ 2 - (o §
) Mg G, Fral-ha)= orary

Tue root ~70 of M" is situated .etween the points Ya and
v, If tlie conditions (21) are fulfilled we get thc expres=

sion for the electric field of the orc.ina.ry wave

@ £, , A, (guﬂf

wilere

A aried apeptn- g lgepen) sy zmz,j
b4

) (- WLy (g
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Now we shall proceed to deduce the transmiseion and reflexion
coefficienits of the ordinary wave, To this purpose we look
for a solution representing, in the region 7 > 53' s 8 r:nw
transferring emergy to the regiom of a dena¢r plasmm, i,e, a

wave given by f 4 dJ

(25) E:' HA’Z(J)" » 1>4d

Conti.uing the solution (25%) :u:to.tho lower half plane and
going eround the turning points !2 and 73 we geot & ocombina-
tion of an inocident and a rorl;otod ordinary wave torj‘ 72
(see [6]})°

(26) E H,flslﬂg (A’S /A"J’J’A '["'?)

R is the Stokes constant correspo.iing to the S$aekee l.i.n. r
from figure 1, The absolute value of this oconstant ocan be
deteruined by the conservation law of the energy flow (4).
From (26) it is clear thatl R ’ represents also fho absolute
value of the reflexion coefficient, Our method does not make
it possible to find the phase of the Stokes constrontj there-
fore the phase of the reflected wave cannot be determined

either, Using (11),(25) and (26) we got the relation for/K/
from (4)

o 1 IR ap (- 2[ /“7""’1]

On substituting for A 4 from (20) we obtain for IR]

(29) { {- uﬁ[‘ 204 (4 72)]

By weans of the relations (18) the former expression oan be

written in foruw
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(29)IRI { L@[T(Zu)b—il(fﬁ) (;%—N_:)t _i_/_\/;)

The ampiitude of the transaiss.on coefficient T is

(BO)I / oap -_(z )4‘,« oul) (a_:{r_%z)t%?z_)}

Waen watching (26) to (13) anc (1) we could get the
-,

\

relation between the constant H and ti.ue vector 50 . dAssuuing
Nz << 4 the expression for H&lf{ f/A’} is, however,
approxiuately tie sauc as the express;on (25) for .l in [1].

It is tius clear that in this case it is only tiie coefficienis

2
of transuission and reflexion tuat cepend on Nx strongly.

Naving passed throwru tie evanescent layer, tiie ordinary
wvave 1;ropac;atea furtiier into a dense plas.a up to the point
(15) wiere l,, - 472 . In an analocous way as in [ 1] it
Qlgat oe cewonstratec taat in tiuis place the daclwarc ordi-
nary wvave ls fully iransfor.uec into a forwarcd extraorcinary
wave, Tiis wave travels tlien, Dhacl: to lower cdensities up to

tae region of the ayoride resonance,

uwing to the singularity of ’1 in the hy.uricde resonan-
cge .ot. the Wil) approxiuation anc ti2 approxiwation of cold
uacnevonycrodynauics breal: down in tais region. To obtain
an acequata descriptiv . of tiwe electric fielc of the exira-
ordinary wave in the vicinity of the resonance we should
itwcluce the effect of a finite touperature of elecirons in
the systeia(3), Lie in [1] we coulc tien cerive a sixtu-orcer
¢iffescontlal oquation for E applicavle for waves with

Ué(uc ' 3“ J Fro. tic analysis of this equation it would
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follow that tie full transforuation of the extraordinary waves
into tae Jernstein modes talkes plsce in the liybride resonance
also if N¥+ 0 . These short-wavelength Bermstein modes
are practioally electrostatic and they propagate back to a

denser plasua,

V. CONCLUSION

In the foregoing chapters we huve investigated the pro-
sazation of electrouagnetic waves in an innomogencous uaAge
netized plasua at oblique incicence. Main attention have
been paid to the propagation of the ordinary wave in a weakly
inlioiaopgeneous plasmma and to thic transuission of this wave
through the region of the plasua resonance, We nave discus=-
sed the general case of oblique incidence and obtained also
the new foru for the WK3 solutions of this problem, Problems
connected with the transforuation of the ordinary wave to an
extraordinary one and with the transforiation of this wave
~to thne 3ernstein wode have oseen treated in outline as the

results of (1] uay be used to solve thew,

Now, analysing the trans..ission coeffiocient T, we sball
clear up sowewhat the conditions at which the ordinary wave
can penetrate through the region of tie plaswa resonance, If
we consider thntM mdN; represent the direcotion ocosines of
an incident rayw‘-mﬁ ,N;mﬁ) we nay determine the vertex
angle and the axis direction of the cone consisting of those
rays that oan penetrate into a denser plasua. The wave is fule

A 4
1y transuitted if p# * — and f4Hs3%n .
y ‘ ﬁ,o ; 20 (m’.bouuso T 41 for
-this ray, It is seen frow (30) that T is greater than /‘



when J". and J’! fullfil the inequality

PAL
(31) (ﬁ-ﬁ'o)z..?({g-ﬁ,o)z <2 (77' i—::

Supposing ‘/‘b' not to be too small we .ay deduce from (31)
tlat the waves having f4 and '  fairly ciffereat frow

’ (" can be transuitted through the region of the
J.I,D &£,0 -4
plas.a resonance, For inscance if oK * 4,5 and g/ﬂ,‘ 10

the uaxiwum differences of fy ana fp are 2 Af X »° ana

18y »2%° ; ar HfR = 0% thea 24p, « 12° ana
ZA!‘ » l‘ ; if “/4', s /0'3 then IA/‘ - 4° and
24f, - 230" °

On the whole, we conclude that electromagnetic waves

' having their angles of incidence in a fairly wide range can
penetrate into a denser plasua and eventually Le transforued
into the Bernstein wodes., Owing to the fact thact these uodes
have a swall group veloocity and are dauped wmuch strongly they

can effectively heat a plasua,
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Frow (12) we et for EWX

IN (1o 222) N

(. Da).p Myy_ | dbax |
My X

My My Myy dy
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Deriving this egquation we have used the relation between the
ainors n,, ”n - ”.u ’715 . Jaking use of disper=-
sion relation (9) and the expressions for H’l we can rewrite
(Al) in a form

2,6 (Nyi-3) o [ Nyta (ke W:;} .
(42) My dy (di( My )+.;’:-d’ E"O'

in whieh F is given by

_‘!4._...‘;'2_, }5 ”(

My

Mes d’ 'n,, 45)

w>+”’-~—3’* i)+ -”L[ Hnen)- e Lo

| + (M,,- ”u)( ! d;;-” - AM“ )]

Af ter some ulgobra wo ocan show that l' has relatively simple
form

F.(N +I$-5) (N’-l}# [(M")(i'M'”z)"’
M G N 1 22 M 2R1)]

{To obtain (A4) we hnd to oonsider that 7i-(e -9) %— ’
& dg/y 9“6’4 =dy/,1- ) and to r the ters %ﬁf
from ¢ r:lghtdnnd side ot (43) by using the aispersion

relatiom, The solution of the squatiom (A2) may then be
written as



M, g g
(as) E(o)x- C[ %& (*I -”’,ﬁ] < 2 )

where C is a constant of integration, the minor M, "f(ﬁ-'(f)—
- (g-N2-N}2j (€, - M) and
2rF

P |
Flay 4
(a6) .f J M, ~1 £ (,y:'_ ,{{)

To clarify a little the origin and structure of the slowly-
=varying term f’('1/2 in the phase of wave we shall
derive the expressions (A6) ir another way in a simple case
that M -0 , . For the wave having the electiric veotor
parallel to the plane of incidence we obtain from (3) this
eguation for V
2 2
£ (EJ.'N:) _f‘c:iE - Nx :;:.1' :;x

) I {(Q—N,’)[(e, ) “_92] . Nx(f-ﬂf)i-‘;-}E'}' 0.

L o

The WEB solution of thirs equation has a form

J
N M (-N) [dg  dy .
(48) Eu'c(f\sq )‘7’[ 2 d_;lv,e,(s‘—»g‘)"/‘}d’]v

2

where N:l’ ‘:/;;-g-na‘-%, . It is thus clear that the
slowly-werying phase is oomnected with the term A/ (1-N,) d?/di
in the coefficient at E,, in (A7). In general case when

N‘ # 0 1t 1s also possible to deduce from the system (3)
the differential equation of the fourth order for L, and
simillar terms of the first order in the parameter g/‘., mRy
be found out in the coefficients at even derivatives of E, .
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Fig. 1 The y=-complex plane with cuts (wavy line) and
Stokes lines (smooth) corTesponding to the

expression (24) for EX
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