FORISATIONS PERCENDED ASSOCIATIVE D'ATOMES As PAR DES ATOMÉS METASTABLES He $(2^{1}S)$ et He $(2^{3}S)$

A.FESMELLE, G.WATEL, C.MAMUS

Service de Physique Atomicue Centre d'Etudes Nucléaires de Saclay BP N°2 - 91190 Git-sur-Yvette (France)

Les sections efficaces d'ionisation Penning et associative ont et l'imesurées en fonction de la vitesse relative des particules, pour les systèmes He $(2^{3}S)$ + Ar et He $(2^{1}S)$ = Ar, dans le domaine 0,03 - 0,40 eV (1200 - 4500 m/s).

Ces mesures sont effectuées dans une expérience de faisceaux croisés, (faisceau ile modulé, faisceau Ar continu) par la méthode de temps de vol. La composante $\operatorname{He}(2^{1}S)$ est, suivant les expériences, suprimée par pompage optique. Les ions Ar^{4} et H. Ar créés sont analysés en masse. Les ions et les atomes métastable : ont détectés et comptés sur une unité de temps de vol. Leurs spectres de temps de vol sont exploités afin d'en extraire les diverses sections efficaces/1/.

Les rapports $\sigma_{IA} / \sigma_{IT}$ représentant le pour contage d'ionisation associative, pour He (2³S) + Ar et He (2¹S) + Ar, sont représentés sur la figure 1. A la vitesse la plus faible mise en jeu dans l'expérience (1200 m/sec.) its ne dépassent pas 20% et 40% respectivement. Dans le cas de He(2¹S), nos résultats sont en bon accord avec ceux de Chen et al. /2/. Le rapport σ_{IT} (He 2¹S) / σ_{IT} (He 2³S) des sections efficaces d'ionisation totale $\sigma_{IT} = \sigma_{IA} + \sigma_{IP}$, est reproduit sur la figure 2. Il atteint des valeurs aussi élevées que 3,5 à 1300 m/s et décroit de façon monotone jusqu'à 0,5 à 4500 m/s. Ces valeurs sont en bon accord avec la valeur 2,2 donnée par Chen et al. /2/ à 65 meV (1850 m/s) et avec les très récents résultats de Illenberger et al. /3/. Les sections efficaces σ_{IP} (v) +t σ_{IA} (v) sont tracées sur les figures 3 et 4. On observe une croissance monotone de G_{IP} (He 2³S) avec la vitesse dans jout le domaine étudié (1200-4500 m/s) alors que σ_{IP} (He 2¹S) est presque constante pour v> 2500 m/s. Aucun résultat de mesure directe des sections efficaces d'ionisation Penning et associative en fonction de la vitesse n'est disponible dans la littérature; aucune comparaison ne peut donc être effectuée. Les sections efficaces d'ionisation totale $\sigma_{IT} = \sigma_{IA} + \sigma_{IP}$ sont représentées sur la figure 5. On observe un bon accord entre les pentes de la section efficace σ_{IT} (IIe 2³S) o' tenue dans l'expérience présente et de la section efficace de destruction des atomes He (2³S) dans la postiuminescence de décharges /4/.

Une interprétation théorique des sections efficaces σ_{TA} (v) et $\tilde{\sigma}_{1P}$ (v) est effectuée pour le système He (2³S) + Ar. Elle est fondée sur le modèle de Nakamura /5/, et ses hypothèses fondamentales sont : a) la collision satisfait les conditions d'application de l'approximation de Born-Oppenheimer, b) l'ionisation est considérée comme une transition de Franck-Condon entre les potentiels des voies $He^{\pm} + Ar = He^{\pm} + Ar^{\pm}$, c) la valeur de la fréquence de transition Γ est la conséquence du caractère résonant de l'état initial discret He* + Ar qui est noyé dans le continuum des états He + Ar^+ + é, d) l'état He^{*}+Ar étant résonanc, s'auto-ionise à la fin de sa durée de vie naturelle \hbar/Γ : la transition peut donc avoir lie. même si les deux particules sont au repos. La variation d'énergie cinétique n'est donc pas la cause de la transition : c'est l'hypothèse adiabatique. Deux électrons étant mis en jeu dans le processus, c'est l'interaction électrostatique entre ces deux électrons qui constitue la perturbation. Les calculs classique et semi-classique des sections efficaces $\sigma_{IT}(v)$, $\sigma_{IA}(v)$ et $\sigma_{IP}(v)$ conduisent à un bon accord entre sections efficaces théoriques et expérimentales (voir Figs. 4 et 5). Le potentiel de la voie d'entrée $He(2^{3}S) + Ar$ choisi est celui d'Olson /6/. La forme exponentielle pour $\Gamma(\mathbf{R})$ semble la plus réaliste; $\Gamma(\mathbf{R})$ est choisi égal à Ae^{-**R**/**B**}. Les valeurs obtenues à partir de O_{1T}^{-} (v) sont A = 4000 u.a. et B = 0,360 u.a.

Des informations sur le potentiel $V^{\dagger}(R)$ de la voie de sortie He+Ar[†] sont déduites de σ_{IA} (v) et σ_{IP} (v). Les valeurs de $V^{\dagger}(R)$ obtenues décrivent l'interessant domaine du puits de potentiel dont la profondeur est trouvée égale à 16,5 meV et le minimum situé à 5,8 u.a. (soit 10 Å) (voir figure 6). Ces valeurs sont en bon accord avec le puits de potentiel (18,3 meV - 5,7 u.a.) estimé à partir de la courbe de potentiel Ar + He⁺ obtenue par diffusion élastique différentielle /7/ et des valeurs relatives des polarisabilités α_{He} et α_{Ar} . Un bon accord est aussi observé avec le puits de potentiel (16,7 meV-5,7 u.a.) estimé en additionnant l'interaction induite – $\alpha_{He}/2R^4$ au potentiel He+Ar obtenu par diffusion élastique différentielle /8/.

REFERENCES

- /1/ A. PESNELLE, A. HOURDIN, G. WATEL and C. MANUS
 J. Phys. B <u>6</u>, L 326 (1973).
- /2/ A. PESNELLE, G. WATEL and C. MANUSJ. Chem. Phys. accepté pour publication.
- /2/ C.H. CHEN, H. HABERLAND and Y. LEE

J. Chem. Phys. <u>61</u>, 3095 (1974).

- /3/ E. ILLENBERGER and A. NIEHAUS
 Z. Physik B 20, 33 (1975).
- W. LINDINGER, A. L. SCHMELTEKOPF and F. C. FEHSENFELI
 J. Chem. Phys. <u>61</u>, 2890 (1974).
- /5/ H. MAKAMURA J. Phys. Soc. Japan <u>31</u>, 574 (1971).
- /6/ R.E. OLSON Phys. Rev. <u>A6</u>, 1031 (1972).
- /7/ F.T. SMITH, R.P. MARCHI, W.A. ABERTH, D.C. LORENTS
 and O. HEINZ Phys. Rev. <u>161</u>, 31 (1967).
- /8/ C.H. CHEN, P.E. SISKA and Y.T. LEE

J. Chem. Phys. 57, 601 (1973).

-4-

Figure 1

Rapport de la section efficace d'ionisation associative σ_{IA} à la section efficace d'ionisation totale σ_{IT} , pour He(2¹S) +Ar et He(2³S) + Ar.

Courbe expérimentale (elle est composée d'environ 200 points; quelques barres d'erreur typiques sont données).

Figure 2

Rapport des sections efficaces totales σ_{IT} (He2¹S) $/\sigma_{IT}$ He(2³S)

- ----- Courbe experimentale (comme sur la figure l)
- ▲ point expérimental /2/.

VELOCITY

(10³ cm/sec)

Ę

Figure 3

Sections efficaces d'ionisations Penning et associative pour He $(2^{1}S) + Ar$.

Courbe expérimentale (comme sur la figure 1),

-5-

Figure 4

Sections efficaces d'ionisations Penning et associative pour $He(2^{3}S) + Ar$.

_____ Courbe expérimentale (comme sur la figure 1).

Courbe théorique (Les résultats expérimentaux sont relatifs Cependant une échelle de valeurs absolues, à droite de la figure, a été obtenue par les calculs théoriques.)

Figure 5

Sections efficaces d'ionisation totale pour He (2^1S) +Ar et He (2^3S) + Ar.

----- Courbe expérimentale (comme sur la figure 1).

▲ points expérimentaux /4/. x points expérimentaux /9/.

----- Courbe théorique (comme sur la figure 4).

Figure 6 Potentiel d'interaction V⁺(He+Ar⁺ ... travail present; comparaison avec: ... V⁺ (He+Ar⁺) calculé avec V(He+Ar) - \propto He/2R⁴ $s \neq x$ V⁺ (He+Ar⁺) donné par Chenet al. /2/.