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A SIMPLE PARAMETRIZATION OP THE DENSITY-MATRIX 
EXPANSION AND SKYRME-LIKE FORCES. 

J. Treiner, H. Krivine 
I.P.N. 

Abstract. 
The validity of the density-matrix expansion (DME) is 

investigated using two different interactions : the Brink and Boeckor 
Bl force and the Campi-Sprung G-0 force. Simple parametrizations of the 
Hamiltonian density are discussed and the connection between the DME 
and Skyrme-like forces is examined. 
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I - INTRODUCTION 

The density matrix expansion IDME) proposed by 
Negele and Vautherin 1 ll allows one to construct, from a two-body 
interaction V(ri,rj), an effective nuclear Hamiltonian density, 
depending on the densities p and p , their gradients 7p , Vp and 
the kinetic energies densities i n and T„. 

Formally one can separate this Hamiltonian density 
into two terms : the first one corresponds to th° nuclear matter 
energy at the local densities and the second one, in which the gra
dients of the densities appear, corrects the departures of the 
density matrix in the nucleus from its value in nuclear matter. It 
has been claimed that this second term is essentially determins'j 
by the long range behaviour of the force îref.l, chap.III). 

The purpose of the present paper is to further 
investigate the validity of the DME, and to study its connections 
with phenomenological forces [ 2], | 3] such as the Skyrme interac
tion i 4) or semi-phenomenological Hamiltonian densities such as 
those derived within the energy density formalism (EDF) [51. 

In section II we compare the results obtained with 
the DfE with those of exact Hartree-Fock (HF) calculations for -.wo 
different effective forces : 

i) that of Brink and Boecker [61 modified by 
Vautherin and Veneroni I 7] hereafter referred to as BiB, and ii) 
the density dependent interaction G-0 of Campi-Sprung ( 8) . 

In the framework of the DME, the functional depen
dence of H in V(r~, ,r2) is rather involved and requires the storage 
of 4 functions of the densities. Since in the H.F. method we essen
tially need the values of these functions around saturation densi
ties, it is reasonable to look for approximate parametrizations 
accurate around saturation. For this purpose, we construct in 
section III a simple expression of the Hamiltoniëin density H repro
ducing the . jUlts of the exact DME calculations, and we compare it 
to the functionals obtained with the EDF (section IV) . 
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It is known [ 9| that the K.F. energy calculated 
with a Skyrme interaction can be written as the integral of a 
simple functional (identical in this case to the DME Hamiltonian 
density, depending linearly on the interaction parameters, in view 
of the successes of this kind of interaction [10|, it is interesting 
to look for a qualitative and quantitative derivation of these 
parameters. 

Therefore in section V, we construct a Skyrme-
type interaction which reproduces accurately the energies per par
ticle, densities, mean square radii and the single particle spectra 
given by the DME with interaction G-0. We show that a density depen
dent term proportional to p 1 / 6 significantly improves the agreement 
as compared to a linear density dependence. 

II - DME CALCULATIONS 

l. Background and notation 

In the DME, the angular average of. the two-body 
r"i,r2) is expanded arounc 

in terms of the relative distance r=r"i -r2 

density matrix p(ri,rz) is expanded around the value R » r'_ r' 

-Î- / dn p(R+ £,R- -) = -i- / dQ = Z ¥*(R+ -)¥„<&•- -) 
4ir -/ s 2 2 4n •> s m m 2 m 2 

(1) 

— p(R) + 35 E- [±V2p<R)~r(R!+ -p(R)k|,l 
rk p 2(rk p)

3 4 5 * 
= 3 

In formula (1) : 

p(R) = I ¥ (R)*¥ (R) is the nuclear density, and 
m ™ m 

T!R) = I fy*(R)fym(I) ie the kinetic energy density which 
m 
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is equal to — pk2 in nuclear matter with a Fermi momentum 

kF(kF=(3ir
2p/2)1/3). 

This expansion, truncated at the second term, 

inserted into the H.F. expression for the potential energy, brings 

the total energy into the following form : 

/HIR )d]R , (2) 

where H(R) is the following functional of the densities p (R) and 

Pp(R) : 

Htpn(R),Pp(R)]=p(R)(E/A)NM+ 22 ) x"- l T ( S ) " -p(R)k|(R)]+Ci|Vpi(R)
2|> 

+D Vpn(R)Vpp(R) (3) 

In equation (3) , (E/A.) represents the energy per 

particle in nuclear matter with densities p_= ki, and p = k'. 
p Sir2 P n 3-rr2 n 

The functional quantities Cn= C(p ,p ), C =C(p ,p ), D= D(pn,p ) 

h 2 

and (Pn'P )
 a r e defined by equations (3.7) to (3.10) and (3.44) 

2m* 

of rfif.l. 

In symmetric nuclear matter (Pn=P_
=ê) with Fermi 

momentum k„, the expression for the effective mass is, for a central 

force : 

J i i - à i + B (4) 
2m 2m 

where : 

B-35_ 
irk F 0 

f I v

2 S + 1 ' 2 T + 1 ( r ) j ^ k p r J j a t k p D d r (5) 
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and 

2S+1.2T+1 , 3 3 3 3 

:: V (r) * V 1 (r)-3V1J(r)-3VJl(r)+9VJ (r) 
E 

The labels S and T refer to spin and isospin 

states. 

One should point out that this definition of the 

effective mass does not coincide with the usual one [11] which is 

obtained by expanding the nuclear matter one body potential U(k) 

in powers of k2 : 

U(k) = ̂  <kn|V|kn> - <kn|V|nk> 

n ^ F ( 7 ) 

o 
= Uo + k 2U 2 +... 

Indeed, this expansion leads to the following effective mass 

-Si « »i , U, (8) 
2m 2m 

ki. f 2S+1,2T+1 
with U 2 = — / I V (r) rJj,(k„r) dr (9! 

k* f 2S+1,2T+1 
U 2 = -i / i v (r) r'j,(kpr) dr 

3» Jn E r 

0 

Using the constant value U 0 as potential and the 

effective mass given by the formula (8) is certainly a good appro

ximation around k=0. However significant discrepancies appear near 

the Fermi level k„ as can be seen on fig.l. On the contrary defini

tions (4), (5) can be shown to yield a much better overall agreement 

in the range 0 < k < k p. Indeed we prove in appendix A that the 

effective mass B of the DME method can be defined as the coefficient 

of k 2 in a second degree polynomial minimizing the quantity : 

Q(Vn,B) = Ï [U(k) - (Vn+B k
J)]2p(k) dk 

J0 

where P (k) = — k 2 (10) 
k 3 

*F 

is the momentum probability density inside the Fermi sea. 
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2- Muclear matter term 

Let us now present the numerical method used in this 

paper to calculate the function (E/A)„„ appearing in the functional H. 

We first analyze (see Appendix B) the properties of 

symmetric and asymmetric nuclear matter calculated with various poten

tials. We then show that it is possible to construct a simple parair.e-

trization of E/A (k F,o), o » P valid even in the region o ̂  1 

(case of neutron gais) . For this parametrization which looks like a 

Taylor expansion around the saturation momentum k„ of symmetric 

nuclear matter, we have adopted the following polynomial form : 

E/A = kj. (ao+aiAk+aJAk
2+asAk

ï)+a2k|, (a,+a5ûk) (il) 

wnere 

ik = k„ - k, , 

formula (11) exhibits the expected k\ dependence at low density (kinetic 

energy term). However the numerical values of the coefficients a± have 

not been determined so as to reproduce exactly this term. Indeed we 

tnink that in the DME spirit it is more useful to adjust the values of 

the coefficients a^ by requiring an accurate description of nuclear 

matter properties uround k„ . 

In table {iJ we give t.ie numerical values of â^ for 

the interactions 6-0 and BIB aad from fig.(2) and (3) it is seen that 

they lead to a very good agreement with exact results. 

3. Functions B, C and D 

Figures (4) and (5) show the functions C(p ,p , p n p 
and U(p ,p ) wich Pn^P0°" ~ • i.e. C(kF,u=0) and ii(kF,a=0) for 

various potentials. Since these functions and their derivatives 
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vary very rapidly at low density, we have preferred to tabulate them 
on a regular mesh in rC and o rather than in o and p D as is done in 
reference 116J. The constant steo of .1 fm _ 1 in k„ that we have adopted 

- 5 - 3 
is for example equivalent to a step in p varying from 6-10 fm at -2 -3 zero density to 3.7 .10 fm around saturation density. The step in 
a was choosen equal to .1. 

The tabulation of B has been done in the same way 
and intermediate values needed for the integrals have been obtained 
with a six points interpolation formula [12]. Our H.F. calculations 
with the UME functional H have been performed using the code of 
Vautherin. 

4. Results 

Our results are shown in tables (2) and (35 for G-0 
and Bis respectively, and a comparison is made with exact H.F. 
calculations 113 J, [ 1 <t ]. 

We obtain slightly overbound nuclei (.4 to 1. MeV per 
particle) and too small radii. In the case of G-0, the radii discre
pancy is almost constant (.2 fm) for all nuclei while in the case of 
31B, it increases from .1 in o to .3 fm in Zr. 

In figs. (6), (7) and (8) we show the effect of the 
DM£ approximation on the densities : the DME tends to maintain high 
densities inside the nuclei and to decrease the surface thicknesses. 

208 Except for Pb calculated with G-0 interaction, this produces, in 
all other cases, a smoothing of the oscillations in comparison to 
those given by exact H.F. calculations. 

Figures (9), (10) and (11) display the spectra of 
individual levels obtained with G-0 and BIB. The discrepancies with 
exact HF results are similar for all nuclei : the levels are gene-

In the case of G-0, center of mass and starting energy corrections 
have been neglected. In the case of Bis, we included a center of 
mass correction (direct term only). In both _ases, we have used a 
short range spin-orbit force (see, e.g. ref.l) with strength w 0 » 
-130 MeV fm5. We only calculate the direct term of the Coulomb energy. 
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rally overbound by 1 to 2 MeV near the Fermi surface. 
In table (2), fig. (9) and (10) the results of 

calculations using U, for the effective mass (equations (8) ana 
(9)) are also presented and denoted (2) . We see that energies per 
particle, radii, and proton and neutron densities are in good 
qualitative agreement with those obtained using B(equations (4) 
and (5)). As could be expected the main differences appear for 
single partiels spectra : since the effective mass calculated with 
n 2 has a smaller value than that obtained with B (for interaction 
G-C, .625 instead of .651 at the saturation point of symmetric 
nuclear matter), it leads to more bound levels and lower level 
density. This confirms the conclusion of the discussion made in 
part 1 of the present section : the best results are obtained with 
the best fit of the Hartree-Fock field 0(k> in the nuclear matter. 

Ill - PARAMETRISATION OF THE FONCTIONNAI H 

We shall now show that we can obtain the previous 
results in a shorter way by parametrising the 3 matrices B(p ,o ), 
C(p ,p ) , D(p ,p ) . Since B(k„,a! is a smooth function of the 
variables, we parametrize it with the following simple polynomial 
formula : 

B n * ( b l k F " b* k F J ( 1 * b s a ) U 3 i 

P 
The coefficients b. for the interactions G-0 and BIB are given in 
table (1). With these coefficients, adjusted to give the exact effec
tive mass at the saturation of symmetric nuclear matter, we reproduce 
accurately the exact functions B n and B p within the range (o,kF ). 

As mentionned in ref.[1], because of the factor r1* 
which appears in the integrals defining C and D , these quantities do 
not depend on the short distance part of the potential. However, as 
can be seen on fig.(4) and (5), where the functions C and D calculated 
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with different potentials are plotted (for a = 0), they differ 
significantly for potentials with the same long diacancc behaviour 
(potential of Negele and G-0), showing that C and D also depend on 
the medium range part of the force. In particular they cannot be 
reproduced with only the OPEP term which gives zero values of C and 
D when k-, is larger than 1 fm . This value corresponds to the mean 
density of the surface of the nucleus where the gradients of the 
densities are large and consequently the contribution to the total 
energy of the terms involving C and D is important. 

So, wo cannot hope to determine universal functions 
C -uid U v.'iijJ for any reasonable effective interaction. 

From xig. (4) and (5), one sees that a linear function 
of k,, provides a reasonable fit of C and u in the region where the 
gradients of the densities are important (.7 < k_ < k„ ). We found 

r r j 
that tne dependence of D in u 2 is small and could be neglected. We 
ont.une j The fi,l lowing expressions : 

D = d, + d 2 k p (14) 

I'roiu the consideration of fig. (12), one should be tempted on the 
contrary to consider that a good parametrization of C should take 
into account its asymmetry dependence. Indeed, one sees that C {C ) 

1,1/3 , f 1,1/3, n p diverges when a comes close to -1 (+1) as (—) ' ( ( — ) ' ) . In 
pn P D an actual nucleus this kind of divergence can only occur at the out 

most surface. Let us suppose that the neutron density extends further 
than that of proton (case of N • Z nuclei), then p decreases as 
e P" , where £ i^ the proton fermi energy. Therefore in spite 
uf the divergence of C, tne contribution C_(vp ) * to the DME 

-f /rfr P 

Hciiiiiltujiian density vanishes as e . This shows that the 
exact reproduction of the behaviour of C and C n for large values of 
a is not really important in actual nuclei. 

Near o = 0 , one can write : 
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C = C U - va) 
C = C(l + va) 

where v is a constant. 

then become : 
The terms C n<?P n) 2 + C (Vp)2 of the functional H 

Cf{5p n) 2 + (Vpp)2]+vaCr{Ppn):: - ('Dp)2] (15) 

and the second term is always small in the nuclei that we considered 
{even in 2 0 8 P b i 
equation (15)). 

208 (even in Pb as it is the square of the gradients that appears in 

For these reasons, we think that the a-dependence of 
C n and C could be neglected without altering the quality of the DME 
results and we propose the following linear parametrization : 

Cn = C p " C ' kF + C* ( 1 6 ) 

The coefficients Ci and C2 for G-0 and BIS are given in table (1). 

The results obtained with the parametrizations given 
by eq.(ll), (13), (14) and (16) are shown in column (3) of tables 
(2) and (3). It is seen that proton and neutron radii, energies per 
particle and single particle spectra of the exact DME calculation 
(column (D) are well reproduced. However the agreement is slightly 
better for G-0 than for BIB. 

IV - COMPARISON WITH ENERGY DENSITY FORMALISM FONCTIONALS. 

In the preceding section, we have shown that an 
accurate reproduction of the DME results with G-0 effective inter
action could be achieved with a polynomial (in k„ and a) parametri-

E ' 
zation of the functional quantities j , B , C , D . This parametri
zation which introduces che 14 coefficients (including the spin-orbite 
strength) displayed in table (1) gives to the Hamiltonian densities a 
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form very similar to that derived within the energy density 
formalism [5 J. Using an Hamiltonian density with a structure partly 
suggested by theoretical considerations, the authors of ref.5 have 
adjusted the 11 parameters of their functional so as to reproduce 
masses and charge densities of magic nuclei. In view of the formel 
similarity of the two Hamiltonian densities, it is interesting to 
compare the numerical values of our coefficients to those of their 
corresponding parameters. 

We have chosen to compare the parametrization 
obtained for G-0 interaction to the functional constructed from the 
set of parameters labelled F 2 in ref.5, which leads to properties of 
nuclear matter quite similar to those of G-0, as can be seen in table 
(4). We show in table (8) of appendix B the coefficients a, corres
ponding to the set of parameters F 2 of Beiner and Lombard (B.-L.). 

This set of parameters F 2 leads to the following 
constant values of C and D : 

C = 51.7 MeV fut5 

D = 203.4 MeV fm5 

These values cannot be compared directly to those 
obtained for G-0, which are functions of the density. However, in 
nuclei where we cen assume p = p = § the gradient terms of the 
DME functional can be written : 

C n ( ~ 7 " n î 2 + C p ( ' P P ) 2 + D 'V' pp = I ( 2 C + D ) ('p'2 î l 7 ) 

and at the mean density of the surface (k_ = l.l fm" J where the 
contribution of the terms given in eq.(17) is the most important, we 
have : 

2C + D = 280 MeV fm 5 

compared to the value 306.8 in the case of Beiner and Lombard. 

Thus, we see that the two functionals are very 
slmilax ; the main differences appear essentially in the Fermi 
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momentum, which is smaller in the case of B.-L., and in the compression 

modulus which is greater. 

This difference in Fermi momenta explains why we 
90 

obtain smaller radii (II and 1.6*) in heavy nuclei (respectively Zr 

and 2 Pb), with our functional. The single particle spectra and level 

densities near the Ftrml surface are In good qualitative agreement. 

V - EQUIVALENT SKYRME-TYPE IHTERACTIOH. 

We shall now show that it is possible (in the case of 

interaction G-0) to simplify our parametrlzation while maintaining 

the quality of the results and find an Hamiltonian density Identical 

to that obtained with a Skyrate-like interaction. A similar attempt has 

been done by Negele and Vautharin [15]. 

The nuclear matter energy of a Skyrme force takes 

the form ! 

f " I * f T F * I fco <> + ft »* + è (3t 1 +5t 2) p k* (18) 

where T_ is the kinetic energy of the Fermi level, and the compression 

modulus at saturation K is related to y and T_ by the relation : 

K - - 15 f • f T p • fy p* (19) 

As the p-dependent term of the force Is repulsive, t s is positive. 

Then K is necessarily larger than 300 MeV. 

Indeed, in the case of G-0 : 

| - - 16.7 MeV 

k p - 1.355 fm"1 

Then : 
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- 15 I + I T„ = 319 MeV A 5 F 
so we have : 

K > 319 MeV , 

compared to the value 182 MeV of G-0 . 

Then it is impossible to find a Skyrms interaction 
having similar nuclear matter properties as G-0. For this reason we 
modify the power of the density dependence of th-3 ts term and intro
duce a new parameter Sr as in reference [2] and t}]. 

Equation (18) then becomes ! 

f = f - | T p • | t Q p + ff p 1 + 8
 + ^ (3t, + 5t2> p k> (,0) 

and the expression for the compression modulus : 

K = - 1 5 | + | T F + ^ p : + ô 6 t3B-2] (21) 

The symmetry energy is given by : 

Es = I TF " T V x o + 2> p " Î6 p l + B + ? fc« P *F t 2 2> 
and the expression for the effective mass is : 

*i _«i + B 

2m* 2 « ' 

w i t h 
B = Të ( 3 t ' + 5 t 2 , p ( 2 3 > 

The f u n c t i o n s C and D a r e c o n s t a n t and g iven by 

C = JÎ ( t ' " t s ) ( 2 4 ) 

D = | ( 3 t , - t 2 ) (25) 

2C + D = j ^ O t i - 5 t 2 ) (26) 



13 

2 From equation (21), we see that with 8 < T the 
compression modulus decreases certainly. So we have considered the 
two following cases : s = •? and 6 = 1 (for comparison since it 
corresponds to the original Skyrnte interaction). 

It is impossible to determine t; and t2 from 
equations (23), (24) and (25) simultaneously. But since the combina
tion 2C+D is particularly important when p ^ p , we use equation 
(26) to determine 9tj-5t2. The H.F. results are very sensitive to the 
choice of the value 2C+D. The best ones are obtained with the coeffi
cients C and D determined with the optimization method used in 
appendix A : we look for the best constant X which minimizes the 
quantity : 

Q(X) - J [2C(kp) + D(kF! - X]' P(kp) dk F (27) 

where : 

/ • » - • " 

P<V - é- *F < * o 
C(kF) and D(kp) are given by eq.(14) and (16) and k p is the 
saturation momentum of symmetric nuclear matter. We found X = 
340.4 ""eV fmS. 

Next, to determine 3ti+5t2 from equation (23), we 
minimize the quantity : 

o 
(28) R(M) - f [B(kp> - ukp] 2 P(kp) dk p 

where B(k_) is given by equation (13) with a = 0 . 

We found y = 5.31 féV fm , which, together with the 
value of X, gives tj and t 2 . Then the dependence of B in a is given 
by the expression : 

B = -j(ti+t2> P + jttz-t!) p 
P P 

which holds for any Skyrme interaction, and C and D are calculated 
by equations (24) and (25). 
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Inserting t, and t 2 in equations (20) and (22), we 

determine t , t 3 and x by the saturation properties of G-0 

(k , E = f (k„ ) , E ) . The two sets of parameters obtained are 
F 0 ' o A t ç s 

presented in table (5) , together with the values of K to which they 
lead. 

One should point out that the choice ^ • f gives a 

value of t Q which is twice as large as the usual ones [<t] : the 

mechanism of saturation, not studied here, is certainly very different 

with this Skyrme-like force from what it is usually. 

The results obtained with the two Skyrme-like inter

actions S8 = c and 8 = 1) are shown in table (6), and compared to those 
of exact DME calculations . 

We see that the linear density dependence (6=1) of 

the force gives rise to important discrepancies for energies per par

ticle (.3 to .7 MeV) and for radii (.1 to .2 fm too small) . This can 

be seen also on fig. (13) where we compare the proton density distri

butions in l 6 0 and 2 0 8Pb. 

On the contrary, the p -dependence of the force 

gives a good overall agreement with the results of the DME calcula

tions. The same conclusion holds also for the one particle spectra 

(which are not reproduced here). 

VI - CONCLUSION. 

This study shows that the accuracy of the DME 

approximation is quite sensitive to the initial two body force. 

Namely, the results of the DMS calculations we have performed with 

G-Û and BIB forces do not confirm those of Negele and Vautherin [l]. 

With the Megele force the difference between exact H.F. calculations and 

DME is found to be less than 1.5% for radii, densities and less than 

10% for binding energies. However our results confirm those of Sprung 

et al.[l0],radii are found also too small (by 2.5% to 8%) average 

binding energies too large (by 11* to 18%) ; they equally confirm 
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the fact that the differences with the exact H.7. calculations do not 
depend on the masses of the nuclei. 

Moreover our results are better, i.e. closer to those 
of exact H.F. calculations,with G-0 force than with BIB force. This is 
explained by Sprung et al.[161 by the very significant differences in 
the ratio of direct to exchange terms between this two forces, the DME 
being much better for exchange terms. We r.an also think that this is 
correlated to the fact that the 316 force gives densities which are 
much more oscillating in the central region of the nucleus than the 
G-0 force where the core is more nuclear matter like . The single-
particle energies calculated with the DME reproduce those given by 
exact H.F, calculations qualitatively. The shift of the levels 
suggests that the effective masses calculated by the DME are too small. 

The simple parametriaatIon of the Hamiltonian we have 
derived allows ue to make the connection between the DME and the EDF 
approaches [5] where the parameters of the functional H are fitted. 
Indeed we have seen that our parametrization leads to a good fit to 
the exact DME results. 

In the last part of this work we have attempted to 
parametrize the Hamiltonian density H by energy functionals derived 
from Skyrme-like forces. We have shown that this can be achieved in 
the case of G-0 force provided a p ' -density dependence is used. In-
daed in this case excellent fits to radii, binding energies and single-
particle energies have been obtained. For the B18 force we have not 
been able to reproduce the DME results. This may be due to the lack 
of density dependence in BIB force. 
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APPENDIX A 

The usual definition [111 of the effective mass comes 

from the expansion of the H.F. field in nuclear matter 

£ ., U(k) = / f <kn|v|kn> - <kn|V|nk> = u + k2 U 2 + ... 
n ( k„ 

The expansion is truncated to second order and 

the one particle energy e (k) is defined by : 

e ( l t ) = * ^ • 0 (k) = | k !

+ u o t k*u, = C _ k̂  + u o 

where : 

* 2 J& 
2m + U* 

For a central force, one obtains : 

U(k) = | k ! 

which aives 

— J Z V(r) r2dr - frl V(r) jQ(k r) j,(kFr)drf (AD 

o o 

!k 3 

3 * 

as 

Ji 
0 0 

Vfr) r 2 d r - 2k p * 

k 2 

3TT r 
o 

Z V(r) r 3 

E 
i-, i (5c Fr) 

/ I V(r) r j,(kFr î dr (A2) 

dr (A3) 
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with: 
'. V<r) = 4 (V ' + 3 V 1 J + 3 V 3 1 + 9 V") D 4 

£ V(rj = -i IV" - 3 V ! » - 3 V 3' + 9 V 3 3) 

This formula docs nut coincide with the expression 
yiven by tno DUE. Indeed, eg. (4.43) of ref.l, which determines the 
individual wave functions, has the form : 

'" '' ̂  + B ( < V < V * + V n " E l *n " ° 
in IIJCI^J.' matter, imere •: «re plane waves, 

i:iK) = <?~ + »> k' , v n 

The cue- bodv wocuntial is then equal to V + Bk5 , which defines 
n 

the effective mass : 

HI- - * i + B 2m* 2m 

with : o = -iL- f I V ( r > i«<kFr> J 3 ( k F r ) d r 

We will now show that this definition provides a 
luast-.-jiiuare fit uf u(k) by the parabola v + B Jc2 in the range 
(0,V._) v;i.t:i a woiyht : 

P ( k , . « i . i iLj i ! i = ^ ; . 
| 'i k* dk *F 

: ndc. d. lei- u-j consider tr.e e - iant i t / : 
k F 

Q ( A , U ) = / I U(k) - (,. + L.k2) S2 P(k) dk 
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The following equations 

If " » 

give 

3Q 
3w 

< U(k)> - y < k2> (A4) 

where 

Since 

< k2> < U(k) > - < k2u(k) > 
< k 2> 2 - < k*> 

*F 
« f (k)> = J f (k) p(k) dk 

o 

Ufk) = U D + U£(k) 

where U_ is constant, we obtain : 

< k2> < uF> - < k 2 UE> 
< k 2> 2 - <k"> 

Equation (Al) then gives 

6k 
sir J l v ^ iUh 

and 

(A5) 

fc 511 0 E IF 

< k 2 U E ( k ) > = - j | - / ° | V(r) | 2 j 3 ( k F r ) - 3 j i ( k p r ) | j , ( k p r ) dr 
o 

Together with the relations 

<k 2> = — k 2 

<k"> = | kp» 

one obtains : 
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„ = B « J5. / Ï v(r) j,(k„r) j 3(k Fr) dr (A6) 
™ F „ E 

Inserting this expression in eq.{A4), one has : 

2 k F 3 r" 3 k P f" i 
X = v = -r- J £ V(r) r'dr - —*• | dr I V(r) j,<k_r) { 2J,<kpr>+7j,<kpi 

n 3 i r Q D * o E ¥ \ V t 
(A7) 

Expressions (A6) and (A7) coincide with expressions (A3) and (A2) as 

k F - 0 • 

Indeed : 

35 j,(kj,r) jj(kpr! - i j,(kFr! <k Fr>
3 

and : 

2k r (k x)^ 
j,(KFr) |2j,(kFr) + 7j 3(k pr)j = —|- j, (kpr) |l - §34 • 

We show on fiy.(1) the H.F. field U(k) and the two 
parabolae .It is clear that the OME gives a much better fit in the 
region where the values of the density are important, and that it 
leads to a larger value for the effective mass. 
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APPENDIX B 

The energy of an infinite system of protons and neu-
i momenta k and k resi p n ' 

the first order of perturbation theory) 
trons, with Fermi momenta k and k n respectively, can be written (to 

j-) • j < mn|V|mn> + zL^ <mn[v|mn> + 7, J <mn|v| 
m fie m,n*k u,n(ltn 

ran>+exc.terms' 

n *k n (Bl) 

The usual quantities of such a system are : 

E : energy per particle at saturation density. 

k„ : saturation momentum of symmetric nuclear f o 
matter. 

E S = 2 a * : symmetry energy at the saturation point. 

9 3 2E/ft K = k., • Jrf- : compression modulus at the saturation point. 
* o " ^ t ? 

The curves E/A = f(k p,a) are plotted in fig. (2) and 
(3) for potentials G-0 and Big respectively. As already noted by 
other authors [17], one obtains a decrease of saturation density as <x 
increases. It can be shown, usine an expansion about k p , that the 
shift Ak of the saturation momentum has the form : 

j__L = - b l a 2 - b 2 a" (B2) 

with 
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3 Ec jv 
We will dlso need the calculations of yj— and r̂r . 

The results are shown in table (7), where we add , 

for comparison, the results given with some other effective forces. 

As c... be seen on fig. (14), E/A has a linear dependence in a 3, when 

k„ is kept constant, up to values of a near 1. We verified that the 

coefficient of a* in the expansion of E/A is small (less than .5 for 

G-0 and BJS). Inserting a k„ 2 dependence at low density (to take in 

account the kinetic energy!, one has a parametrization of E/A of the 

form : 

E/A = k F

2(a 0+a, âk + a 2Ak
2 + a 3Ak

J) + a

2 kp2(a»+a5 tk) 

where Ak = k F - kp . 

It is easy to see that the aj are related to the 
quantities calculated above by the following relations : 

E o 

a o = k 7 

*• = - k ! - E o 
a= - 2ÎÛ7 + 3 ICT 

t o Ï 0 

FTL 6 3 *F 0

 4 E ° 3 J 

a. = S 

"Fo 

k 

k F 

E, 
k" 

k F 0 L
3 k F 0

 kF 0J 

The results are presented in table (8). 

In this work, the coefficient a 5 has been determined to give a good 

agreement with the function Eg(kF) in the rantja 0 « k- < k- . 
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The equations (B2) which define the coefficients bi 
and b 2 confirm the inability of usual Skyrme interactions to 
describe correctly nuclei with large neutron excess. Indeed, in the 
case of Skyrme forces,the decrease of Fermi momentum when a increases 
is practically zero because of the high values of K and the smallness 

DEe 
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TABLE CAPTIONS 

Table l. Values of the coefficients used in the parametrization of 
the DME functional for interaction G-0 and B ^ (eq.11,13, 
14,16) . 

Table 2. Binding energy per nucléon (in MeV) , proton and neutron radii 
(in fm) calculated with G-0 force (see footnote page 6), 
column (0) refers to exact H.F. calculations 
column (1) refers to exact DME calculations 
column (2) refers to exact DME calculations, except for the 

effective mass, calculated using U 2 eq.(9) instead 
of B eg. (5). 

column (3) refers to calculations done with the parametrization 
of the functional obtained by the DME. 

Table 3. Binding energy (in MeV), proton and neutron radii (in fm) 
calculated with BiB force (see footnote page 6). The labels 
(1) and (3) have the same meaning as in table 2. 
m* is the effective mass calculated with eq.(8) and (9). 

Table 4. Comparison of nuclear matter properties calculated with G-0 
and with one of the functionals used by Beiner and Lombard [5]. 

Table 5. Parameters of Skyrme-forces : SG-0 refer to the Skyrme-type 
forces constructed starting from G-0. We give for comparison 
the pariimeters of the Skyrme force SKY 3 of ref.[<«] t Q in 
MeV.fm3, t x in MeV.fm5, t 2 in MeV.fm5, t, in MeV.fm6. 

Table 6. Comparison of the results of DME calculations (column (1)! 
with the results obtained from the two Skyrme-type forces 

l/S constructed : with a p ' dependence (column (4)) and with 
a p-dependence (column (5)). 



27 

Table 7. Suclear matter properties of various forces. All the 
3 Es quantities are in MeV except -j-j- in MeV.fm. 

Table 6. Coefficients of the parametrization of E/A in nuclear matter 
as a function of k„ and a. b] and b 2 give the shift of the 
saturation momentum when a increases (eq.(B2)). 



T a b l e 1. 

a o a i a 2 a 3 a,. a 5 bi b j b , C | =a di Û 2 

G-0 - 9 . 1 1 3 . 4 3 1 2 . 1 3 - 7 . 9 - 1 9 . 3 3 3 . 3 8 . 3 3 - 1 . 6 . 4 7 - 6 6 . 1 1 1 . 6 4 3 . - 3 8 4 . 

BIB - 7 . 4 4 1 0 . 2 7 1 0 . 1 9 - 5 . 3 2 3 . 6 9 14 . 2 0 . 4 7 - 3 . 6 8 . 1 7 - 1 3 6 . 2 0 5 . 6 9 2 . - 3 4 2 . 6 

T a b l e 2 . 

"o ""Ca 

0 1 2 3 0 1 2 3 

E/A - 6 . 2 1 - 6 . 9 0 - 6 . 9 4 - 6 . 8 9 - 7 . 2 9 - 8 . 2 2 - 8 . 2 6 - 8 . 2 1 

r 
n 2 . 8 1 2 . 6 8 2 . 6 6 2 . 6 9 3 . 5 2 3 . 3 4 3 . 3 3 3 . 3 4 

r p 
2 . 8 3 2 . 7 2 2 . 6 8 2 . 7 2 3 . 5 7 3 . 4 0 3 . 3 9 3 . 4 0 

"'Ca " Z r 

0 1 ' 2 3 0 1 2 3 

E/A - 7 . 4 2 - 8 . 4 7 - 8 . 5 0 - 8 . 4 5 - 7 . 7 8 - 8 . 7 1 - 8 . 7 3 - 8 . 6 9 

r n 3 . 7 8 3 . 5 7 3 . 5 5 3 . 5 7 4 . 4 4 4 . 2 3 4 . 2 3 4 . 2 3 

"p 
3 . 5 8 3 . 3 8 3 . 3 7 3 . 3 9 4 . 3 5 4 . 1 5 4 . 1 6 4 . 1 5 

2 o e p b 

0 1 2 3 

E/A - 7 . 2 4 - 8 . 0 5 - 8 . 0 7 - 8 . 0 3 

r n 5 . 7 1 5 . 5 7 5 . 5 8 5 . 5 7 

t 5 . 5 0 5 . 3 4 5 . 3 7 5 . 3 5 



Table 3 . 

1 60 
0 1 3 

E/A -6.05 -6.41 -5.95 
r n 2.65 2.56 2.58 
rP 2.67 2.60 2.62 

""Ca 

0 1 3 
E/A -6.43 -7.21 -6.89 
r n 3.38 3.20 3.20 
r P 3.43 3.26 3.26 

"Zr 
0 1 3 

E/A -6.28 -7.13 -7.06 
r n 4.37 4.06 4.07 
rp 4.25 3.94 3.94 

" 8Ca 
0 1 3 

E/A -6.10 -/.21 -6.88 
Ln 3.76 3.46 3.48 
rP 3.51. 3.22 3.23 

Table 4 . 

F2 G-0 
Eo -16 -16.7 
kF 1.32 1.36 
K 280 182 
Es 34 35.5 
m"' 
m .67 .625 

Table 5. 

B *o ti t2 tj xo K 
1/6 -2248 558.8 -23.7 11224!! .715 253 
1 -1089 558.8 -83.7 8272 .412 363 
1 -1129 395 -95 14000 .450 356 

( : :> in MeV.fin3/2. 



Table 6. 

"0 "°ca "eCa 
1 4 5 1 4 5 1 4 5 

1 
. E/A -6.90 -7.04 -6.20 -8.22 -8...; -7.35 -8.47 -8.39 -7.80 
r 

• n 
2.68 2.67 2.62 3.34 3.34 3.29 3.57 3.58 3.52 

1 r , P 
i 

2.72 2.70 2.64 3.40 3.39 3.33 3.38 3.41 3.30 

9»ZI !»'Pb 
1 4 5 1 4 5 

E/A -8.71 -8.63 -8.11 -8.05 -7.86 -̂ 7.41 
rn 4.23 4.23 4.17 5.57 5.54 5.43 
rp 4.15 4.16 4.05 5.34 5.36 5.14 

Table 7. 

Pot. k P Eo Es K 8K 
3k 

8E S 

3k 
LEV [18] 1.39 -17.35 32 270 1360 68.5 
PEAR [19] 1.35 -15.3 31 240 1205 24. 
BAR [20] 1.38 -14.9 42.4 293 1518 106. 
B,8 1.45 -15.65 49.8 184 616 98.1 
G-0 1.36 -16.7 35.5" 182 619 58.3 
SG-0 1.36 -16.7 35.5 253 1220 29.5 
SKY3 1.29 -15.9 28.2 356 2422 7.9 

* With the rearrangement symmetry energy. 



Table 8. 

Pot. ao ai a 2 a 3 a» as b, b 2 

BlB -7.44 10.27 10.19 - 5.3 23.69 14.0 .77 .85 
G-0 -9.1 13.43 12.13 - 7.9 19.33 3.30 .36 .17 
SG-0 -9.1 13.43 22.70 2.0 19.33 1.05 .16 .06 
SKY3 -9.5 14.79 47.1 30.6 16.92 -8.2 .03 .003 
B.-L. -9.2 13.89 30.3 9.7 19.51 4.47 - -



l-'IGURE CAPTIONS 

One body H.l'. potential U(k) calculated with G-Û force labelled 

(0). Label (2) refers to the expansion of U(k) around k=0 up to 

second ord^r. Lauel (1) rerers to the D^E expansion. 

Energy per particle (in MeV) in nuclear matter as a function of 

k and a calculated witn G-0. 

Energy per particle (in MeV) in nuclear matter as a function of 

k and » calculated witn ais. 

Funetiun C(k.,,o) is plotted for various potentials : OPEP only, 

Negele interaction, Campi-Sprung interaction C-0, and SKY 

referring to riKYÏS in rtf.lt]. 

function D(Â.,,O) is plotted for the sau.e interaction as fig. 4. 

Proton deiuity distributions calculated with G-0. lue exact 

H.l-'. calculation is labelled (0) , the D"E calculation (1) . 

Neutron and proton density distributions calculated with G-0. 

Tne exact i..i?. calculation is labelled (0), the DME calculation 

(1) and tne l)»\ii calculation with an effective mass defined by 

eq. (4J ana (ti) is labelled (2) . 

Neutron and proton density distributions calculated v/ith BIB 

using exact II.P. calculations (Label (0)) and DME method 

(label (in. 

Single particle spectra in the case of G-0. The exact H.F. 

calculation is labelled (U), the DME calculation (1) and the 

DM3 calculation with an effective mass defined by eij.(4) and 

(5j is labelled (2). 

http://rtf.lt


Fig. 11. Singie particle spectra in the case of BIB. The exact H.F. 
calculation is labelled !0), the D"E calculation (1). 

Fig. 12. Plot of C and C (in VeV. fir, ) as a function of a for various 3 n p 
values of k„. 

Fig.13. Proton density distributions in O and Pb (in fm Î. We 
compare the results of the DME (label (D) with those obtained 
with the two Skyrme-type forces : with a p dependence (label 
(4)) and with a ^-dependence (label (5)). 

Fig.14. Energy per particle (in MeV) in nuclear matter calculated wirh 
G-0 as a. function of a 2 for various values of k_. 
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