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Abstract.

The validity of the density-matrix expansion (DME) is
investigated using two different interactions : the Brink and Boecker
Bl force and the Campi-Sprung G~0 force. Simple parametrizations of the
Hamiltonian density are discussed and the connection between the DME
and Skyrme-like forces is examined.



I - INTRODUCTION

The density matrix expansion (DME) proposed by
Negele and Vautherin [1] allows one to construct, from a two-body
interaction V(?l,Fz), an effective nuclear Hamiltonian density,
depending on the densities Pn and Cp' their gradient;ipn, ch and
the kinetic energies densities 1, and Tpe

Formally one can separate thils Hamiltonian density
into two terms : the first one corresponds to the nuclear matter
energy at the local densities and the second one, in which the gra-
dients of the dens.ties appear, corrects the departures of the
density matrix in the nucleus from its valae in nuclear matter. It
has been claimed that this second term is essentially determine.i
by the long range behaviour of the force (ref.l, chap.III).

The purpose of the present paper is to further
investigate the validity of the DME, and to study its connections
with phencmenological forces [ 2], [3] such as the Skyrme interac-
tion { 4] or semi-phenomenological Hamiltonian densities such as

those derived within the energy density formalism (EDF) [57.

. In section II we compare the results obtained with
the DME with those of exact Hartree~Fock (HF)} calculations for ~wo
different effective forces :

i) that of Brink and Boecker [ 6] modified by
vVautherin and Veneroni { 7] hereafter referred to as BlB, and ii)
the density dependent interaction G-0 of Campi-Sprung [8].

In the framework of the DME, the functional depen-
dence cf H in V(r,;,r,) is rather involved and requires the storage
of 4 functions of the densities. Since in the H.F.method we essen-
tially need the values of these functions around saturation densi-
ties, it 1s reascnable to look for approximate parametrizations
accurate around saturation. For this purpose, we construct in
section III a simple expression of the Hamiltonian density H repro-
ducing the . .ults of the exact DME calculations, and we compare it
to the functionals obtained with the EDF (section IV}.



It is known [ 9] that the H.F. energy calculated
with a Skyrme intsraction can be written as the integral of a
simple functional (identical in this case to the DME Hamiltonian
density, depending linearly on the interaction parametérs. In view
of the successes of this kind of interaction {10]. it is interesting
to look for a qualitative and quantitative derivation of these
parameters.

Therefore in section V, we construct a Skyrme-
type interaction which reproduces accurately the energies per par-
ticle, densities, mean square radii and the single particle spectra
given by the DME with interaction G-0, We show that a density depen-
dent term proportional to pl’i6 significantly improves the agreement

as compared to a linear density dependence.

II -~ DME CALCULATIONS

1. Background and notation

In the DME, the angular average of the two-body
density matrix p(T;,r2) is expanded around the value R = El%—El

in terms of the relative distance r=r,-r. :
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In formula (1) :
p(R) = Wm(i)’wm(ﬁ) is the nuclear density, and

T(R) =

NI )

Vv;(ﬁ)VWm(i) ic the kiretic energy density which



is equal to % pk; in nuclear matter with a Fermi momentum
kp (kp=(31%p/2)1/3),

This expansion, truncated at the second term,
inserted into the H.F. expression for the potential energy, brings
the total energy into the following form :

fﬂ(ﬁ)d’a . (2)

where H(R) is the following functional of the densitles pn(ﬁ) and
R) :
pp( )

— - - 2
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In equation (3}, (E/A)NM represents the energy per

particle in nuclear matter with densities pp= ;;— k3 and Pn ;;—k’

The functional quantities C = Clr n'Pp Y. pEC(o Py ), D= D(pn,pp)

and ———(pn,p ) are defined by equations {(3.7) to (3.10) and (3.44)
2mi

of ref.l.

In symmetric nuclear matter (pn=pp=%) with Fermi
momentum kF’ the expression for ‘the effective mass is, for a central

force :
2 2 '
_E; =h B (4)
2m 2m
where :
0
B =33 f g vESFHLIZTHL (1) 5, (r) s (kpr)de (5)
Tk E _
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The lakels S and T refer to spin and isospin

states.

One should point out that this definition of the
effective mass does not coincide with the usual one [11] which is
obtained by expanding the nuclear matter one body potential U({k)

E <knjv|kn> - <kn}V|nk>

n<kF 7

in powers of k? :

U(k}

]

0
Up + k?U; +...

Indeed, this expansion leads to the following cffective mass

2 ?
_f_l_*_ = !‘.... 2. sz (8
2m 2m
K = 28+1, 2T+1
with Uy = ~= f L v (r) rgjl(kpr) dr (9
3n 0 E

Using the constant value Uy as potential and the
effective mass given by the formula (8) is certainly a good appro-
ximation around k=0. However significant discrepancies appear near
the Fermi level kF as can be seen on fig.l. On the contrary defini-
tions (4), (5) can be shown to yield a much better overall agreemen
in the range 0 < k < kp. Indeed we prove in appendix A that the
effective mass B of the DME method can be defined as the coefficien
of k? in a second degree polynomial minimizing the quantity :

K
F
v, ,B) = f [U(k) - (v +B k?)]7B(k) dk
()
where P (k) = 3 k2 1
kg

is the momentum probability density inside the Fermi sea.
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2. Nuclear matkterc terim

Let us now present the nuaerical method used in this
paper to calculate the function (E/A)NM appearing in thc functional H.

We first analyze (see Appendix B} the properties of
symmetric and agymmetric nuclear matter calculated with various poten-
tials. We then show that it is possible to construct a simple parane-
trization of E/A (kF,a). o = 22532, valid even in the region o 1
(case of neutron gaz). For this parametrization which looks like a
‘faylor expansion around the saturation momentum kFu of symmetric

nuclear watter, we have adopted the rollowirng polynomial form :

E/A = ké. (ao+a1Ak+a;Ak1+a,Ak3)+a2k;, (ay+ashk) (11)

where

Formula (11) exhibits the cxpected }::_ dependence at low density(kinetic
energy term) . However the numerical values of the coefficients a; have
not been determined so as to reproduce exuctly this term. Indeed we
tnink that in the DME spirit it is wore useful to adjust the values of
the coefficlients ay by requiring an accurate description of nuclear
matter properties wround k,‘,0 .

In table {i) we give tae numerical values of a; for
the interactions G-0 and Bl8 and from fig, (2) and (3) it is seen that
tiiey leuad to a very good agreement with exact results.

3. Functions B, C and D

Figures (4) and (5) show the functions C(pn.p
and D(p",pp) wich pn=9P= 5 s d.e. C(kF,u=0) and D(kF,a=0) for
various potentials. Since these functions and their derivatives

p/



vary very rapidly at low density, we have preferred to tabulate them
on a regular mesh in kF and a rather than in °n and P, as is done in

1 in kF that we have adopted

reference {16). The constant stev of .1 fm~
3

is for example eguivalent to a step in p varying from 6-10-5 fm ° at
zero density tc 3.7 .10-2 fm 3 around saturation density. The step in
a was choosen equal to .1l.

The tabulation of B has keen done in the same way
and intermediate values needed for the integrals have been obtained
with @ six pointsinterpolation formula {12]. Our H.F. calculations
with the DME functional H have been performed using the code of

Vautherin.

4. Results

Qur resulits are shown in tables (2} and (3} for G-0
and Blg respectively, and a comparison is made with exact® H.F.

calculacions [13], [14].

We obtain slightly overbound nuclei (.4 to 1. MeV per
particle) and too small radii. In the case of G-0, the radil discre-
pancy is almost constant {.2 fm) for all nuclei while in the case of

Blg, it increases from .1 in 160 to .3 fm in 9OZr.

In figs. (6), (7) and (8) we show the effect of the
DME approximation on the densities : the DME tends to maintain high
densities inside the nuclei and to decrease the surface thicknesses.
Except for 208Pb calculated with G-0 interaction, this produces, in
all other cases, a smoothing of the cscillations in comparison ¢o

those given by exact H.F. calculations.
Figures (9), (10) and (1il) display the spectra of

individual levels obtained with G-~0 and B1B. The discrepancies with
exact HF results are similar for all nuclei : the levels are gene-

xIn the case of G-0, center of mass and starting energy corrections
have been neglected. In the case of B18, we included a center of

mass correction (direct term only). In both .ases, we have used a
short range spin~orbit force (see, e.g. ref.l) with strength wy =
-130 MeV fm°. We only calculate the direct term of the Coulomb energy.



rally overbound by 1 to 2 MeV near the Fermi surface.

In table (2), fig.(9) and (10) the results of
calculations using U, for the effective mass (egquations (8) ana
(9)) are also presented and denoted (2) . We see that energies per
particle, radii, and proton and neutron densities are in good
qualitative agreement with those obtained using B(equations (4)
and (5)). As could be expected the main differences appear for
single particle spectra : since the effective mass calculated with
'; has a smaller value than that obtained with B (for interaction
G-C, .625 instead of .651 at the saturation point of symmetric
nuclear matter), it leads to more bound levels and lower level
density. This confirms the conclusion of the discussion made in
part 1 of the present section : the best results are obtained with
the best fit of the Hartree~Fock field U(k) in the nuclear matter.

III - PARAMETRISATION OF THE FUNCTIONNAL H

We shallnow show that we can obtain the previous
results in a shorter way by parametrising the 3 matrices B(pn,pp),
C(pn,pp) ’ D(pn,p ) . Since B(kF,a) is a smooth function of the
variables, we parametrize it with the following simple polynomial

formula :

B, = (by kI - bsk}) (1+bya) (13)
P

The coefficients bi for the interactions G-0 and B1p are given in

table (1). With these coefficients, adjusted to give the exact effec-

tive mass at the saturation of symmetric nuclear matter, we reproduce
accurately the exact functions B and B, within the range (O.kFo)-

As mentionned in ref.[i], because of the factor r"
which appears in the integrals defining C and@ D , these quantities do
not depend on the short distance part of the potential. However, as
can be seen on fig.(4) and (5), where the functions C and D calculated



with different potentials are plotted (for o = 0), they differ
significantly for potentials with the same long discance behaviour
{potential of Negele and G-0), showing that C and D also depend on
the medium runge part of the force. In particular they cannot be
reproducea with cnly the OPEP term which gives zero values of C and

1. This value correspounds to the mean

D when kg is larger than 1 fm
density of the surface of the nucleus where the gradients of the
densities are large and consequently the contribution to the total

wnergy of the terms involving C and D is important.

S0, we cannot hope to determine universal functions

C and D valid for any reasonable effective interaction.

rrom rfig. {4) and (5), one sees that a linear function
of kP providcs a reasonable fit of C and U in the region where the
gradients of the densities are important (.7 < kF < kFa)‘ We found
that tne Jdeperdence of D in u? is small and could be neglected. We
ontusned the following expressions

v =d; + d; kF (14)

Irom the vo.sideration of fig. {12}, one should be tempted on the
contrary to consider that a yood parametrization of C should take
into account its asymmetry dependence. Indeed, one sees that C_ (C_ )
diverges when a comes close to -1 (+1) as (-‘_I]:-)l/3 ((EL)I/S) . In
an actual nucleus this kind of divergence can nonly occBr at the out
most surface. Let us suppose that the neutron density extends further
than tiuc of proton {cuse ©of N - 2 nuclei), then pp decreases as
e'ZVEP'r where EP is the proton fermi energy. rherefore in spite

uf the Jdiveryence Gf ¢, the contribution Cp(VDp)‘ to the DME

- %g /e_.r
Haimiltounian-density vanishes as e P . This shows that the

exact reproduction of the behaviour of C_ and Cn for large values of
a is not really important in actual nuclei.

Near a = ¢ , one can write :



CP = C(1l - va)

Cn = C(1 + va)

where v is a constant.

The terms Cn(epnjz + Cp(\-ip)2 of the functional H

then become :
CliTo. )2 + (Fo.) 21+vaCl (Fp. 3" - (Fp0 21 (15)
n | ’n p

and the second term is always small in the nuclel that we considered
(even in zoan as it 1s the square of the gradients that appears in
equation (15)).

For these reasons, we think that the ac~dependence of
< and Cp could be neglected without altering the quality of the DME
results and we propose the following linear parametrization :

Ch = cp = C, kr + C, (16)

The coefficlents C, and C, for G-0 and Bl8 are given in table (1).

The results obtained with the parametrizations given
by eq.{11), (13), (14) and (16) are shown in column (3) of tables
(2) and (3). It is seen that proton and neutron radil, energies per
particle and single particle spectra of the exact DME calculation
(column (1)) are well reproduced. However the agreement is slightly
better for G-0 than for B18.

IV - COMPARISON WITH ENERGY DENSITY FORMALISM FUNCTIONALS.

In the preceding section, we have shown that an
accurate reproduction of the DME results with G-0 effective inter-
action could be achieved with a polynomial (in kF and o) parametri-
zation of the functional guantities % +B,C,D. This'parametri-
zation which introduces che 14 coefficients (including the spin-orbite
strength) displayed in table (1) gives to the Hamiltonian densities 2
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form very similar to that derived within the energy density
formalism [5). Using an Hamiltonian density with a structure partly
suggested by theoretical considerations, the authors of ref.5 have
adjusted the 11 parameters of their functional so as to reproduce
masses and charge densities of magic nuclei. In view of the formal
similarity of the two Hamiltonian densities, it is interesting to
compare the numerical values of our coefficients to those of their

corresponding parameters.

We have chosen to compare the parametrization
obtained for G-0 interaction to the functional constructed from the
set of parameters labelled F, in ref.5, which leads to properties of
nuclear matter guite similar to those of G-0, as can be seen in table
(4). We show in table (8) of appendix B the coefficients a; corres-
pending to the set of parameters F, of Beiner and Lombard (B.-L.).

This set of parameters F, leads to the following

constunt values of C and D :

51.7 MeV fm®
203.4 MeV fm5

C
D

n

Tnese values cannot be compared directly to those
obtained for G-~0, which are functions of the density. However, in

nuclei where we cen arssume Py = Dp = % the gradient terms of the

DME functional can be written :

C. Vo )? 4+ c (Tp )2+ DT .Fp. =21 (2¢ + D) (Fp)2 an
n n P P “n P 4

and at the mean density of the surface (kF = 1.1 fm-l) where the
contribution of the terms given in eq. (17) is the most important, we

have :
2C + D = 280 MeV fm®

comp.red to the value 306.8 in the case of Beiner and Lombard.

Thus, we see that the two functionals are very
simila. ; the main differences appear essentially in the Fermi
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momentum, which is smaller in the case of B.-L., and in the compression
modulus which is greater.

This difference in Fermi momenta explains why we
obtain smaller radii (1% and 1.6%) in heavy nuclei (respectively 90Zr
and 208Pb), with our functional. The single particle spectra and level
densities near the Feyrwi surface are in good qualitative agreement.

V - EQUIVALENT SKYRME-TYPE INTERACTION.

We sghall now show that it is possible (in the case of
interaction G-0) to simplify our parametrization while maintaining
the quality of the results and find an Hamiltonian density identical
to that obtained with a Skyrme-like interaction. A similar attempt has
been done by Negele and Vautherin [15].

The nuclear matter energy of a Skyrme force takes

the form :
: S - | 3 ty o2 3 2
o 2 " 5Tp + Ftoot T% o? + 55 (3t,+5t;) p kg (18)

where Tp is the kinetic energy of the Fermi level. and the compression
modulus at saturation K is related to % and Te by the relation :

_ E 9 3t 2
K= 15A+-5TF+—J-16|: (19}

As the p-dependent term of the force is repulsive, t; is positive.
Then K is necessarily larger than 300 MeV.

Indeed, in the case of G-0 :

E w - 16.7 Mev

Ky
kp = 1.355 fm !
F

Then :
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TF = 319 MeV

|
—
w
ity
+
njw

so we have :
K > 319 Mev ,

compared to the value 182 MeV of G-0 .

Then it is impossible to find a Skyrme interaction
having similar nuclear matter properties as G-0. For this reason we
modify the power of the density dependence of th2 t; term and intro-
duce a new parameter g, as in reference [2) and [3]}.

Equation (18} then becomes :

B _ 3 3 t 1+8 3 =
b "AETR T to Pt TE P+ gy (3t + 5t2) o k2 (20)
and the expression for the compression modulus :

_ E, 9 3ty i+
K==-153+zT, + 355 ® gl3s-21] (21)

The symmetry energy is given by :

1+
0 B+%tzpk£‘. (22)

g

= 1 Y ‘ 1 -
Bs = FTp- 7t t3) o7

Oy

and the expression for the effective mass is :

A2 _ A2
ox " m B o
wlth.
1
B = € (3t, + 5ty)p (23)

The functions C and D are constant and given by :

3
C = .ﬁ (tl - tz) (24)
D=3 (3t - tg) (25)

1
2C+ D = TE(9t1 -5t,) (26)
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From equation (21), we see that with 8 < % the
compression modulus decreases certainly. So we have considered the
two following cases : 8 = % and B8=1 (for comparison since it
corresponds to the original Skyrme interaction).

It is impossible to determine t, and t; from
equations {23}, (24) and (25) simultanecusly. But since the comtina-
tion 2C+D is particularly important when Pp v Ppr we use equation
(26} to determine 9t;~5t,. The H.F. results are very sensitive to the
choice of the value 2C+D. The best ones are obtained with the coeffi-
cients C and D determined with the optimization method used in
appendix A : we look for the beat constant )} which minimizes the

quantity
k
° 2
Q(r)y = Jr {2C(kF) + D(kF) - 2l P(kF) dkF (27}
]

where :
P(k.) = —o— k2
P T K F

C(kF) and D(kF) are given by eg.(14) and (16) and kF is the
saturation momentum of symmetric nuclear matter. We found A =

340.4 eV fm°.
Next, to determine 3t,+5t, from equation (23), we

minimize the guantity :
kFo
2
- 3
R{p) = f [Bikg) ~ wkp1® Pikg) dkg
o
where B(kF) is given by equation (13) with a = 0 .

(28)

Wwe found u = 5.31 Mav fmz, which, together with the
value of A, gives t; and t; . Then the dependence of B in o is given
by the expression : '

B %‘(t]"'tz) p + é(tg'tl) p

B B

which holds for any Skyrme interaction, and € and D are calculated
by equations (24) and (25).



14

Inserting t,; and t, 1in equations (20} and (22), we
determine to' t, and X, by the saturation propertles of G-0
(kFo , Eg = %tho)' E). The two sets of parameters obtained are
presunted in table (5), together with the values of K to which they
lead.

One should point out that the choice ¢ = % gives a
value of t which is twice as large as the usual ones (41 : the
mechanism of saturation, not studied here, is certainly very different

with this Skyrme-like force from what it is usually.

The results obtained with the two Skyrme-like inter-
actions {8 = % and 8 = 1) are shown in table (6), and compared to those

of exact DME calculations .

We see that the linear density dependence (8=1) of
the force gives rise to important discrepancies for energies per par-
ticle (.3 to .7 MevV) and for radii (.1 to .2 fm too small) . This can
be seen also on fig.{13) where we compare the proton density distri-

putions in 80 ana 20%pp.

1/G—dependence of the force

On the contrary, the »
gives a yood overall agreement with the results of the DME calcula-
ticns. The same conclusion holds also for the one particle spectra

{(which are not reproduced here).

VI - CONCLUSION.

This study shows that the accuracy of the DME
approximation is guite sensitive to the ipitial two body force.
Namely, the results of the DMZ calculations we have performed with
G-0 and B1B forces do not confirm those of Negele and Vautherin [11].
With the Negele force the difference between exact H.F. calculations and
DME is found to be less than 1.5% for radii, densities and less than
10% for binding energies. However our results confirm those of Sprung
et al.[16],radii are found also too small (by 2.5% to 8%) average
binding energies too large (by 11% to 18%) ; they equally confirm
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the fact that the differences with the exact H.?. calculations do not

depend on the masses of the nuclei.

Moreover our results are better, i.e. closer to those

of exact H.F, calculationg,with G-0 force than with Bif force. This is
explained by Sprung et al.[)6) by the very significant differences in
the ratio of direct to exchange terms between this two forces, the DME
being much better for exchange terms. We can also think that this is
correlated to the fact that the 3818 force gives densities which are
much more oscillating in the central region of the nucleus than the
G-0 force where the core is more nuclear matter like . The single-
particle energies calculated with the DME reproduce those given by
exact H.F., calculations gualitatively. The shift of the levels
suggests that the effective masses calculated by the DME are too small.

The simple parametrization of the Hamiltonian we have
derived allows ue to make the connection between the DME and the EDF
approaches [5] where the parameters of the functional H are fitted.
Indeed we have seen that our parametrization leads to a good fit to

the exact DME results.

In the last part of this work we have attempted to
parametrize the Hamiltonian density H by energy functionals derived
from Skyrme-like forces. We have shown that this can be achieved in
the case of G-0 force provided a pl/s—density dependence 1is used. In-
dced in this case excellent fits to radii, binding energies and single-
particle energies have been obtained. For the Blg force we have not
been able to reproduce the DME results. This may be due to the lack
of density dependence in Bl ferce.
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APPENDIX A

The usual definition [11] of the effective mass comes
from the expansion of the H.F. field in nuclear matter

uik) = 2 <kn]vikn> - <kn|vink> = U, + k2 Uz + ..
ng kF

The expansion 1s truncated to second order and
the one particle energy e(k) 1s defined by

£A2k? 2 f?

o P LI 2 2 - 2
elk) = Ty + U(k) = o k? + Uy + kU, ;—; k? + Uo
m
where :
2 2
2m
For a central force, one obtains :
(-] o
2 kg 2 .
utk) = = k.2 -2 £ V(r) r?dr - |rf v(r) j_(k r) j;(k r)dr (A1)
w F 3 D E o F
S FE
which gives :
%3 7 2k 2
= F 2 - F .
o, = «—1;-{ g V{r) rfdr = !% Vir) r jy(kgr) dr (A2)

sz @
Uz = =5 J Lvio r3 3, (kpr) dr (a3)
0
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. with:

[

6 v(r} % (Wit s 3 pld o4 o3 pdt o g yddy

T ovi(r; % (VIT - 3yl o 3 y3l 4 g y33)
E

This formula docs not coincide with the expression
given by tne DME. Indeed, eg.(4.43) of ref.,1, which determines the

individual wave functions, has the form :

e -
I- ¢ Gm * B(ﬂn,ﬁp)Q + Vv, - E] on = 0

1n nalicas matter, wvhere @ ure plane waves,
K X
LK : (= + B} k- A
(K} Sh ) TV,

The wue pody potuntial is then equal to Vo ot Bk® , which defines

the effective mass :

with : B = -3 f E VAr) Jitkpr) Js(kpr) dr

r o
We will now show that this definition provides a
leust~saguare fit of l{k) by the parabola v, + B k2?2 in the range

(G,¥p) wizu a weighe

.o _4r k¥ dk_ 3k? A
R ks ak  °F
3 P

Unde d, ler us consider the chantity

33
ot = S vt - Gruk?) 2 PO ak
Q
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The following equations

Y
Lo}
it

33 = 0
3Q
'a—u = 0
give :
A = <U0(k)> - u<k?> (a4)
2 - 2
v o= <k?> <U(k)> <k2u(k)> (a5)
ck?32 - <kt
where : K
<tk)> = § £k PRy Ak
[
Since
= k
Utk) Up + Ul )
where UD is constant, we obtain :
" <k?>» <Up> - < k? Up>
< k?>2 - <k'>

Equation (Al) then gives :

6k f° .
<UE(k)> = =BT 3 é v{r) Jl(kFr) dr
and :
2 6k’ f' . . .
<k UE(k)> = = ! é V(r){ ng(kFr) - 33;(kFr)} Jx(ka) dr

Together with the relations :

_<k?>

]
[E,1{W)
=

~

<k'> =

~jw
I
=

one obtains :
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L V(r) 3y(kpr) 3s(kgr) dr (A6)

=
u
w
L]
=
'
>3-

Inserting this expression in eq.{A4), one has :

2kp3jw . 3k, [m )
vevy s S g wter - 5 Far g v 3i 00 {230 (kprd 4735 tkpr

(A7)

Expressions (A6) and (A7) coincide with expressions (A3) and (A2) as

)(F-oo.

Indeed :

35 3y (kpr) 33lkgr) + § 3 (kpr) (kpr)

and :

4
2k.r (k,T)
drtegry {201 (kpr) + 7350k} = —F— 3o {1 - —gf— v -

we show on fiy. (1) the H.F. field U(k) and the two
parabolae .It is clear that the DME gives a much better fit in the
region where the values of the density are important, and that it
leads to a larger value for the effective mass.
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APPENDIX B

The energy of an infinite system of protons and neu-
trons, with Fermi momenta kp and kn respectively, can be written (to
the first order of perturbation theory) :

E = li E : < mn|V|mn> +Z <mn|v|mn> +E <mn[v[mn>+exc.terms§

2
m‘kp m,nekp m,nskrl .
n <k (B1)
The usual quantities of such a system are :

E : enerygy per particle at saturation density.

k : saturation momentum of symmetric nuclear

Fo
matter.
2
Eg = % 35549 ¢t symmetry energy at the saturation point.
= g2 8’E/A .
K = k? 5%z ¢ compression modulus at the saturation point.
° F

The curves E/A = f(kF,a) are plotted in fig.(2) and
(3) for potentials G-0 and B13 respectively. As already noted by
other authors [17], one obtains a decrease of saturation density as a
increases., It can be shown, using an expansion about kFo’ that the
shift AkF of the saturation momentum has the form :

Ak

-,-c—?- = =-b; ¢® - by a" (B2)
Fo
with :
k 2B k 3E_2
F s 1% s 3K _ 2K
b, = =4 (<=2 and b2=—-——)3—~—) 43 . 2K
K ('akF)kF=an 2 (x (akF kg kp]kp=k“
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3Eg 3K
We will ulso need the calculations of —— and ¢ -
3kp 3k,

The results are shown in table (7), where we add ,
for comparison, the results given with some other effective forces.
As c¢~. be seen on fig.{(14), E/A has a linear dependence in a?, when
kF is kept constant, up to values of a near 1. We verified that the
coefficient of o in the expansion of E/A is small (less than .5 for
G-0 and BiB). Inserting a kFZ dependence at low density (to take in
account the kinetic energy), one has a parametrization of E/A of the

form :

E/A = kp’la_+a; sk + a;ak? + ask’) + a7 k' lac+as 2k)
where ak = kp - kF;'
It is easy to see that the aj are related to the
guantities calculated above by the following relations :

S
CT
2
a; = - —1 E
kgl "o
E
2 = giv * 3w
Fy Fo
R U e P T S I
P Tk € 23k s 3
Fo Fo
a = 8
Ky
3E
3 1 S Eg ]
as¥= 2| == - 2 22
kh[akh ke,

The results are presented in table (8).

" In this work, the coefficient as has been determined to give a good
agreement with the function E_(k in the range 0 <k .
s kg) ¢ ‘P‘kn
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The equations (B2) which define the coefficients b,
and b, confirm the inability of usual Skyrme interactions to
describe correctly nuclei with large neutron excess. Indeed, in the
case of Skyrme forces,the decrease of Fermi momentum when a increases

ctically zero because of the high valuesof K and the smallness

S
of 5-)-(— .

is pra
paE
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TABLE CAPTIONS

values of the coefficients used in the parametrization of
the DME functional for interaction G-0 and B;B8 (eg.11,13,
14,16).

Binding energy per nucleon (in ™MeV), proton and neutron radii
{in fm) calculated with G~0 force (see footnote page 6),
column (0) refersto exact H.F. calculations

column (1) refers to exact DME calculations

column (2) refersto exact DME calculations, except for the

effective mass, calculated using U, eq.(9) instead
of B eq.(5).

refers to calculations done with the parametrization
of the functional obtained by the DME,

-

column (3

Binding energy (in MeV), proton and neutron radii (in fm)
calculated with B;B force (see footnote page 6), The labels

{1) and (3} have the same meaning as in table 2.

m® is the effective mass calculated with eq.(8) and (9).
Comparison of nuclear matter properties calculated with G-0
and with one of the functionals used by Beiner and Lombard [5].

Parameters of Skyrme-forces : SG-0 refer to the Skyrme-type
fcrces constructed starting from G~0. We give for comparison
the parumeters of the Skyrme force SKY 3 of ref.[4] t, in
Mev.fnd, €, in MeV.fm®, t, in MeV.fm>, t, in Mev.fm®.

Comparison of the results of DME calculations (column (1))

with the results obtained from the two Skyrme~type forces

1/6

constructed : with a p dependence (column (4)) and with

a p-dependence (column (5)).
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Nuclear matter properties of various forces. All the
SE,
quantities are in MeV except 31§ in MeV.fm.

Coefficients of the parametrization of E/A in nuclear matter
as a function of kF and a. b; and b, give the shift of the
saturation momentum when a lncreases (eq.(B2}).



Table 1

ag ay az ay a asg b, b, by Cc, [P d; d,
G-0 {~9.1 |13.43{12.13{-7.9]49.33| 3.3] 8.33/-1.6 |.47|- 66.} 111.] 643.{~384.
B1B | ~7.44{10.27{10.19}~5.3{23.69]14. {20.47{-3.68|.17|-136.] 205.] 692. -342.6]
Table 2.
) “°ca
[\] 1 2 3 0 1 2 3
E/A -6.21 { -6.90 | ~6.94 |-6.89 ~7.29 | ~8.22 | -8.26 | ~8.21
T, 2.81 2.68 2.66 2.69 3.52 3.34 3.33 3.34
rp 2.83 2.72 2.68 2.72 3.57 3.40 3.39 3.40
“ica 202y
0 i 2 3 0 1 2 3
E/A ~7.42 | -8.47 |~8.50 |-8.45 ~7.78 | -8.71 | -8.73 | -8.69
L 3.78 3.57 3.55 3.57 4.44 4.23 4.23 4.23
rp 3.58 3.38 3.37 3.39 4.35 4.15 4.16 4.15
ZDBPb
0 1 2 3
E/A {-7.24 | -8.05}| -B.07| -8.03
L 5.71 5.57 5.58 5.57
Ib 5.50 5.34 5.37 5.35




Table 3.

150 Boca
0 1 3 0 1 3
E/A [-6.05 [~6.41 |-5.,95 E/A | ~6.43 |~7.21 |-6.89
r 2.65 | 2.56 | 2.58 rn 3.38 | 3.20 | 3.20
T 2.67 | 2.60 | 2.62 T 3.43 | 3.26 | 3.26
P P
“8Ca 0zr
0 1 3 0 1 3
E/A |-6.10 |-7.21 | -6.88 E/h | -6.28 |-7.13 | ~7.06
L 3.76 | 3.46 | 3.48 T 4.37 | 4.06 | 4.07
T 3.51 | 3.22 | 3.23 T 4.25 | 3.94 | 3.94
P P
Table 4.
F2 G-0
Eo -16 ~-16.7
kF 1.32 1.36
K 280 182
E_ 34 35.5
me
= .67 .625
Table 5.
8 to t] t2 tz Xc K
176 | -2248 | 558.8 | -23.7 | 11224% [ .715 | 253
sG-0
1 |-1089 |558.8 | -83.7 | 8272 | .412] 363
SKY3 1 [-1129 | 395 -95 14000 | .450] 356

(%) in MeV.fm3/2,




Table 6.

'¢o “0ca “tCa
1 4 5 1 4 5 1 4 5
E/A |-6.90 | -7.04 | ~6.20 -8.221 -8...21~7.35 ~-8.47 | ~8.39 -7.80
T 2.68 2.67 2.62 3.34 3.34 3.29 3.57 3.58 3.52
Ty 2,72 2.70 | 2.64 3.40( 3.39 [ 3.33 3.38 [ 3.41 3.30
SDZI zoapb
1 4 5 4 5
E/A |~8.71 ] ~8.63 |-8.11 -8.05 | ~7.86 | -7.41
rn 4.23 4.23 4.17 5.57 5.54 5.43
rp 4.15 4.16 4.05 5.34 5.36 5.14
Table 7.
9E
Pot. ke E E K aK — 3
[ o 3k ak
LEV [18}| 1.39} -17.35| 32 270§ 1360 68.5
PEAR [19]] 1.35 ] -15.3 31 240 | 1205 24.
BAR [20])] 1.38 ] -14.9 42,4 ]293 | 1518 | 1086.
B, 8 1.45 1 ~15.65] 49.8 | 184 616 { 98.1
G-0 1,36 | -16.7 | 35.5"|182 | 619 ] 58.3
SG-0 1.36 | ~16.7 35.5 253 1220 29.5
SKY3 1.29 | -15.9 28.2 | 356 ] 2422 7.9
% With the rearrangement symmetry 2nergy.




Table 8.

Pot. ao a, a; as a, ag b, b,
8,8 ~7.4410.27 {10.19 { - 5.3 ! 23.69{14.0 (.77} .85
G-0 -9.1 13.43 [ 12.13{ - 7.9 19.33 3.30/ .36} .17
5G-0 {-9.1 13.43 1 22.70 2.0119.33 1.05{.16 | .06
SKY3 |-9.5 14.72 | 47.1 30.6 } 16.92 { -B.2 | .03 .003
B.~L.[~9.2 13.89 | 30.3 9.7 19.51 4.47| - -
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*IGURE CAFTIONS

One body H.!'. potential U({k) calculated with G-0 force labelled
(0). Label (2) rufers vo the expansion of U(k) around k=0 up to

second ordes. Lawvel (L) rerers to the DME expansion.

Energy per purticle (in MeV) in nuclear matter as a function of
kF and a calculated with G-0.
EnQrgy per parcticle (in MeV) in nuclear matter as a function of

kp and « calculated witn B18.

Functiun C(kF,o) is plotted for various potentials : OPEP only,
Negele interaction, Campi-Sprung interaction (-0, and SKY

ceferring to SKY3 in ref.lud].
Pfunction D\xp,o) is plovced for the same inceraction as fig.4.

Proton densicy distributions calculated with G-0. Yne exact
H.¢¥. calculation is labelled (0), the DME calculation (1).

Nourron and proton density distributions ralculated with G-0.
fhe coxact ... calceulation is labelled (0), the DME calculation
(1) uand tne LM calculation with an effective mass defined by

ed. (4) and (%) is Llapelled (2).

Neutron and troton density distributions calculated with Blg
using exact #H.F. calculations (Label (0)) und DME method

(label (1)).

Single particle spectra in the case of G-0. The exact H.F.
calculation is labelled (U), the DME calculation (1) and the
DM calculativn with an effective wass defined by ey. (4) and
(5) as labelled (2).
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Fig.1l.

Fig.12.

Fig.13.

Fig.14.

Sing.e particle spectra in the case of Ble. The exact H.F.
calculation is labelied (0}, the DME calculation {1}.

Plot of €, and Cy (in Mev.fms) as a function of a for various
values of kF' ’

3

208Pb (in fm ")}. We

Proton density distributions in 160 and

compare the results of the DME (label (l)) with those obtained

with the two Skyrme-type fcrces : with a 91/6 dependence (label

(4)) and with a op-dependence (label (5}).

Energy per particle {(in MeV} in nuclear matter calculated with

G-0 as a function of a? for various values of kF.
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