Meeting on fundamental aspects of radiation damage in metals. Gatlinburg (USA), FR7600686 5-10 October 1975 CFA-CONF--3332

PRICTION PEAKS OF COLD HORKED COPPER

P. Moser, C. Minier, J. Lausier

Département de Recherche Fondamentale, Section de Physique du Solide. CEN-Grenoble, EP 85 Centre de Tri, 38041 GREBOBLE CEDEX (Prance)

ABSTRACT

In cold worked copper the internal friction is decreased by electron irradiation between 20-140 K and increased between 140-280 K. In a copper specimen containing a convenient dislocation network, it is possible to develop Hasiguti type peaks.

INTRODUCTION

Below room temperature, the internal friction spectrum of cold worked expper presents five peaks. Two of them are "lattice-dislocation interaction" peaks (Bordoni B₁ and B₂) explained in terms of double kink generation on dislocation loops of special orientations^{1,2}. Three of them are "sold work point defect-dislocation interaction" peaks (Hasiguti P₁, P₂ and P₂) attributed to thermomechanical depinning of dislocations³.

By using successively cold work and irradiation on copper samples, we compare the nature and the pinning effect of both cold work defects and irradiation defects.

NATERIAL AND METHODS

High purity copper (99,999 \$) was annealed for 5 hours at 800°C under a 10⁻⁶ Forr vacuum, then defects were introduced by 300 K cold work followed by 20-30 K electron irradiation. Two apparatus, in line with a Van de Graaf accelerator were used, both allowing "in situ" cold work, irradiation and internal friction measurements, the first one for S₁ referred samples (1 \$ torsional cold work at 300 K; 20 K, 3 MeV, irradiation of 0.3 -25 x 10¹⁸ el.cm⁻²; torsional oscillations of f = 2 Hz creating a maximum sample strain of $c = 10^{-5}$)(Fig. 1, 4, 5, 6)⁴, the second one for S₂ referred samples (smaller 300 K cold work : < 0,1 \$; smaller irradiation doses ; 28 K, 2 MeV, 4 x 10^{15} el.cm⁻²; higher frequency : 630 Hz and higher semsitivity $\varepsilon = 10^{-7}$ in bending mode) (Fig. 2, 3)⁵.

EXPERIMENTAL RESULTS

Cold vork

Fig. 1 shows the interral friction of the 300 K cold worked sample B_1 during successive worming-up. We observe Bordoni B_2 , Hasiguti P_1 and P_3 peaks⁶. During annealing the Hasiguti peak P_1 increases and then decreases.

The dotted curve on Fig. 2 corresponds to the sample S_2 , having a smaller amount of cold work, just enough for giving a mice S_2 peak but no P_1 peak. Fig. 3a, obtained in comparable conditions shows the amplitude

Fig. 1 : Internal friction during varming-up of the 1 5 cold worked copper sample B_i (a : after 300 K cold work. b,c and 4 : after warming-up to 340 K, 380 K and \$20 K respectively). Measurement frequency f = 2 Ms.

Fig. 2 : Internal friction of a lightly cold worked sample B_2 before (...) and after (....) electron irradiation (28 K, 2 MeV, 4 x 10¹⁵ el.cm⁻² and 300 K annealing, f = 630 Hz).

Fig. 3 : Amplitude dependence of internal friction at different measurement temperatures before and after 28 K irradiation followed by 300 K annealing for the sample S_2 (f = 630 Hz).

dependence of the internal friction. A rapid variation is observed at low strains ($\epsilon < 10^{-6}$) and low temperature which was attributed to thermally activated motion of preexisting geometrical kinks⁷.

Cold work followed by irradiation

For observing the interaction of irradiation defects with preexisting dislocations, the samples B_1 (Fig. 1m) and B_2 (Fig. 2 dotted curve) are of particular interest : the B_2 peak is well developped indicating the presence of a dislocation network made of long dislocation loops free from interacting defects². The absence of Masiguti peaks shows the absence of an appreciable concentration of cold work point defects in a form which ean interact with dislocations.

After a 27 K irradiation (2 MeV, $4 \ge 10^{15}$ el.cm⁻²) followed by 300 K annealing the sample S₂ shows a small B₂ peak and a new P₁['] peak (Fig. 2 full line curve). This peak P₁['] presents the same characteristics as those of the P₁ Hasiguti peak appearing after cold work. The amplitude dependence mentioned above is practically suppressed by the irradiation (Fig. 3b).

Fig. 4 shows the results obtained with a sample S_i . Before irradiation, a small Hasiguti peak P_i is present (curve 1). During the varmingup, immediately after a heavy 20 K irradiation (3 MeV, 1.2 x 10¹⁸ el.cm⁻²) the internal friction is drastically reduced by a pinning stage occuring at 50 K ⁶ and observed on the modulus curve simultaneously obtained (curve 4). On the contrary, between 150 and 275 K, the internal friction is

Fig. 4 : Internal friction spectra of a S_1 sample after 1 \$-cold work at 300 K (curve 1), an irradiation at 20 K with a dose of 1.2x 10¹⁸ el.cm⁻² (curve 2) and an annealing at 300 K (curve 3). Curve 4 shows the frequency measurement corresponding to curve 2.

increased with broad maxima at 180 and 240 K (curve 2). After 300 K annealing, the peak B_2 is partly restored and a new peak P_1^{\dagger} appears as in Fig.2. The temperature shift due to the difference in measurement frequencies gives, for P_1^{\dagger} , an activation energy of 0.3 eV.

Fig. 5 presents the irradiation dose effect on internal friction spectrum of sample S_1 after 300 K annualing. With increasing doses, the background decreases. The Bordoni B_2 peak decreases in size and width. As shown on Fig. 6 the peak P_1^* increases first, then goes to a maximum for 1.2 x 10¹⁸ el.cm⁻² and finally decreases. The slope of the decay of the Bg peak, and the dose giving the highest P_1^* peak depend strongly on the amount of the initial cold work. In aluminium and gold, a similar beha-

Fig. 5 : Internal friction of S₁ samples, after 1 \$ cold work and 20 K irradiation to different doses irradiation to different doses followed by 300 K annealing (f=2 Hz). Nefere irradiation (...).

Pig. 6 - Irradiation dose dependence of the Bordoni B₂ peak and Masiguti type P⁴ peak.

The significant reduction of the internal friction, and the disappearance of the amplitude dependence observed at low temperatures and low strains on Fig. 3 mean that even a low concentration of irradiation \cdot point defects (< 10⁻⁷) is sufficient to hinder the motion of the preexisting geometrical kinks.

The 80 % decrease of the Bordoni peak B₂ and its asymetrical shape (Fig. 4 curve 2) result from the length reduction of the dislocation loops by pinning attributed to the long range interstitial migration⁸. The incomplete restoration of the B₂ peak after room temperature annealing means that the immobile pinning interstitials are annihilated by combination with migrating vacancy type defects, allowing the dislocation loops to return to their approximate original lengths.

The complete analogy between the P_1 irradiation peak and the P_1 cold work peak shows that the same mechanism, involving the same point defect, occurs for both peaks. The conditions for the appearance of these peaks suggest that the most probable mechanism is the thermomechanical depinning of dislocations from vacancy type defects¹¹. Nevertheless we cannot exclude an interpretation in which the point defects are impurity atoms¹², but dragged to dislocations by a vacancy mechanism. The variation of the P_1' peak amplitude with the dose is correctly interpreted by Shiller's model¹³.

The small maxime observed at 180 K and 200 K (fig. & curve 2) anneal

out similarly to the well known Hasiguti peaks P_2 and P_3 created by cold work and situated at the same temperature⁶. This behaviour suggests that the 150-275 K internal friction is a continuum of Hasiguti peaks resulting from the interaction between preexisting dislocations and more and more complex irradiation defects.

CONCLUSION

The internal friction spectrum of cold worked copper is strongly changed by introducing point defects :

- The stage Ig defect (free migrating interstitial) decreases the internal friction in the range of Bordoni peak By through a pinning mechanism.
- Stage II defect (interstitial agglomerates) increases the internal friction in the range of P2 and P3 peaks through a Masiguti mechanism.
- The stage III defect (vacancy or divacancy) annihilates the previous effects and develop a Hasiguti type peak P¹₁ observable when the sample contains a convenient dislocation network.

REFERENCES

- 1. A. Seeger, J. de Phys. 32 02, 193 (1971).
- 2. W. Benoit, G. Fantozzi, Second Suropean Conference on Internal Friction and Ultrasonic Attenuation in Solids (Rome, 1975).
 - 3. J. Peres, P. Peguin, G. Fantoszi, P. Gobin, Ann. Phys. 5, 303 (1970).
 - 4. R. Pichon, F. Vanoni, P. Bichon, G. de Kesting-Hart, P. Moser, Rev. Phys. Appl. 5, 427 (1970).
 - 5. J.C. Soulié, J.P. Jodeau, Y. Depierre, C. Minier, Rad. Eff. <u>11</u>, 221 (1971).
 - 6. J. Lausier, M. Ory, G. Fantozzi, C. Minier, P. Moser, Phys. Stat. Sol. to be published.
 - 7. M. Ory, J. Lausier, C. Minier, G. Pantozzi, P. Moser, Second European Conference on Int. Frict. and Ultras. Atten. in Solids (Rome, 1975).
 - 8. D. Keefer, J.C. Robinson, A. Sosin, Asta Met. 13, 1135 (1965).
 - 9. G. Fantozzi, J. Perez, W. Benoit, P. Moser, Z. Kabsch, Rad. Eff. 11, 277 (1973).
 - Nercier, W. Benoit, P. Møser, G. Fantossi, P. Peres, P. Gobin,
 V. Internal Conference on IPUA, Aachen (1973).
 - 11. B. Bays, W. Besoit, P.A. Grandchamp, J. de Phys. 32 C2, 153 (1971).

ginempian (1995年1996年1978年

- 12. G. Bokolowski, K. Läcke, V. Ist. Conf. on IFUM, Anchen (1973).
- 13. P. Schiller, Phys. Stat. Sol. 5, 391 (1964).