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Abstract

A new method to analyze the MHD kink instabillity in the
cylindrical approximation is presented. Using the nonlinear
equilibrium equation with the helical perturbation method,
an expression for the growth rate of instability of a per-
turbation is obtained. For m=l mode, the growth rate and
the stability-instability criterion, q(a)=1l, are calculated
analytically for an arbitrary curreat distribution. The growth

_rate 1s also calculated In the case of a uniform current.




Much work has been done previously about the MHD kink
instability' in terms of the normal mode analysis®’or of the
energy principle method’, The former method is restricted to a
particular current distribution, and the latter scems very
complicated. Previous results imply that systems subject to
kink instabllity have helical symmetry. On the other hand,
small amplitude helical eqilibrium equations of a plasma which
carries an arbitrary current in a ecylindrical tokamak werc obe-
tained by means of MHD approximation! By use of these equa-
tions, helical perturbations on the magnetic surface and the
torsion of the plasma due to the perturbation can be calculated,
onice the current profiles are given. Our method presents a
systematic way to analyze the MHD kink instability for an ar=-

. bitrary current distribution. Especlally in the case of the
m=1l "free boundary" mode, the growth rate and the stability
eriterion have been obtained analytically. In the case of a
uniform current, the growth rate has been alsc calculated. These

results agree with the results obtained by Shafranov.

In the cylindrical approximation, the tokamak configura-
tion can be considered as a plasma (radius a) in a perfectly
conducting cylinder (radius b) with the pariodicity 2xR (R 1s
the major radius). By introducing the helical coordinates
with P=10+k, 2 (r,8,z are ordinary cylindrical coordinates),
the.‘P component of the magnetic field By and that of the veator

potential Ay are given as.

By s krBy-lB , o)
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AY = l‘.fA. - .Ag = "P / ) (2)

and the plasma equilibrium equation, 3:3-Vp, can be expressed
as
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3 ' "
. Since (ak,)=(a/R}& 1, in the 1limit of the strong troidal field
By with (»,-o, Eq.(3) can be written as
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The other components of the magnetic field and current densiby
in the 2z dir=sction are

LrBoetpo =2 0w
P+ = -_:,'-§% ’ (5)
Jevy = -'—.B;%f . (6)

The boundary condition 1s such that By vanishes at'r-b, or

W

= =0 at r=p,

3% (?)

In order to solve Eqs.(3')&(7) by perturbation method,



we expand Y(r,§) as (inside the plasma)
Yirg) = §un + fnicmy + Lo -

where¥ is a free parameter. We substitute Eq.(8) into Eq.(3')

» then ve get

L3 - onp, + gL (9)

)
‘l' + +% 1.311 = Pl =5 I"" , (10)
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where ' denotes the derivative with respect to r. In vacuum,

‘V(r.v) is expanded as
qI,(r;9) = lk,ol'r) + eq'V‘(f)M(P R , (12)

and a set of equations for ¢, {,, is given as

)
Tlfr Mve _ 20,8, ) (13)
-:{l‘¢w++£,7'(%%fﬂ =0 , (14)

Then Eqs.(B8)&(12) are combined on the surface of the plasma.
Prom the continulty condition imposed on ‘If on the

surface of the plasma we obtain
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k,(a')i = Yool . . s

The displacement of the plasma surface, ‘ » 18 also determined
by & (as shown below). By use of §, we can calculate the nag-
netic energy change in the 2nd order of § due to the pertur-
bation. It shoud be noted that work done by the poyei' supply
due to the perturbaticn 1s two times the change of the magne-
tic energy, because the total current is not changed by the
perurbation considered here (ordinary tokamak operation ‘1'3_
under co;:stant current condition). "'(r,?) is constant on the

surface r-a'l-fasf so q'(a-rfmf ,7) is independent of f,

Yarsey, 9)- bia) = YlarScoip + Pareeny =0

-her§ = g, )

\k' 1s not continuous in the first order of ®. This means that
there is the 1lst order surface cdrrent; Work AH; :ls done due
to the tora:lon of the plasm column because of JxB force rron
the outside to the inside. AW is given as .

e
oW, = -\ oo (4w - ¢m)asc~wsf o an

qu.
Let the change of B due to this perturbation be 4B} then
the magnetic energy change in the plasma per unit lensth,lli' »
- 1s ’



O+ Sy
A= 355, ‘ S.”z”“f . (28)

and that in vacuum per unit length, AWy, is

' e ’ 7
Aw. 3 SAB‘N“'I . (19)
Z2N il

The total magnetic energy change per unit length,AWw, 18 equal

to AW, +AW, .
From Eq3.(1),(4)%(5), we obtain

B=lEys 5y} 1*(#) | (20)

In the plasma, B, is expanded as

? 28 1 2
B,uy) :_B’,(([;)-)»g%f}:l[;my-l-%%lil ¢, + —'— ay:’«g(— e (21)

Then

28" (o0 B Yiwop [ 1 andley,

2 ., l . qft. 3 2 ' )
+£(By?{)%ua?+2a%%l+(ﬁ Juss™y }+ ?—.fn 7_]0( + (22)
In vacuum BI, is cdhst'am':, ahd |
.2 ‘P L q’u: . a 2 o
AB “?%’5“"?+’k{i(§’)m?+?sm plet+. (23)

o, 5,& are related to each .other throu;gh Eqs"; ( 1>5 J&(16).



Substituting Eq.(22) into Eq.(18), and Eq.(23) into Eq.(19),
AWm is calculated. From the energy conservation 24Wsis equal

to AWm+AWs +AW, , 1.e.
AWe = AW -AWs v (24)
The expression for th: prowth rate ¥ 1is glven as
Vst = 2 ow, . | (@)
A<

where {p) is the averaged density.

We next solve the case of the m=1 mode. Let f=1, and the

solutions for Eqs.(10)%(11) are given as

d% '
bir) = 3y ) (26)
.0r) = —(f‘.,J;"HZhBt) ] 27

Eq.(27) 1is not a general sclution of Eq.(13), but it is ade-
quate for this analy:sls, for only the ?nd order perturbation
generated by Q; is sisnificant. The kinetic cnergy change,

AW, , due to this perturbation is

AW, = ,‘. kb 2 [30-2)- Zzo-r) e
B

t .
The values of J are obtained for various values of a/b and are
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shown in Fig.l. From Eq.(28) it is evident that the stability

eriterion of m=1 mode 1s q(a)=1 for an arbitrary distribution

of current.
For the case of a uniform current, AW, for any m mode can

be obtalned by this method. PFig.2 shows the results of our

calculation up to m=3.

Higher mode instability for any curren:c profile is being

analyzed numcrically vy use of this -ethod{
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Fig.l.

Fig.2.

Figure Captions

Growth rates of m=1 mode perturbation for dn arbitrary
current distribution and various values of a/b. It is
evident that the stabilityvcriteria are qf{a)=l. As.
the value of a/b is increaéed, the“unstable regioi;
becomeg narrover and the growth rate dr 1nstab111§§

approaches zero. 1)a/b=0, 2)a/b=0.6, 3)a/b=0.8.

.Growth rates of perturbation for the unirorm,disﬁéié

bution of current density and for thevvarious‘vvlaep;

of a/b. 1)a/b=o, 2)a/b=0.6, 3)a/b=0.8.

- 11 -



3' (arbitrnry unit)

1. a/b=0 -
2: a/b=0.6
3: O-lbaooa
1.0/

9 (@)

Fig. 1



5’ (arbitrary unit)
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