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Inversion of Single~Particle Levels in Nuclear Hartree-Fock and
Brueckner-HF Calculations with Broken Symmetry

R. L. Becker
Oak Ridge National Laboratory™
Oak Ridge, Tennessee 37830
and
J. P. Svenne

University of Manitoba
Winnipeg, Manitoba

Abstract: Energy levels of states connected by a symmetry of the
Hamiltonian normally should be degenerate. In self-ccnsistent field
theories, when only one of a pair of single-particle levels connect=d
by a symmetry of the full Hamiltonian is occupied, the degeneracy is
split aad the unoccupied level often lies below the occupied one,

We examine inversions of neutron-proton (charge) and time-reversal
doublets in odd nuclei, charge doublets in even nuclei with a neutron
excess, and spin-orbit doublets in spherical configurations with spin-
unsaturated shells. The origin of the level inversion is investigated,
and the following explanation offered. Unoccupied single-particle
levels, from a calculation in an A-particle system should be inter-
preted as levels of the (A+l)-particle system. When the symmetry-
related level, occupied in the A-particle system, is also calculated

in the (A+l)-particle system it is degenerate with or lies lower than

*
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the other. That is, when both levels are calculated in the (A+l)-
particle system, they are not inverted. It is demonstrated that the
usual prescription to occupy the lowest-lying orbitals should be modi-
fied to refer to the single-particle energies caiculated in the (A+l)-
or the (A-l)-particle system. This observation is shown to provide a
justification for avoiding an oscillation of occupancy between symmetry-
related partners in successive iterations leading to self-consistency.
It is pointed out that two degenerate determinants arise from
occupying one or the other partner of an initially degenerate pair of
levels and then iterating to self-consistency. The existence of the de-
generate determinants indicates the need for introducing correlationms,
either by mixing the two configurations or by allowing additiomal
symmetry-breaking (resulting in a more highly deform:i non-degenerate

configuration).
1. Introduction

Symmetry properties have long been recognized as playing a vital

role in nuclear self-consistent field (SCF) theories.* Besides making

*We have in mind, along with Hartree-Fock (HF) (see, e.g. the review by
Ripka in ref. 7), the newer and less extensively exploited demnsity-
dependent Hartree~Fock (DDHF)I-Z), Brueckner-Hartree-Fock (BHF)?),
renormalized Brueckner-Hartree-Fock (RBHF)*/, and Hartree-Fock-
Bogoliubov (HFB)®»°J) theories.

it possible to include known facts about the nucleus from the start,
these symmetries lead to important simplifications in the calculations
and make them more tractable in terms of computer time and storage. If,

among the symmetries of the full Hamiltonian, only the self-consistent



symmetries (precisely defined in section 2) are imposed on the SCF
Hamiltonian, these introduce no additional approximations into the calcu-

7-9) on the neutron and

lation. However, they do place restrictions
proton numbers of the nucleil which can be treated and on the kinds of
configurations for which the calculations can be done. It can be useful

also to make SCF calculations with a simplified full Hamiltonian having a

symmetry which the "actual" nucleon-nucleon interaction does not possess,*

*
One does not know, of course, the exact effective interaction which

should be used in a given SCF theory. Dut one has learned that the
nucleon-nucleon force is very complicated and possesses fewer symmetries
than the model forces one would prefer to use for the sake of sim-
plicity.

provided that the symmetry-breaking part of the "actual" interaction is
re.atively weak, Thus, assuming a symmetry also places restrictions on
the two-nucieon interaction.

Two symmetries of the full Hamiltonian assumed in many of the nuclear
SCF calculations done up till now are: (i) time-reversal invariance, and
(i1) isospin conservation. The latter assumption requires neglecting the
isovector part of the Coulomd interaction between nucleons and the small
non-charge-independent contributions to the nuclear forces. 1In orde:r for
(1) to be a self-consistent symmetry, the calculations must be restricted
to nuclei with even N and ever Z; similarly, (ii) requires self-conjugacy,
N = Z. Taken together these two symmetries limit consideration to par-
ticular configurations of even-even self-conjugate nuclei, here to be
called a~-particle nuclei7). Because of the presence of isovector Coulomb
forces in actual nuclei, only the lightest of these nuclei, viz, those
with A < 60, are stable or nearly stable; heavier stable elements strongly

prefer a neutron excess.
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The set of a-particle nuclei includes ali of the stablie self-

conjugate nuclei which can have closed spherical i-shells, 4He. 160 and

40Ca. In these nuclei the "normal" splittiwnz of the j-subshells, which
10
arises primarily from the two-nucleon spin-orbit interaction ), is such

that the j=2+1/2 level lies below the j=2-1/2 level. From Wong's inves-

tigation one may infer that the interaction of a single-particle (s.p.)

state j with a filled j'-subshell, which we shall denote by Uj(j'). is

such that
Ag(i'-I/Z) = Ug_llz(l'-I/Z) - U£+1/2(2'-112) > 0, ("normal") (1.1a)
AZ(2'+1/2) = U2_1/2(£'+1/2) - Ub+1/2(2'+1/2) <0, ("abnormal') (1.1b)

and that if the L'-shell is closed there is a partial cancellation be-
tween AQ(l':1/2), with the remainder having the normal sign

z ) , 8,(3') > 0. (1.1c)
j'=2"+1/2

Another subset of the u-particle nuclei includes lzC. 2851, 328 and

56Ni, which have spherical configurations in which the highest occupied
21'-shell is spin-unsaturated, i.e. the "normally lower" j'=2'+1/2 sub-
shell is filled while the j'=2"-1/2 shell is empty. The interactions of
the s.p. states j = £ * 1/2 with the spin-unsaturated &'-shell are, by
eq. (1.1b), such as to give an "abnormal" contribution to the spin-orhit

11,12) and RBHF13,14)

splitting. A surprising result of some HF calcula-~
tions (see section 3.1) 1is that for 2 = &' (the spin-unsaturated f-shell)
the unoccupied j=2-1/2 subsghell is found to lie lower than the occupied

j=2+1/2 subshell. That is, the uncompensated "abnormal" contribution to
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the splitting of states with j = 2 + 1/2 arising from interactions with
the filled j=2+1/2 subshell outweighs the individually small '"normal”
contributions from the interactions with the occupied closed f-~shells,
This poses a problem for the SCF theory, because the occupied levels in
the model ground state are supposed to be those with the lowest s.p. ener-
gies. This is one example of the level-inversion problem to be consid-

*
ered in this paper.

*The spherical configurations do not ?rovide very good descriptions of
the ground states of these nuclei: 2c, 285 and 325 are described
better as deformed and °°Ni as paired. The possibility of escaping from
an inversion or near-degeneracy by taking on correlations is discussed
in section 6.

Although most nuclear SCF calculations performed to date are for the

*x
a-particle nuclei, a number have been done for spherical nuclei with a

T
We cite a number which employ various interactions and methods of cal-

culation: for the spherical nuclei refs. 15, 12 and 16 (HF), refs. 2,
17 and 18 (DDHF), refs. 19 and 20 (BHF), and refs. 13, 14, 21 and 22
(RBHF); for axially symmetric deformed nuclei refs. 23-25 (HF), ref. 26
(DDHF), and refs. 13 and 27 (BHF and RBHF). As the considerations of
the paper do not cover explicitly the HFB method, we have not included
any references to HFB calculations.

neutron excess, e.g.12'16’18’20’21’28). Moreover, a few have been made

for odd nuclei with one "particle” or hole outside closed spherical shells,

g.29’16’24’30) and for more strongly deformed odd and odd-odd nuclei,

e.g.30’24)

. A frequent result is the intrusion of an unoccupied level
belcw the highest occupied level, i.e. an apparently non-selt-consistent
inversion of levels, For example, in an odd or odd-odd nucleus an un-

occupied state which is similar to the time~reverse of an occupied state

lies below the occupied state (see sect. 3.3).



In the case of a breaking of time-reversal invariance a level-
inversion can lead to an instability in the iterative process used to
achieve self-consistency. Suppose that, as part of the input to one step
of the iteratiom, the "last nucleon” occupies a certain state whereas the
time-reversed state is unoccupied, and that in the output of this itera-
tion the time-reversed state is the lower. Then, according to the
standard interpretation of SCF theory, in the next iteration the time-

*
reversed state should be taken as occupied, and so on. This has been

*
Note, however, that the particle density of an orbital 1s the same as
that of its time-reverse, so there is no oscillation of density.

done for example in the calculations of odd axially deforaned nuclei by

24)

Lee and Cusson . They have cited the lower of tha energies of the two
states as that of the highest lying occupied state (ef) and the higher

of the two us the energy of the lowest unoccupied state (¢ ), but their

24)).

£41

calculations in fact involved the inversion-instability (priv. comm.

In this paper we examine these level inversion problems in some de-
tail for the HF, BHF, and RBHF theories. We suggest a physically mean-
31)

ingful interpretation which removes the apparent inconsistency between
filling the lowest levels and the existence of a level inversion, and
which is shown to provide a theoretical justification for avoiding an

inversion-instability in successive iterations.

2. Statement of the problem

2.1. SELF-CONSISTENT SYMMETRIES
We shall deal first with the level inversion problem in a formal way

that includes all the cases mentioned above. We assume that the full



Haniltonian of an A-nucleon system is

TH) + ) v(i,j}. (2.1)
1 1,j(1<3)

e o
]
N>

i

A symmetry property of H is expressibie as the invariance of H under a
transformation. Thus, a symmetry operator for H is defi-ed as a unitary
or anti-unitary (in the case of time-reversal) operator which commutes
with H. The one-body SCF Hamiltonian, h, for any solution of the SCF

problem is a functional cf the occupied self-consistent orbitals, :X’ i.e.
b= h({y,, A < AD).

*
A symmetry operator x! for H which, moreover, is the A-fold product of

*

This requirement excludes symmetries involving permutations of particle
labels, which can be reduced only as far as products of two-particle
operators,

a s.p. transformation, S, is said to be a self-consistent symmetry for a
solution of the SCF problem if S is a symmetry operator for h. A self-
consistent symmetry 1s a propagating symmetry, i.e. one which is pre-

served In successive iteraticns, Thus, if a trial set of orbitals yields

()

a s.p. Hamiltonian h which commutes with S, then the self-consistent

h obtained at the end of the iteration process will commute with S.

A necessary and sufficient condition for a symmetry to be self-

consistent in HF theory is given in the following 1emma7’8):

1f S 1s a unitary or anti-unitary s.p. trarsformation for which
A
kf = I S(i) commutes with H({1,...A), then S coumutes with h({wk’ A < AD)
i=1
if and only if S leaves the subspace of occupied orbitals {wx, A< A}

invariant.



The lemma 1s a consequence of the fact that the HF Hamiltonian is invari-
ant under any unitary or anti-unitary transformation within the subspace
of occupied crbitals. As this property holds also for the BHF and RBHF
theories, the lemma can be generalized to apply to these theories. The

self-consistent determinautal wave function,

¥ = det{y,, A < A}

is clearly invariant to within a phase under a self-consistent symmetry.
Axial symmetry is always a self-consistent symmetry in the absence

of an external magnetic field because

A
[exp{i® | i}, "l =0 (2.2a)
i=1

and for an axially symmetric field the azimuthal dependence of each or-
bital wave function can be chosen to correspond to a sharp intrinsic mag-

netic quantum number, {2, for which S is diagonal
expfiejz}wag = exp{iﬂe}wuﬂ, (2.2b)

so that the manifold of occupied orbitals is trivially invariant.

When considering a single self-consistent symmetry, S, if it is not
already diagonal by choice (as in the case of axial symmetry), one can
diagonalize it in the space of occupied orbitals. 1Its eigenfunctions
are invariant to within a phase under S. But we must usually consider
SCF solutions with more than one self-consistent symmetry. Often some
of the symmetries do not commute among each other. Ia such cases it will
be impossible for the individual orbitals to be eigenfunctions of all

the symmetries. It is necessary to choose a basis set of orbitals in



which a commuting set of symmetries are diagonal while the other sym-
metries are not. If an orbital is transformed into a different orbital
by a self-consistent symmetry, then the orbital and its transform are

degenerate, for

hy = ey and [S,h] = 0 (2.3)
imply
h(sy) = Shy = e(Sy). (2.4)

In this paper all the non-diagonal symmetries with which we shall be con-
cerned lead only to a two-fold degeneracy. For these Szw « Yy, and S may
be referred to as an "interchange'" operator. With 2ach such symmetry S,
there is another self-consistent symmetry, SD, with which S does not
commute and which distinguishes between each two degenerate partners

under S. We may refer to the eigenvalue of S_, which distinguishes omne

D
class of orbitals from that of their partners under S, as the distinction
quantum number relative to S, Two partners may be said to have opposite
distinctions.

The three cases to be considered here are:

(i) Time-reversal (&) Invariance. For axially symmetric fields
the time-reversed partner of an orbital has a magnetic quantum number of
opposite sign. Thus, if the body-fixed unit vector Z' is along the axis
ei'n(jz,-1/2)

of symmetry, S_ =

D distinguishes between the two sets of

partners. Bar-Touv and Kelson7) pointed out that the & -adapted orbi-
tals of axially asymmetric fields with ellipsoidal symmetry can be
written as superpositions of states ¢aﬂ with Q-1/2 either even or odd.
So here again d:j = <(-1)jz'_1/2> distinguishes the partners. If an

orbital is occupied then its time-reversed partner also must be occupied



10

if the subspace of occupied orbitals is to be invariant under time-
reversal. Consequently, the nucleon number A must be even. Moreover,
if the orbitals do not mix neutron and proton components, then N and Z
separately must be even. In the case of axial symmetry the total mag-
netic quantum number must be zero.
(ii) Charge~independence (invariance under the group of rotations

i8-¢
e

in isospin space, S(g) = ). This implies that the total isospin,

T, as well as the charge Q = A/2 - T,, is conserved. Each orbital may be

3,
chosen to have & definite isospin projection, 1t = +1/2 for a neutron and
-1/2 for a proton. A rotation by 7 about the first or the second axis

% .
takes T into -1, leading to a two-fold degeneracy between a neutron

*
ei“tl

Because t;2 = (%)I, § = = cos w/2+{2tysinn/2 = 12¢y = 1(t #t ),
where t, are the raising and lowering operators.

T=1/2

orbital, with dq = (-) = 1, and the corresponding proton orbital

(dq = =1) with exactly the same space-spin wave function. Consequently,
if charge-independence is a self-consistent symmetry, the nucleus must be
self-conjugate, N = Z (MT = 0). The same result must hold in an arbi-
trarily rotated frame, i.e. M% = 0, and hence we must have T = 0, corres-
ponding to a closed "shell” in isospace.

(1ii) Invariance under reflection of intrinsic spins in spherical
(J=0) configurations. If rotational invariance, which involves both
orbital and intrinsic spin degrees of freedom, is a self-consistent sym-
metry, the state must have J = 0. A more restrictive symmetry is the
one describable in the Russell-Saunders coupling scheme by S = L = 0.

This holds in a J=0 configuration if there is invariance also under in-

version of intrinsic spims. Invariance of the nucleon-nucleon interaction
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under spin reflections requires the absence of the spin-vector component,
namely the two-body spin-orbit interaction = 112.(;1+;2) where ElZ is the
relative orbital angular momentum. While this component is appreciable
in the modern ''realistic' phenomenological interactions and contributes
most of the spin-orbit splitting in SCF calculatioms, it is not very im-
portant for the spin-averaged properties of nuclear states. Consequently,
it is instructive toc consider model interactions which lack the spin-
vector term.

In a Russell-Saunders L=5=J=0 configuration there is only one radial
wave function for each 2. If we choose to use the j-j coupling scheme,
there are in general two radial wave functions, one for each j(j:E£t1/2).
For S = 0 the configuration must have both J-shells filled or both empty
because a "spin-unsaturated" configuration, with only one j-subshell filled,
does not have a definite intrinsic spin. For example, a pl/2 shell has
probability 2/3 for S = 1 and 1/2 for S = 0. Moreover, in agreement with
the description in Russell~Saunders coupling, the radial wave functions
of the two j-subshells must be the same in order that the closed 2-shell
configuration have § = 0. To continue the example, in a closed p-shell

we find
“(pyy) 010218816y 0 0y 0% = F 11 - ®_IRDY) 2.5)

where R_ and R+ are the normalized radial wave functions for the p1/2 and
p3/2 subshells, respectively. If these radial functions are the same,
S = 0; otherwise there 1s a mixture of § values and of L values in the
closed f%~shell. Thus, the usual terminology, "spin saturated configura-

tion", 1s strictly applicable to a closed 3-shell configuration only in
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the absence of a one-body spin-orbit term in the s.p. potenti;l. This 1is
the term which leads to differences in the radial wave functions and the
energies of the j-subshells. As a shorthand we may refer to the situation
in which the s.p. spin-orbit potential is absent as that cf j-degeneracy.

-
)

The possible contribution of the tensor interaction « [(;1-r12)(§2°;12) -
% (31022)] to spin-o;bit splittings has been of interest for over twenty
years. More recently quadratic spin-orbit terms also have been found
necessary in realistic interactions. It is important to realize that in
HF theory these interactions of even rank (k = 0 and 2) as spin-tensors
do not break the self-consistency of j-degeneracy. Only the spin-vector

10)). On the

(k=1) component can break the symmetry (Lande and Svenne
other hand, once the symmetry is broken, so that the Rt wave functions are
different, then the even-rank components can contribute to the spin-orbit
potential.

In Brueckner theory the k=2 components of the bare interaction do
contribute to the k=1 component of the reaction matrix. But the effect

is rather weak {Landé-Svennelo)),

primarily because there is no contribu-
tion in relative s-states, Thus, in BHF and RBHF the spin-orbit splitting
in closed g-shell configurations still arises predominantly from the two-
body spin-orbit interaction.

In the case of j-degeneracy let us define an interchange operation
which transforms the orbitals (j+,m) and (j_,m) into each other fcr
[ml < 2-1/2, The distinction number for spin-orbit partners is simply

_)j-2-1/2. An explicit interchange operator can be constructed as

d, =
i (
follows: The spin-~angle wave functions for the 2-shell are the spinor

spherical harmonics
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2 1/2 #21/2
Y

/g m_ Z c m-c o (2.6)
+ o m-¢ O m

o X720
We make use of a Regge symmetry of the Clebsch-Gordan coefficients re-
k| i, 3,13 J i, 3.-3
lating C 1 27172 and c| ! _2 172

for |m] :_jl-jz, which re-
mHy, tj, m mtj, +j, ®

duces in the spin-orbit case to

2 1/2 2+1/2 L 1/2 g2~-1/2
c = (Y2 ¢ : (2.7
m-0 © m m+o -0 m
One finds that
2 2 71/2
$ = (&,s_ - Z_s+) [(e+1/2)° -~ i, ] (2.8)
where %, and s, are raising and lowvering operators, satisfies
ym
siR, YTl = = kYT, Inl < 2172, (2.9)

As remarked above, the radial wave functions of the j-subshells must be

the same in order to have j-degeneracy, in which case S is the desired

*
j-interchange operator.

*
As defined in eq. (2.8) S annihilates the orbitals with m = *(2+1/2).
In order not to have a singular operator, one can redefine S to act as
the identity on the orbitals with |m| = £+1/2 by adding

2-1/2
8 + 6 = n (1, -m)/ (2+1/2-m)
jzo 2""]-/2 jz.-ﬁ.—llz m='_2_1/2 4
2+1/2
+ I (G -m)/(-2-1/2-m).
m=-g+1/2 2

Clearly, S does not commute with the rotations, though the j-distinction
operator does.
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2,2. SYMMETRY BREAKING

In calculations for which a transformation § cannot be a self-
consistent symmetry (either because of the choice of nucleus, nuclear
configuration, or nuclear interaction), an unrestricted SCF calculation
would contain no reference to the transformation S. There would be more
degrees of freedom in the s.p. orbitals than for the case in which S is a
self-consistent symmetry. Sometimes the SCF theory for such "unsym-
metrical” cases is approximated by artificially imposing the symmetry
through the use of a symmetry-restricted SCF procedure.

Consider, for example, a nucleus with A = A0+1 where AO = ZNO = 4n.
One can start the iterations with a trial configuration specified in terms
of orbitals with the symmetries of the nucleus Ao’ e.g. the self-
consistent orbitals or, less accurately, those of an oscillator shell
model (spherical or deformed, depending on the nucleus). To impose the
symmetry artificially one can put half of the "last" nucleon in each of

*
the two lowest, previously unoccupled, degenerate orbitals. Because the

*This is a very simple case of a symmetry-restricted SCF theory for open
shell systems employing fractional occupancies for the ogen shells,
which was Initiated by Hartree and improved by Roothaan? ), whose method
has been extended to the general case of several open shells33), This
approach has been applied to nuclei in a few papers, e.g. Davies,
et al.15:17),

addition of a nucleon violates both time-reversal invariance and charge-
independence, the situation is actually a little more complicated than
described: 1if nucleus Ao is axially symmetric, one would put one-fourth
nucleon in each of the four degenerate state. (2, *1). If this
"averaging over configurations'" is done at each iteration, there is an

exact four-fold degeneracy among the final self-consistent "valence"
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orbitals. One finally constructs four determinants each containing a
different one of the valence orbitals. Another example of imposing a
symmetry is that of an isoscalar-restricted HF Hamiltonian for nuclei
with a general neutron exce5534). Because no inversion occurs, we are
not concerned in this paper with symmetry-restricted SCF theories. We
may note that the existence of several degenerate determinants (not
orbitals) indicates a failure to take into account deformations or other
kinds of correlation which would appear if the degenerate configurations
were allowed to mix.

A relatively mild loss of symmetry occurs when a symmetry group is
only partially broken, a subgroup remaining as a self-consistent sym-
metry. More generally, consider the case in which the symmetry S is

broken but the distinction symmetry, S is still a self-consistent sym~

D’
metry, so one does not have to allow mixing of orbitals of opposite dis~
tinctions. That 1is, in the case of ellipsoidal symmetry without time-
reversal invariance one still does not mix states with opposite values of
(-)9-1/2; with the breaking of charge independence by N # Z and/or iso-
vector Coulomb interactions one can still employ orbitals of definite iso-
spin projection (n or p); and in spherical configurations one still re-
quires invariance under combined rotations in space and spin space and
does not mix j = £ + 1/2 and j = ¢ - 1/2. However, since the manifold of
occupled s.p. states is no longer invariant under the interchange trans-
formation S, the partner of an occupied orbital is not necessarily occupiled.
Moreover, the partner under S of a self-consistent orbital is not

self~-consistent in general, though it usually will be similar to a self-

consistent orbital. For example, consider again the case of a nucleus
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~ A = 4n+l in which the initial trial determinant is constructed of

self-consistent orbitals of the self-conjugate nucleus A-1. The '"last"

R-1/2

nucleon goes into a "wvalence'" state of definite d€7 = (=) and

dq = (_)7-1/2. Its partner under time reversal has the opposite sign of

d:7 and 1s not occupled. 1Its partner under n-p interchange has the oppo-
site sign of dq and is not occupled. These zeroth-iteration partner states
are self-consistent orbitals in the field of nucleus A-1 (= 4n), but in
succeeding iterations the partners of the valence orbital fail to be
eigenfunctions of the s.p. Hamiltonian of nucleus A.

It is in these situations with partial symmetry breaking that the
problem of level inversion occurs. When one of the pair of "formerly"
degenerate levels is occupiéd, the other (unoccupied one) usually comes
lower in energyll-lb’za). We discuss in the next section some represen-

tative HF and RBHF calculations which give a level inversion.
3. Samples of calculated level inversions

3.1. J-INVERSION IN SPIN-UNSATURATED SPHERICAL CONFIGURATIONS OF N=Z
NUCLEI

13,14) of 12 28 32

In BHF and RBHF calculations c, Si, and “°S with the

33) and in Rouben and Saunier's HF calcula-

12) of 56Ni with the Saunier-Pearson36)

Hamada-~Johnston interaction
tion effective interaction SP2 the
s.p. energy of the unoccupied neutron (2-1/2)-subshell is lower than that
of the occupied (#+1/2)-subshell (see table 1), and similarly for the
corresponding proton states., Spin-orbit forces have been included, so

the breaking of j-degeneracy arises Luth from the spin-unsaturation and

from the spin-and-orbit-dependent interactions.
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3.2. n~p INVERSION IN NUCLEI WITH A NEUTRON EXCESS; CASE OF A SPIN-
UNSATURATED SPHERICAL CONFIGURATION

37)

Figure 1 shows the results of a HF calculation for 48Ca (and of

AoCa for comparison) in which the Coulomb interaction has been left out.
The two-term separable nuclear interaction of Tabakin, as modified by

38)

Clement and Baranger , was used. One sees that each proton level lies
lower than the corresponding neutron level. In particular, the unoccu-
pied proton f7/2 level is below the occupied neutron f7/2 level. Unlike
a breaking of time-reversal invariance, an n-p level jinversion does not
give rise to an apparent inconsistency with the prescription to occupy
the lowest levels: because of the conservation of W and Z it is consis-
tent to fill the lowest neutron and proton levels separately. However,
the inclusion of the Coulomb force in the calculation raises the proton
levels about even with the neutron levels and obviates the prcblem.
3.3. INVERSIONS OR REDUCED NORMAL SPLITTINGS IN ODD NUCLEI WITH ONE
PARTICLE OR HOLE RELATIVE TO A SPHERICAL CORE
Very little work on odd nuclei has appeared in the literature, and

in the few published res“lts30,29,24)

little or nothing was said about
how the breaking of time-reversal invariance was actually handled. But
generally the unoccupied partner lies lower, and the usual prescription
to occupy the A lowest-lying s.p. states leads to an oscillation of
occupancy from iteration to iteration (see sect. 1).

A renormalized Brueckner calculation of single-hole states in 150
and 15N calculated with the Hamada-Johnston interaction and pure oscil-
lator s.p. wave functions was reported in ref. 29, We have reproduced,
as fig, 2a here, fig. 1 of ref., 29 and have accompanied it by a similar

39)

figure for 160 plus one particle, fig. 2b, These figures show in the
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right-hand column the RBHF energies of s.p. states normally occupied in
160. The other columns show the corresponding energies in the nuclei in
which a single neutron or a single proton has been removed from (fig. 2a)
or added to (fig. 2b) specific orbitals. Each column of the figure
corresponds to a particular valence orbital. The shells in 160 are split
in the ruclel with A = 15 or 17 because the presence of a valence
"particle”" or hole with a specific magnetic quantum number, m implies
a non-spherical term in the s.p. potential and an m-dependence in the
s.p. energies, The iIndividual s.p. energles are not shown; instead the
broadened shells are indicated by rectangles, the length of the rectangle
representing the spread.

One notes three things here: (i) that each (unoccupied) hole level,
represented by a circle in fig., 2a (its energy does not depend on mv),
invariably lies below the filled states of the same shell with m # m .
For example in lSN with a proton missing from the 091/2 shell (see the
third to last column), the s.p. energy of the hole (circle) is more nega-
tive than the s.p. energy of the other (occupied) proton 0p1/2 state
(shaded square); (ii) that when the hole is a neutron the occupied proton
states are railsed relative to the neutron ones, and vice versa; similarly,
when the "particle" is a neutron the proton states are lowered relative to
the neutron ones, and vice versa; and (i1ii) that the spin-orbit splitting
of the Op levels is reduced by a valence hole in the Op1/2 shell or a
"particle" in the 0d5/2 shell, Thus, fig. 2 illustrates the tendency
toward level inversion manifested in all three cases of partial symmetry
breaxing discussed in this paper, namely the breaking of time-reversal

invariance when N or Z is odd, of charge independence when N # Z, and of

intrinsic-spin independence when an 2-shell is not spin-saturated,
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4, Origin of the effect

40)

The HF equation can be derived from the variational principle
s[<¥|ulY> - n<¥|¥>] = 0 (4.1)

where H is the full Hamiltonian (2.1) and ¥ is a Slater determinant of
s.p. wave functiors ¥,. The variational principle is satisfied when the

wx are eigenstates of the HF s.p. Hamiltonian h, given by

h=T+ U (4.2)

where the HF s.p. potential U is defined in an arbitrary basis {|a>,|b>.---}

in terms of the self-consistent occupied s.p. states A by

occ
<altggle> = 2 <arlvlvr,. (4.3)

The matrix elements of the interaction are antisymmetrized, as indicated
by the subscript A. The BHF equations are quite similar except that the
two-body matrix elements of “he Interaction v are replaced by those of

the two-tody Brueckner reaction matrix (see e.g. ref. 19)

GEE) = v +v -—Ji—— G(E). (6.4)

E;-hyy

Here the "Paull operator", Q, 1s a projection operator which excludes
normally occupied s.p. states from appearing in the intermediate pair

states, h?z is an unperturbed (reference) pair Hamiltonian

R

R R
12 = h (1) + h (2) (4.5)

h
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where h" is the reference 8.p. Hamiltonian for normally emptw s.p. states,
and ES is the energy available to the pair ("starting energy'"). The BHF

potentlal energy of a normally occupied s.p. state A is

occ
[A> = ¥ <AX']G(ex+si)]AA'>. (4.3a)
A'

M Ugur

4,22)%

The RBHF equations differ from the BHF equations only in that the

*The PRYF approximation referred to here is closely related to the lowest
se.r-consistent truncation of the generalized-time-ordered version of

‘the Brueckner-Goldstone expansion discussed by Brandow*!). A somewhat dif-
ferent RBHF approximation results from the lowest truncation of the
extended-generalized-time~ordered series*2). The remarks of the present
paper hold alseo for this second RBHF approximation.

reaction matrix element is multiplied by the "true'" occupation probability
of the normally occupied state with which an interaction is taking place,

P That is,

A"

<a|U

REHF (4.3b)

occ

[b> = § <ax|c(Es)|bA> B,.
The fractional occupation probabilities can be calculated, in the RBHF
approximation, by a finite set of algebraic equations involving only the
normally occupied statesa). The coefficients in these equations can be
expressed either in terms of Bethe-Goldstone defect functionsa) or, more
conveniently for rapid numerical calculations, in terms of the energy
derivative of the reaction matrix4l’43).

We now consider the inversion problem by relating the nucleus A, for
which there is an inversion, to that nucleus, Ao, nearest to it in the

periodic table for which there is no symmetry breaking. For the latter

nucleus the occupied states, labeled by A, will be called core states.
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Each s.p. level of pucleus Ao, whether occupied or not, is two-fold de-
generate with respect to the distinction quantum number d = * 1. 1In con-

sidering nucleus A we shall be concerned with the s.p. states corresponding

to those in Ao of a particular two-fold degenerate level, L = (z,d). The
main effect producing the splitting of this level in nucleus A is the
change in potential energy resulting from the changed occupancy. This
effect appears in first order perturbation theory, as well as in higher
orders. The change in the s.p. wave functions, on the other hand, does
not affect the energy splitting in first order, but does contribute in

*
second and higher orders. The first-order effect is expected to dominate,

*
If it does not, there is a great deal of "core polarization" in A and
the relevance of the self-consistent symmetry in A, to the nucleus A is
rather tenuous.

Consequently, we shall give a discussion of the splitting based on em-
ploying the orbitals of nucleus Ao' Some comments on the effects of dis-

tortion of the orbitals are given in sect. 5.

4.1, ODD NUCLEI, A = A0 ]

If partial occupancy occurs only for one degenerate pair, one can
choose the unperturbed core states to be the filled states either of
nucleus A+l or of A-1. Consider first the description in terms of a core
A = A-1 and a valence "particle'. Let us assume that only the d=+ mem-

o]

ber of the pair of states [ = (z,d=%t) is occupied. The s.p. energies are

<g|Tle> + <z|ulzs. 4.6)

m
1

If the wave functions are those of the nucleus Ab’ the kinetic enrergy is

independent of the distinction number, d, i.e. <C|T|C> = <z|T|z>.
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However, the potential energy reflects the occupancy of (z.+). In the

HF theory

core
<clule> = [ <g,hlvig,a>, + <gzk|vig,ze
A

)
Al (4.7)

The first term is independent of d, since the degeneracy in the orbitals

A 1is summed over, so we can write

eg = Eio) + <c,z+|v|c,z+>A (4.8a)
with
(0) core
€ = <z|T|z> + J <g,Alvig,a> . (4.8b)
z X A
Now look at the s.p. energies of the two states i:
- (o) o)
- &  F <z+,z+|v|z+,z+>A = ei (4.9a)
N C-)) - (o)
e, "¢, + <z-,z+]v!z-,z+>A =€, tv_,. (4.9b)

In the first equation the matrix element <z+,z+|v|z+,z-!‘->A is identically
zero since it is antisymmetrized. However, in the second equation the
matrix element, which we have called v_, for simpfigity, is non-zero.
Thus, the degeneracy of the completely empty level z in nucleus Ao
is broken when the level is half filled in nuclaus A°+l because the ener-
gy of the unoccupied sublevel contains a mutual interaction energy with
the occupied state, while the occupied state does not have a corresponding
interaction with itself. That is, a test particle in the "unoccupied"
state (z,-) experiences one more interaction than does the nucleon in the

occupied state (z,+).
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Consider next the description in terms of a core Ao = A+l and a
"valence hole'". In this case also, as in the "particle" description we

have the result

€ - € =v .. (4.10)
An inversiom,
Ez_(unoccupied) < sz+(occupied) (4.11)

occurs if v < 0. In the cases we have examined v is always negatilve.

—+ —+

For example, table 2 gives values of v_, in the Op and 1s-0d shells of
the spherical harmonic oscillator basis for four effective interactions.
These interactions were constructed in quite different ways and, tzken
together, pretty well sample the range of possibilities allowable for a
successful shell model effective interaction in these two major shells.
Because the addition or removal of a nucleon breaks both time-reversal
invariance and charge-independence, there are two sets of matrix elements
to be considered, those involving states differing in the distinction
number d ., and those differing in dq.

From table 2 one sees in the case of the Tabakin iInteraction that if

the 0d5/2 neutron state with m = 3/2 is occupied, then the 0Od neutron

5/2
state with m = -3/2 lies lower, if unoccupied, by about 0.6 MeV, and the
0d5/2, m = 3/2 proton state, 1f unoccupiled, lies lower by about 1.9 MeV
in the absence of Coulomb interactions. In the case of the Saunier-

Pearson interaction cited in table 2, one sees that if the 01:3/2 proton

state with m = 3/2 is emptied, then its s.p. energy is about 2.9 MeV

below the occupied 01)3/2 proton state with m = -3/2 and about 3.4 MeV
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below the occupied 0p3/2, m = 3/2 neutron state (in the absence of Coulomb
interactions). Similar results for one 0s or Op hole in the 160 core

have been shown in fig. 2a, which was calculated from the Hamada~Johnston
interaction, the appropriate reaction matrix elements (G_+) of which,
times the '"true" occupation probability Pz+, are given in table 2 also.

It is fairly easy to understand that v , should be negative in the

-t
time-reversal case, since it is precisely these matrix elements coupled
to J = 0 that are the pairing interaction, which is known to be strongly
attractive. Likewise, the neutron-proton force is known to be largely
attractive, but it 1s not clear why all n-p matrix elements cited in
table 2 should turn out to be attractive.

These considerations apply also to deformed odd nuclei. For axially
symmetric configurations one replaces m by 2, the magnetic quantum number
in a body-fixed coordinate system. In tri-axial ellipsoidal configura-

J 1-1/
tions the distinction number d ¥ =<(—) z sis still appropriate for

labeling the time-reversed partners (see sect. 2).

4.2, SPIN~UNSATURATED SPHERICAL NUCLEI

The spin-orbit case has to be discussed separately because it in-
volves a sum over the magnetic quantum number, m. We consider first the
nuclei for which a j=f+1/2 subshell is filled both by neutrons and protons
and the j=2-1/2 subshell is completely empty (see sects. 1 and 3.1). 1If
we neglect the Coulomb interaction and the difference in radial wave func-
tions of the j~subshells, it will suffice to generalize the previous no-
tation only to the extent of writing ¢ = (z,j,m,T), where we prefer to

use j in place of the distinction number d, = 2(j-R) = (—)3-2—1/2. Then

b
eqs. (4.6) anéd (4.7), generalized to the RBHF theory, are replaced by
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core
ezjmr = <z|T|2z> + ; <zjmT,A[GIzjmT,A>A PA
1/2 L+1/2 I I
+ <zjmt,z(2+1/2)m't'|{G|zjmT,z(2+1/2)m'T'>, P 241/2
T'==1/2 m's=-(2+1/2) A “z,0+l/
- (@) ., (4.12a)
= ezj + dzj(z,2+1/2)

in which e£§) consists of the first two terms of eq. (4.12a) and is inde-

pendent of m and T after summing over the closed-core shells A, The sums

in the last term can be evaluated to give

Uzj(z.2+1/2) R I (2T+1) (2341) [146

2(23+1) j,2+1/2]

(4.12b)

I, T .1 .
x <2§,z(041/2|707625,2(241/2)>, B, 440 )

*
which also is independent of m and T. The potential energy of interaction

*
Here the (J,T)-coupled matrix elements are with respect to normalized
antisymmetrical pair states. An element

<n121j1,n222j2lJ’TG|n3E3j3,nklujk> contains a factor
. y~1/2 -1/2
1+ 5“1%141 1+ 6n32343 « In eq. (4.12b) this factor is can-
n2%232 nyfyiy

celed by the explicit factor [1 + § j,2+1/2]'

with the spin-saturated core levels A depends on j, giving a splitting of

normal sign

core _ (o) _ (o)
B F a2 T fzuwas2 0 (4.13)

as in eq. (le). If there is no effective two-body spin-orbit force, the
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10)

core
or , vanishes .

first-order splitting from interactions with the core, Az

4,21,22)

But with realistic forces, RBHF calculations give the large

splittings that are seen experimentally in the regions near 6He, 160. and
AOCa and that are assumed in the Mayer-Jensen shell model. Dy adding the
"abnormal" contribution to the splitting from the interaction with the

(2,4+1/2) subshell (see eq. (1b))

unsat _ ’ - ‘
Az = Uz,i—llz (z,8+1/2) Uz,£+1/2 (z,2+1/2) < 0 {(%.14)
one obtains
- _ - acore unsat
Aez H ez’2~1/2 Ez.£+1/2 Az + Az . {4.15)

There is an inversion of the spin-orbit partners, to first order, if

core

unsat l
k4

Z

I\ < |a . (4.16)

In table 3 the matrix elements Uz (2,2+1/2) in the Op and Od shells

3

unsat is negative and of five to ten MeV in

are given. One sees that Az
magnitude. This 1s sufficient te overcome thne norwmal "core' splitting
and give a spin-corbit inversion in calculations for the spherical configu-
rations of 12c’ 2881. 325 and 56N1, as we have seen in table 1.

The equations of the previous paragraph are easily generalized to
nuclei with a neutron excess. With neglect of Coulomb interactions and
differences in s.p. wave functions of the j-subshells, we have for a con-

90

figuration like that of the ground state of 6808 or ~2r with only one

spin-unsaturated neutron shell, in the RBHF theory



core
€ imr " <zlTlz> + g <zjn:.l!v]zjmt.i>h P,
t+}12 ol
+ ! czimr 2 (34 /2wt /2 vizime, 2 (L41/2)m%1/2> P
m'ne(E+1/2) ‘ A z,14172
{4.17a)
. . (o} .
g :13 + szg(z.i+1i2.112)
where
- -n—--;——u-
Upye (21012, 172) = 55333 Ti‘ (6 12 * 28, 172 81, ) (24D)
) (4.12%]
3.7
< {1+ 6j.“1,21 <z2§,2(1+1/2)! cizj.z(t-ﬂlz):** pz'“m.

Values of Uzjr(z,l+112.112) in the Op atud Od shells are given in table 1.
Neutron-proton spiittings as well as spin-orbit splittings are tabulated,
The "abnormal” spin-orbit splitting from interactfons with the unsaturated
shell is reduced by roughly one half because of the absence of protons

in that shell. Thus, calculations for &BCaldo not exhibit inversions of
the Op, Od, or Of spin-orbit doublets, although the normal splittings are

10,12,137) chan in GOCa.

smaller in magnitude
Equation (4.17) can be generalized to more complicated configurations

by including a term U for each spin-unsaturated shell. The s.p. levels

in 60N1, which has three spin-unsaturated f-shells (the neutron and

proton Of shell and the neutron lp shell), should show a particularly

great tendency toward spin-orbit inversion. However, because other

levels are nearby, configuration mixing should be important, and the HF

determinant is probably not a very gocd model zround state. Configuration

mixing is minimized for ground states of nuclei in which N and Z are
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“magic numbers'. Beyond S6N1 only zgng126 qualifies. But for such a

heavy nucleus there are many more spin-saturated core levels; their

"normal' contributions to the spin-orbit splitting may overcome the
(1] "

abnormal” contributions from the 113/2 neutron shell and the h11/2
*

proton shell. Thus, spin-orbit inversions appear to be limited to

*
See, houever6 the inversion of the hg,,-h;j/o doublet produced by the
interaction3®) SP2 in the calculation' 6f Rouben and Saunierlz), table
4, second last column.

fairly light spherical nuclei.
5. Interpretation

One way of overcoming the inversion problem would be to allow
breaking of the distinction symmetry, SD’ as well as the interchange
symmetry, S. However, in all of the three cases discussed here this
complete symmetry breaking considerably increases the labor of the cal-

Ak
culation. When time-reversal invariance is broken, the proposal would

e
In some cas2s, however, breaking Sp may be preferable to other methods
of achieving a sufficiently accurate description of the nuclear state
(see sect. 6).

imply breaking also axial or ellipsoidal symmetry by allowing components
with even values of Q-1/2 to mix with odd ones in the expansion of the
self-consistent orbitals. The mixing coefficients would then not only
double in number because of the additional mixing, but also would be
complex because of the breaking of time-reversal invariance, a four-fold
increase in difficulty. If charge-independence is partially broken, the

"complete breaking" proposal implies giving up charge conservation by
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mixing n2utron and proton components in the self-consistent orbitals,
thereby producing solutions in which Z and N are not good quantum numbers.
One is no longer dealing with a particular nuclide unless states of good
T3 are projected from the self-consistent determinant. For spherical
nuclei with spin-unsaturated shells, complete symmetry breaking would
imply mixing components with j = ¢ + 1/2 and & - 1/2 for Imi <1 - 1/2.
This would destroy rotational invariance, which could be restored only
by proiecting states of J = 0. Since the deformed 2-shell could polarize
the core, it probably would be preferablie to allow all shells to deform,
as in a conventional deformed SCF calculation,

Instead we consider retentlon of the distinction symmetry in the
s.p. wave functions, and justify the intrusion of unoccupied levels be-
low occupied ones in the spectrum of the SCF Hamiltonian., The fact is,
the SCF equations per se have nothing to say about the interpretation of
unoccupied levels. The equations demand merely that matrix elements of
h between occupied and unoccupied levels be zero (Brillouin's theorem in
the case of HF thecry). The occupied states are the only ones entering
into the definition of the SCF Hamiltonian and, hence, are the only ones
involved in the self-consistency process. However, if the SCF equations
are solved approximately by matrix diagonalization in a finite dimensional
basis, some of the unoccupied orbitals are obtained as a bonus.

The question of which s.p. states should be filled in the SCF de-
tegminantal approximation to the ground state has a definite answer in
HF theory, namely those A s.p. states which give the determinant having

the lowest energy,
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1 occC
E = <¢[H|y> = 3 g (ATia> + ¢,

€y = A {THU]A> (5.1}

occ
Alula> = g' el

Suppose one has achieved self~consistency with a particular set of occu-
pied orbitals (Cl) and wishes to investigate a slightly different con-

figuration (Cz). One caa start the iterations for C, with elgenfunctions

2
of the s,p. Hamiltonian h(Cl); at least one of the orbitals occupied in
this approximation to C2 is unoccupied in Cl' After iterating %o self-

consistency the orbitals occupied in C,, which are eigenfunctions of

2
h(Cz), will differ slightly from those of h(Cl). The differences between
corresponding eigenfunctions of h(Cl) and h(Cz) are referred to as re-

sulting from orbital rearrangement. The s.p. energies are changed also;

the differences are called orbital-rearrangement energies. To the ex-
tent that the orbital rearrangement is negligible, the difference be-

tween the HF energy of ¥, = W(Cl) and of a configuration C, with only

1

one "particle'" and one "hole'" relative to C

2

L can be calculated easily.

If we restrict the label X to refer only to the "core states", those

occupied both in ¥_ and Wz, then C, = ({A},h) and C2 = ({2},p). The HF

1 1
energies of Wl and Wz are
E, = ] <A|T[a> + <h|T|n> + & T <a']v[art> + § <anlv]ane (5.2a)
1”4 2 &, A’ A
and
1
E, = L AT[A> + <p|T|p> + 5 T <atvaar>, + ; <Aplv|rp>, (5.2b)

A AA!
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so that
y -1, = eltler + [ opivhe, - ¢

=€, T " <hprth>A

where the s.p. energy :p is that of state p as an unoccupied state in
the SCF of state Wl.
In the application to the inversion problem p = (2,~) and h = (z,+)

(see sect., 4), Then by eq. (4.10c)

(5.3

E, -~ E, = ¢ - € -v = 0. (5.4)

2 1 z- zt -+

Thus, these two configurations, which differ only in containing one or
the other member (d = *1) of a pair of valence orbitals almost connected
by a (slightly broken) interchange symmetry, are degenerate.

The usual prescription, to fill those s.p. states having the lowest
s.p. energies, follows from eq. {5.3) with the neglect of the particle-
hole interaction term. But for the level-inversion problem it is this
neglect which gives rise to the difficulty. The significance of the in-
teraction term in eq. (5.3) can be understood in a different way as
follows. First notice that, with neglect of orbital rearrangement cor-
rections, the ep given by eq. (4.9b) is also the s.p. energy of state p
in that configuration of nucleus A+’ -.: which p is a valence particle,
because <pplv|pp> = 0. Next, notice that the s.p. energy of the state

A
h in this same configuration ({A},h,p) of nucleus A+l is

¢ (&t1)

h =€

wt <hp|v|hp>A. (5.

3)
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Thus,

E - E = E(Ml) _ E(A+1).

Consequently, the usuval prescription for oc.upation of s.p. states should
be modified slightly to refer to the s.p. energies in the configuration
of the adjacent nucleus, A+l, in which both states p and h are occupied.
This modification removes the inconsistency that in compariag s.p. ener-
gies in nucleus A, cp involves A interactions with other particles where-

as involves only A-1 interactions (no self-energy). For the inversion

“h
problem

((A+1) | core | (

A+1)
z+ 2 -+ z-

(5.7}

so that E, - El = 0 as in eq. (5.4). In nucleus A+l with both (z,-) and

(z,*) occupied, the interchange transformation S is a self-consistent

symmetry. This is the reason for the degeneracy in eq. (5.7). An alter-

native analysis can be carried out with reference to the nucleus A-1 with

a hole in s.p. state h, again yielding for the inversion problem Ez - El = 0.
Similar considerations hold in the RBHF approximation, but not in

the ordinary BHF approximation. The difference is related to the fact

that in BHF theory the s.p. energies differ from the corresponding sepa-

ration energies by large "Brueckner rearrangement energies' associated

with the non-static nature cf the effective interaction (the starting-

energy dependence of the reaction matrix). The renormalization with

occupation probabilities restores the connection between separation and

39)

s.p. energies, i.e. in RBHF theory there 1is an analogue of Koopmans'

theorem in HF theory. Now E, and E, can be written in terms of the

1 2
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(a-1)

binding energy E of the nucleus A-1l, which provides the common core

for configurations C1 and C, of nucleus A, and the separation energies

£Dand Eh:

2

- (A-1) . o(A-1)
E, =E +£h , E. =E +£p (5.8)

2

so that

Ez—El=£P~6h. (5.9)
Then by the analogue of Koopmans' theorem in RBHF theory

. D) -

Ez - El P h (5.10)
just as in the HF approxfmation. For the inversion problem
(p = 2~,h = z+)
(A1) _ core (5.11)

zt 2

so that El and E2 are degenerate,
The inversion-instability in the case of the breaking of time-
reversal invariance in odd or odd-odd nuclei is avoided easily. The
preceding discussion shows that there are two degenerate determinants.
One can put the valence particle in a state of distinction d = + and
leave it there from iteration to iteration even though the unoccupied
partner with 4 = ~ has g lower s.p. energy in the nucleus A (but not, as
we have seen, in nucleus A+l). The particle-hole excitation based on
the d = + solution, obtained by "exciting" the d = + partner to the d = -
level, does not lle lower in energy than the original configuration, but
is degenerate'with it, as shown by eq. (5.4). Each is an equally good

HF ground state.
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In the case of spin-unsaturated spherical shells let the neutron
or proton subshell {z,2+1/2,t) be filled and the neutron and proton sub-
shells with j = 2-1/2 be empty. Consider the energy of state (z,2+l/2,m,T)

in the configuration of nucleus A+l in which there is a valence particle

A+l

n—
z,8+1/2,m, T not co

in state (z,2-1/2,m',T). The extra interaction in €

tained in eA

z,0+1/2, 1’ namely

. <z,841/2,m,1; z,2-1/2,m',t|v]z,2+1/2,m,1; z,2-1/2,m*,T> (5.12)
mt,m - A

can give enough extra binding to make

A+l A+l _ A
ez,£+1/2,m,t < Ez,z-l/z,m',r = 82,2_1/2,1. (5.13)
The dependence of these energies on m and m' is rather weak, so it is
useful to average over m' in (5.12), obtaining an energy v+i which is
independent of m. This average interaction is expressible in terms of
the s.p. potential of eq. (4.17b) (with j,_ = R1/2) as
v," L L T (5.14)

M ) Uzj+r (zj_t) = ?EE::IT Uzj_r (z3,1) = v_}

Here the second equality, which arises formally from eq. (4.17b) and a
symmetry of the two-body matrix eiements, states the fact that
(2j++1)Uz

T(zj_'r) and (2j_+l)Uz T(zj+r) both represent the mutual in-

h| k|
+ -
teraction energy of the neutrons (or protons) in shell j+ with those in
j_. If both neutrons and protons occupy the shell ips then we might

average also over 1', obtaining
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—= 1
v

. S : 1
+-  2(23_+D) [Uzj+1(z’3-’T) T Yay

T(z.j_.—tj] = 5?35;;I7 [Uzj—r(z.j+,1)

(5.15)

+

+ Uzj-T(z,j+,-T)] 2 2_(23%1‘)‘ UERE .

In table 1 the row labeled eﬁ:i/z contains renormalized-Brueckner-
approximation values of the s.p. energy of the shell (n2j+) in the
nucleus with A+l nucleons when one nucleon is in rhe otherwise empty sub-
shell (nkj ). These energies were obtained with Brueckner self-
consistency, i.e. the starting energies of the reaction matrix elements
were self-consistent. The last row in table 1 gives the estimate of

6%11/2 ocbtained from eq. (5.15) and table 3., For 2851 and 325 the esti-

—_—

mate of v, 1s somewhat too large in magnitude because the oscillator
A+l

range parameter b is too small. One sees that EE+1/2

is fairly well

approximated and that

A+l - A+l A+l e
Ag' - 69'-1/2 - ER’+1/2 % Ag‘ - V+_ (5.16)

is of normal sign (> 0), so that the spin-orbit doublet is not inverted
when properly treated. We expect this feature would be retained in cal-

culations of higher dimensionality.
6. Inversions as signals of needed correlations

It was demonstrated in sect. 5 that two degenerate determinants
arise from occupying one or the other partner of a degenerate pair of
s.P. levels of nucleus Ao = A-1 and then iterating to self-consistency
in the nucleus A. Although we have showmn the inversion of s.p. levels

to be unphysical, the existence of the degenerate determinants indicates
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that the SCF description of the nuclear state in terms of either deter-
minant alone will not be very accurate., The degeneracy indicates the need
for a supplementary calculation in which the two determinants (actually
four 1f both time-reversal and isospin invariance are broken simultaneously)
are allowed to mix, thereby giving a state of lower energy with some cor-
relations between the nucleons. A more accurate version of this would be
a two (or four) dimensional mized-cenfiguration HF calculation, in which
one diagonalizes ¥ after each HF iteration.

An alternmative way of 1ifting the degeneracy is to allow the dis-

*
tinction symmetry, SD’ to be broken, leading to a more deformed self-

*
See the beginning of sect. 5.

consistent field. Thus, deformations in the ground states of nuclei with
spherical configurations having an inversion or near degeneracy of an
occupied and an unoccupied level may be thought of as arising as a means
of escaping the degeneracy. From the standpoint of the spherical basis,
the projection of a state of good angular momentum from a non-spherical
determinant contains configuration mixing and hence "“correlations'. The
mixing leads to a state of lower symmetry. The deformed intrinsic s.p.
levels have a greater energy gap at the Fermi surface. The appearance of
an inversion or even a significant reduction of the normal spin-orbit
splitting at the Fermi surface in spherical calculations provides a signal
that a deformed solution of lower energy may exist. This 1is the case for
12C, 2881 and 325 in table 1. Similarly an axially symmetric solution

with an inversion or near degeneracy can deform to a lower-lying axially

asymmetric solution with a large gap at the Fermi surface,
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Figure Captions
. 40 48
Fig. 1. Single-particle levels in ~ Ca and =~ Ca, from the Hartree-Fock

38)

calculation of ref. 37. The Tabakin interaction was used, with no

Coulomb interaction and an oscillator radius parameter b = 1.732 fm,

Fig. 2. Renormalized Brueckner single-particle levels in (a) A=15 and (b)

A=17 isobars, from the RBHF calculation of ref. 29. The calculation used

35)

the Hamada-Johnston interaction. See text for detailed discussion of

these figures. The oscillator range parameter is b = 1.571 f£m.
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Table 1

Inversion of spin~orbit doublets in spin-unsaturated shells of

spherical configurations of light N=Z nuclei as calculated in

refs. 12-14.

56

Single~-neutron energies are given in MeV.

(For
Ni the proton energies cited by Rouben and Saunier (RS)12 have been

converted by assuming a Coulomb displacement energy of 9.6

MeV,)

The dimensionality D is the number of radial oscillator

wave functions from which each SCF orbital was constructed. The
oscillator range parameter b = (ﬁ/Mm)ll2 is in fm. The energy
E?Iilz is the s.p. energy in the nucleus with A+l nucleons (see
sect. 5).
——_—_—_WW
RBHF HF
D=2 D=1 D=4
12C 12c 28Si 32S 56N1
reference 13 13 14 14 12(RS)
b 1.571 1.571 1.885 1.885 1.997
L 1 1 2 2 3
E£+1/2 ~13.2 ~12.9 -12.0 -14.3 -12.5
Ez-llz ~-13.6 ~14.5 -13.4 -15.1 -15.2
A2 - 0.4 ~ 1.6 - 1.4 - 0.8 ~ 2.7
A+1
e£+1/2 ~16.2 -15.3
b =1.571
A‘;“s"“ (see table 3) - 8.8 -11.4 -11.4
core _ , _,unsat
Az = A2 Ag 7.2 10.0 10.6
V.*._’ eq. (5.16) - 3.0 - 2.5 - 2.5
A+l om—
A2 = Ag—v+_ 1.4 1.1 1.7
€ + v -15.9 -14.5 ~16.8
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Table 2

Some examples of the matrix elements v_, (in MeV) responsible for (m,-m)
and (n,p) inversions in spherical shell model configurations of odd-A
nuclel, associated with breaking time-reversal invariance and with partial
breaking of charge independence. The first three interactions given here

are taken, respectively, from F, Tabakin38)

36)

» G. Saunier and J. M,
Pearsen™ °, and pp. 249-251 of J, M, Irvine, Nuclear Structure Theory
(Pergamon Press, Oxford, 1972). The latter are obtained from phenomeno-
logical shell model calculations and consequently may not be very suitable
for HF calculations. However, they are included here for comparison. The
29,39) of the

multiplied by the "true" occupation proba-

fourth effective interaction involves reaction matrix elements

35)

bility, Pz+, of the occupied partner state as prescribed in the RBHF

approximationa). The range parameter b = (I"I/M'm)ll2

Hamada~Johnston interaction

of the spherical oscil-
lator basis with respect to which the matrix elements are calculated is
given in fm. The matrix elements depend strongly on b. The value 1,571 is
more appropriate for the Op states in nuclei with 12 < A < 16 and 1.74 is
more appropriate for states of the s-d shell in nuclel with 16 < A < 28,

Vet G_,F,
Interchange
transformation State label z Shell
and distinction Tabakin SP model HJ
number, d. nlj |m| b: 1,732 1.752 12<A<28 1.571
Time reversal Op3/2 1/2 or 3/2 -1.86 -2.86 -1.09 -2.09
(_\m-l/Z opl/2 1/2 -0.10 ~1.04 -0.28 ~0.43
/ 0ds/2 1/2 -0.73 -0.78  -0.55  -1.27
" 3/2 -0.56 ~0.81 -0.44 -1.00
" 5/2 -0.83 -0.76 -0.62 <1.44
1s1/2 1/2 -2.15 -1.55 -1.14 -2.49
0d3/2 1/2 or 3/2 0.20 0.03 -0.14 -0.65
n-p interchange 0p3/2 1/2 -2.81 -2.48 -1.77 -3.76
(_)1-1/2 " 3/2 -3.89 -3.35 -2.12 -4.79
opl/2 1/2 -0.34 -1.53 -1.27 -2.61
0ds/2 1/2 -1.65 -1.34 -1.24 -3.22
" 3/2 -1.95 -1,59 -1.33 -3.47
" 5/2 -2.84 -2.54 -1.75 -5.17
1s1/2 1/2 ~2.67 -2.88 -1.84 -5.20
0d3/2 1/2 -D0.30 -0.98 -1.06 -2.92
"

3/2 ~1.23 ~-1.63 -1.30 -4.05




Table 3

Contribution from interactions with the occupied j=2+1/2 subshell of a spin-unsaturated %-shell (in MeV)

to:

1

(2)

(3)

(4)

UZjT(z,l+l/2,1/2), eq. (4.17b), or Uz (z,2+1/2), eq. (4.12b), a part of the single-particle po-

tential energy of state zjt;

p-n _ _
Azj Uz'j’_llz(z,2+1/2,1/2) U

an excess neutron subshell;

norp _ _
Ny = U, 4172, (22¥1/2,1/2) - U

by an excess neutron subshell;
= 1y _ 1 1y ] = ApAP _ _
¥ Uy y1ya,c @20 =0 gy (204172, )] a7+4P, showing spim-orbit in
e

z =+
version ﬁ%éﬁuc d by a }=%+1/2 subshell containing both neutrons and protons. These spin-orbit
unsat

3

2, llz(z,£+l/2,1/2), showing proton-neutron inversion produced by
2J

2. 041/2 T(z,&+l/2,1/2), showing spin-orbit inversion produced

splittings are denoted by A in the text; they are partially compensated by acore (see table 1

and fig. 1). The four interactions used are the same as those of table 2,

Interaction
Potential
or Tabakin SP Shell Model HJ
Nucleus Splitting 1.732 1,752 12<A<28 1,571
8
He U0P3/2n(0p3/2n) - 4.03 - 6.21 - 2.38 - 3.47
Uop3/2p(0p3/2n) - 9,72 - 9.84 - 5.83 -11,77
p-n _ _ - -
A0p3/2 5.69 3.63 3.45 8.30
UOpl/Zn(0p3/2n) - 6-12 - 8-64 - 60 73 - 6090
Uopl/zp(0p3/2n) -12.19 ~13.90 -13.77 -17.09
-n
Agpllz - 6.07 - 5.26 ~ 7.04 -10.19
n
AOp - 2.09 - 2.43 ~ 4.35 - 3.43
AP ' ~ 2.47 - 4.06 ~ 7.94 - 5.32

Op

134



Table 3 (Continued)

Potential Interaction

or Tabakin Sp Shell model HJ

Nucleus Splitting 1.732 1.752 12<A<28 1.571
12, Uop3s2@P3/2) 1376 -16.05 - 8.22 -15.24
Upp1/2(0P3/2) -18.32 -22.54 -20.50 ~23.99
Bop - 4.56 - 6.49 -12.28 - 8.75
22, uOd5/2n(6ds/2n) - 2.59 - 3.24 - 1.84 - 4.84
Uggs/ap(0d5/2m) = 7.63 - 6.79 - 5.45 -14.40
Aggglz - 5.04 - 3.55 - 3.61 - 9,56
Uoq3/2n 095/20) - 5.68 - 7.42 - 6.63 - 8,17
Uggajop(0d5/20)  -10.40 -11.63 -13.03 -22.50
ASE?,Z - 4.72 - 4,21 - 6.40 -14.33
Agd - 3.09 - 4,18 - 4,79 - 3.33
6% - 2.77 - 4.84 - 7.58 - 8.10
2854 or Upgs/2 045/2) -10.21 ~10.03 - 7.29 -19.24
32 Upgs /2 (0d5/2) ~16.07 ~19.04 -19.67 -30.67
A - 5.86 - 9.01 -12.38 -11.43

0d

KA
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