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Inversion of Single-Particle Levels in Nuclear Hartree-Fock and 
Brueckner-HF Calculations with Broken Symmetry 

R. L. Becker 
Oak Ridge National Laboratory* 
Oak Ridge, Tennessee 37830 

and 

J. P. Svenne ^ 
University of Manitoba 
Winnipeg, Manitoba 

Abstract: Energy levels of states connected by a symmetry of the 

Hamiltonian normally should be degenerate. In self-consistent field 

theories, when only one of a pair of single-particle levels connected 

by a symmetry of the full Hamiltonian is occupied, the degeneracy is 

split and the unoccupied level often lies below the occupied one. 

We examine inversions of neutron-proton (charge) and time-reversal 

doublets in odd nuclei, charge doublets in even nuclei with a neutron 

excess, and spin-orbit doublets in spherical configurations with spin-

unsaturated shells. The origin of the level inversion is investigated, 

and the following explanation offered. Unoccupied single-particle 

levels, from a calculation in an A-particle system should be inter-

preted as levels of the (A+l)-particle system. When the symmetry-

related level, occupied in the A-particle system, is also calculated 

in the (A+l)-particle system it is degenerate with or lies lower than 
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the other. That is, when both levels are calculated in the (A+l)-

particle system, they are not Inverted. It is demonstrated that the 

usual prescription to occupy the lowest-lying orbitals should be modi-

fied to refer to the single-particle energies calculated in the (A+l)~ 

or the (A-l)-particle system. This observation is shown to provide a 

justification for avoiding an oscillation of occupancy between symmetry-

related partners in successive iterations leading to self-consistency. 

It is pointed out that two degenerate determinants arise from 

occupying one or the other partner of an initially degenerate pair of 

levels and then iterating to self-consistency. The existence of the de-

generate determinants indicates the need for introducing correlations, 

either by mixing the two configurations or by allowing additional 

symmetry-breaking (resulting in a more highly defonr^i non-degenerate 

configuration). 

1. Introduction 

Symmetry properties have long been recognized as playing a vital 

role in nuclear self-consistent field (SCF) theories.* Besides making 
— _____ 

We have in mind, along with Hartree-Fock (HF) (see, e.g. the review by 
Ripka in ref. 7), the newer and less extensively exploited density-
dependent Hartree-Fock (DDHF)1*2), Brueckner-Hartree-Fock (BHF)3), 
ronormalized Brueckner-Hartree-Fock~(RBHF) , and Hartree-Fock-
Bogoliubov (HFB)5»b) theories. 

it possible to Include known facts abou£ the nucleus from the start, 

these symmetries lead to important simplifications in the calculations 

and make them more tractable in terms of computer time and storage. If, 

among the symmetries of the full Hamiltonian, only the self-consistent 
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symmetries (precisely defined in section 2) are imposed on the SCF 

Hamiltonian, these introduce no additional approximations into the calcu-
7-9) 

lation. However, they do place restrictions on the neutron and 

proton numbers of the nuclei which can be treated and on the kinds of 

configurations for which the calculations can be done. It can be useful 

also to make SCF calculations with a simplified full Hamiltonian having a 
symmetry which the "actual" nucleon-nucleon.interaction does not possess,* 
— - — • 
One does not know, of course, the exact, effective interaction which 
should be used in a given SCF theory. But one has learned that the 
nucleon-nucleon force is very complicated and possesses fewer s>mmetries 
than the model forces one would prefer to use for the sake of sim-
plicity. 

provided that the symmetry-breaking part of the "actual" interaction is 

relatively weak. Thus, assuming a symmetry also places restrictions on 

the two-nucleon interaction. 

Two symmetries of the full Hamiltonian assumed in many of the nuclear 

SCF calculations done up till now are: (i) time-reversal invariance, and 

(ii) isospln conservation. The latter assumption requires neglecting the 

isovector part of the Coulomb interaction between nucleons and the small 

non-charge-independent contributions to the nuclear forces. In order for 

(i) to be a self-consistent symmetry, the calculations must be restricted 

to nuclei with even N and even Z; .similarly, (ii) requires self-conjugacy, 

N - Z. Taken together these two symmetries limit consideration to par-

ticular configurations of even-even self-conjugate nuclei, here to be 

called a-particle nuclei^. Because of the presence of isovector Coulomb 

forces in actual nuclei, only the lightest of these nuclei, viz. those 

with A <_ 60, are stable or nearly stable; heavier stable elements strongly 

prefer a neutron excess. 



The set of a-particle nuclei includes all of the stable self-
4 16 conjugate nuclei which can have closed spherical ^-shells, He, 0 and 

40 
Ca. In these nuclei the "normal" splittii.g of the j-subshells, which 

arises primarily from the two-nucleou spin-orbit interaction*^, is such 

that the j=4+1/2 level lies below the j=4-l/2 level. From Wong's inves-

tigation one may infer that the interaction of a single-particle (s.p.) 

state j with a filled j'-subshell, which we shall denote by U (j')t is 

such that 

Ajl(e,-l/2) i U a_ 1 / 2U'-1/2) - U £ + 1 / 2
( t ' - 1 / 2 ) > ("normal") (1.1a) 

A2(e*+l/2) = Ua_1/2(.t'+l/2) - U£+1/2(£*+l/2) < 0, ("abnormal") (1.1b) 

and that if the t'-shell is closed there is a partial cancellation be-

tween ^(£'±1/2), with the remainder having the normal sign 

V t , = _ I > (1'lc> 
P • 5 * «• j **£*±1/2 

12 28 32 Another subset of the a-particle nuclei includes C, Si, S and 

^Ni, which have spherical configurations in which the highest occupied 

i'-shell is spin-unsaturated, i.e. the "normally lower" j,=H'+l/2 sub-

shell is filled while the j'=H,-l/2 shell is empty. The interactions of 

the s.p. states j = I ± 1/2 with the spin-unsaturated £.'-shell are, by 

eq. (1.1b), such as to give an "abnormal" contribution to the spin-orbit 

splitting. A surprising result of some HF 1 1 , 1 2 ) and RBHF13'145 calcula-

tions (see section 3.1) is that for fc = S.' (the spin-unsaturated H-shell) 

the unoccupied j=£-l/2 subshell is found to lie lower than the occupied 

j=H+l/2 subshell. That is, the uncompensated "abnormal" contribution to 



the splitting of states with j = I ± 1/2 arising from interactions with 

the filled j=£+l/2 Bubshell outweighs the individually small "normal" 

contributions from the interactions with the occupied closed H-shells. 

This poses a problem for the SCF theory, because the occupied levels in 

the model ground state are supposed to be those with the lowest s.p. ener-

gies. This is one example of the level-inversion problem to be consid-
* ered in this paper. 

The spherical configurations do not provide very good descriptions of 
the ground states of these nuclei: 28Si and 32S are described 
better as deformed and 56Ni as paired. The possibility of escaping from 
an inversion or near-deganeracy by taking on correlations is discussed 
in section 6. 

Although most nuclear SCF calculations performed to date are for the 
** 

a-particle nuclei, a number have been done for spherical nuclei with a 

r. 
We cite a number which employ various interactions and methods of cal-
culation: for the spherical nuclei refs. 15, 12 and 16 (HF), refs. 2, 
17 and 18 (DDHF), refs. 19 and 20 (BHF), and refs. 13, 14, 21 and 22 
(RBHF); for axially symmetric deformed nuclei refs. 23-25 (HF), ref. 26 
(DDHF), and refs. 13 and 27 (BHF and RBHF). As the considerations of 
the paper do not cover explicitly the HFB method, we have not included 
any references to HFB calculations. 

12,16,18,20,21,28) „ c neutron excess, e.g. ' Moreover, a few have been made 

for odd nuclei with one "particle" or hole outside closed spherical shells, 
29 14 24 30) 

e.g. ' ' ' and for more strongly deformed odd and odd-odd nuclei, 
3 0 24 ) 

e.g. ' . A frequent result is the intrusion of an unoccupied level 

below the highest occupied level, i.e. an apparently non-selt-consistent 

inversion of levels. For example, in an odd or odd-odd nucleus an un-

occupied state which is similar to the time-reverse of an occupied state 

lies below the occupied state (see sect. 3.3). 
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Iu the case of a breaking of time-reversal invariance a level-

inversion can lead to an instability in the Iterative process used to 

achieve self-consistency. Suppose that, as part of the input to one step 

of the iteration, the "last nucleon" occupies a certain state whereas the 

time-reversed state is unoccupied, and that in the output of this itera-

tion the time-reversed state is the lower. Then, according to the 

standard interpretation of SCF theory, in the next iteration the time-
* 

reversed state should be taken as occupied, and so on. This has bean 
* 
Note, however, that the particle density of orbital is the same as 
that of its time-reverse, so there is no oscillation of density. 

done for example in the calculations of odd axially defo^-aed nuclei by 
24) Lee and Cusson . They have cited tho lower of tha energies of the two 

states as that of the highest lying occupied state (E^) and the higher 

of the two as the energy of the lowest unoccupied state » but their 
24) calculations in fact involved the inversion-instability (priv. coiran. ). 

In this paper we examine these level inversion problems in some de-

tail for the HF, BHF, and RBHF theories. We suggest a physically mean-
31) 

ingful interpretation which removes thfi apparent inconsistency between 

filling the lowest levels and the existence of a level inversion, and 

which is shown to provide a theoretical justification for avoiding an 

inversion-Instability in successive iterations. 

2. Statement of the problem 

2.1. SELF-CONSISTENT SYMMETRIES 

We shall deal first with the level inversion problem in a formal way 

that includes all the cases mentioned above. We assume that the full 
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Harailtonian of an A-nucleon system is 

A 
H = I T(i) + I v(i,j). (2.1) 

i-1 i,j(i;j) 

A symmetry property of H is expressible as the Invariance of H under a 

transformation. Thus, a symmetry- operator for H is defi; ed as a unitary 

or anti-unitary (in the case of time-reversal) operator which commutes 

with H. The one-body SCF Hamiltonian, h, for any solution of the SCF 

problem is a functional of t.he occupied self-consistent orbitals, C , i.e. 

h = h(U , X 1 A}). 

A symmetry operator for H which, moreover, is the A-fold product oi 
_ 

This requirement excludes symmetries involving permutations of particle 
labels, which can be reduced only as far as products of two-particle 
operators. 

a s.p. transformation, S, is said to be a self-consistent symmetry for a 

solution of the SCF problem if S is a symmetry operator for h. A self-

consistent symmetry is a propagating symmetry, i.e. one which is pre-

served in successive iterations. Thus, if a trial set of orbitals yields 
(T) 

a s.p. Hamiltonian h which commutes with S, then the self-consistent 

h obtained at the end of the iteration process will commute with S. 

A necessary and sufficient condition for a symmetry to be self-7 8) consistent in HF theory is given in the following lemma ' : 

If S Is a unitary or anti-unitary s.p. transformation for which 
A 

= I I S(i) commutes with H ( 1 , . . . A ) , then S commutes with h ( { I ^ , X < A } ) 

i-1 * 
if and only if S leaves the subspace of occupied orbitals X _< A} 

invariant. 
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The lemma is a consequence of the fact that the HF Hamiltonian is invari-

ant under any unitary or anti-unitary transformation within the subspace 

of occupied orbitals. As this property holds also for the BHF and RBHF 

theories, the lemma can be generalized to apply to these theories. The 

self-consistent determinautal wave function, 

¥ = detO A, A <_ A} 

is clearly invariant to within a phase under a self-consistent symmetry. 

Axial symmetry is always a self-consistent symmetry in the absence 

of an external magnetic field because 

A 
[expUe I j (i)}, H] = 0 (2.2a) 

i-1 2 

and for an axially symmetric field the azimuthal dependence of each or-

bital wave function can be chosen to correspond to a sharp intrinsic mag-

netic quantum number, ft, for which S is diagonal 

so that the manifold of occupied orbitals is trivially invariant. 

When considering a single self-consistent symmetry, S, if it is not 

already diagonal by choice (as in the case of axial symmetry), one can 

diagonalize it in the space of occupied orbitals. Its eigenfunctions 

are invariant to within a phase under S. But we must usually consider 

SCF solutions with more than one self-consistent symmetry. Often some 

of the symmetries do not commute among each other. In such cases it will 

be impossible for the individual orbitals to be eigenfunctions of all 

the symmetries. It is necessary to choose a basis set of orbitals in 
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which a commuting set of symmetries are diagonal while the other sym-

metries are not. If an orbital is transformed into a different orbital 

by a self-consistent symmetry, then the orbital and its transform are 

degenerate, for 

hi|t = op and [S,h] = 0 (2.3) 
imply 

h(Si/0 = Shty = £ (Sty) . (2.4) 

In this paper all the non-diagonal symmetries with which we shall be con-
2 

cerned lead only to a two-fold degeneracy. For these S ty a i/>, and S may 

be referred to as an "interchange" operator. With each such symmetry S, 

there is another self-consistent symmetry, S^, with which S does not 

commute and which distinguishes between each two degenerate partners 

under S. We may refer to the eigenvalue of S^, which distinguishes one 

class of orbitals from that of their partners under S, as the distinction 

quantum number relative to S. Two partners may be said to have opposite 

distinctions. 

The three cases to be considered here are: 

(i) Time-reversal (ST) invariance. For axially symmetric fields 

the time-reversed partner of an orbital has a magnetic quantum number of 

opposite sign. Thus, if the body-fixed unit vector z' is along the axis 

of symmetry, SD = e i 1 T ^ 3 z d i s t i n g u i s h e s between the two sets of 

partners. Bar-Touv and Kelson7^ pointed out that the £T -adapted orbi-

tals of axially asymmetric fields with ellipsoidal symmetry can be 

written as superpositions of states tj> _ with ft-1/2 either even or odd. ai* • i / o 
So here again d^. = <(-l)Jz' > distinguishes the partners. If an 

orbital is occupied then its time-reversed partner also must be occupied 
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if the subspace of occupied orbitals is to be invariant under time-

reversal. Consequently, the nucleon number A must be even. Moreover, 

if the orbitals do not mix neutron and proton components, then N and Z 

separately must be even. In the case of axial symmetry the total mag-

netic quantum number must be zero. 

(ii) Charge-independence (invariance under the group of rotations 

in isospin space, S(^) = e^'1"). This implies that the total isospin, 

T, as well as the charge Q = A/2 - T^, is conserved. Each orbital may be 

chosen to have a definite isospin projection, T = +1/2 for a neutron and 

-1/2 for a proton. A rotation by v about the first or the second axis 
* 

takes T into -T, leading to a two-fold degeneracy between a neutron 

*Because tj2 = (^)l, S = eiltt:i = cos ir/2+i2t1simr/2 = 12tj = i(t++t_), 
where t+ are the raising and lowering operators. 

T - 1 / 2 

orbital, with d^ = (-) = 1, and the corresponding proton orbital 

(dq = -1) with exactly the same space-spin wave function. Consequently, 

if charge-independence is a self-consistent symmetry, the nucleus must be 

self 

—conjugate, N = Z (M̂ , —0). The same result must hold in an arbi-

trarily rotated frame, i.e. M̂ , = 0, and hence we must have T = 0, corres-

ponding to a closed "shell" in isospace. 
(iii) Invariance under reflection of intrinsic spins in spherical 

(J=0) configurations. If rotational invariance, which involves both 

orbital and intrinsic spin degrees of freedom, is a self-consistent sym-

metry, the state must have J = 0. A more restrictive symmetry is the 

one describable in the Russell-Saunders coupling scheme by S = L = 0. 

This holds in a J=0 configuration if there is invariance also under in-

version of intrinsic spins. Invariance of the nucleon-nucleon interaction 
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under spin reflections requires the absence of the spin-vector component, 

namely the two-body spin-orbit interaction a s,i2* w h e r e ĵ.2 i s t*ie 

relative orbital angular momentum. While this component is appreciable 

in the modern "realistic" phenomenological interactions and contributes 

most of the spin-orbit splitting in SCF calculations, it is not very im-

portant for the spin-averaged properties of nuclear states. Consequently, 

it is instructive to consider model interactions which lack the spin-

vector term. 

In a Russell-Saunders L=S=J=0 configuration there is only one radial 

wave function for each If we choose to use the j-j coupling scheme, 

there are in general two radial wave functions, one for each j(j^=£±1/2). 

For S = 0 the configuration must have both J-shells filled or both empty 

because a "spin-unsaturated" configuration, with only one j-subshell filled, 

does not have a definite intrinsic spin. For example, a P-j 2̂ has 

probability 2/3 for S = 1 and 1/2 for S = 0. Moreover, in agreement with 

the description in Russell-Saunders coupling, the radial wave functions 

of the two j-subshells must be the same in order that the closed it-shell 

configuration have S = 0. To continue the example, in a closed p-shell 

we find 

<(P3 / 2) 4(P 1 / 2) 2|s-S|(p 3 / 2) 4(p 1 / 2) 2> = I [1 - (R_|R+)2] ( 2 . 5 ) 

where R_ and R + are the normalized radial wave functions for the and 

^3/2 s u^ s' i eH s» respectively. If these radial functions are the same, 

S = 0; otherwise there is a mixture of S values and of L values in the 

closed A-shell. Thus, the usual terminology, "spin saturated configura-

tion", is strictly applicable to a closed A-shell configuration only in 
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the absence of a one-body spin-orbit term in the s.p. potential. This is 

the term which leads to differences in the radial wave functions and the 

energies of the j-subshells. As a shorthand we may refer to the situation 

in which the s.p. spin-orbit potential is absent as that of j-degeneracy. 

The possible contribution of the tensor Interaction « [ ' s 2 * r 1 2 ^ ~ 
1 ->• -»• 
j (s^^)] to spin-orbit splittings has been of interest for over twenty 

years. More recently quadratic spin-orbit terms also have been found 

necessary in realistic interactions. It is important to realize that in 

HF theory these interactions of even rank (k = 0 and 2) as spin-tensors 

do not break the self-consistency of j-degeneracy. Only the spin-vector 

(k=l) component can break the symmetry (Lande and Svenne*^). On the 

other hand, once the symmetry is broken, so that the R+ wave functions are 

different, then the even-rank components can contribute to the spin-orbit 

potential. 

In Brueckner theory the k=2 components of the bare interaction do 

contribute to the k=l component of the reaction matrix. But the effect 

is rather weak 'Land£-Svenne^^), primarily because there is no contribu-

tion in relative s-states. Thus, in BHF and RBHF the spin-orbit splitting 

in closed i-shell configurations still arises predominantly from the two-

body spin-orbit interaction. 

In the case of j-degeneracy let us define an interchange operation 

which transforms the orbitals (j+,m) and (j ,m) into each other fcr 
|m| <_ 2.-1/2. The distinction number for spin-orbit partners is simply 

i-A-1/2 
dj = (-) . An explicit interchange operator can be constructed as 

follows: The spin-angle wave functions for the £-shell are the spinor 

spherical harmonics 
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V m ~= I 
a ± a 

£ 1/2 £,il/2 

m-o a m 
m-a a 
*£ Xl/2' (2 .6 ) 

We make use of a Regge symmetry of the Clebsch-Gordan coefficients re-

lating C h
 j2 Jl+j2 

m+j2 ±j2 m 
and C 

J ̂  J 2 
m± j 2 +j 2 m 

duces in the spin-orbit case to 

for |m| < j^jj, which re-

£ 1/2 £+1/2 

m— o a m 
- C - f ~ m C 

' £ 1/2 £-1/2 

m+a -o m 
(2.7) 

One finds that 

S = (£+s_ - £_s+) t(£+l/2)2 - jz
2] 
-1/2 

(2.8) 

where £ and s, are raising and lowering operators, satisfies 

S[R±(r)^®] = ± [R±(r)^"]p |m| 1 £-1/2. (2.9) 

As remarked above, the radial wave func.tions of the j-subshel.ls must be 

the same in order to have j-degeneracy, in which case S is the desired 
* j-interchange operator. 

As defined in eq. (2.8) S annihilates the orbitals with m = ±(£+1/2). 
In order not to have a singular operator, one can redefine S to act as 
the identity on the orbitals with |n| = £+1/2 by adding 

£-1/2 
n (j -m)/(£+l/2-m) 

£+1/2 
+ n (j -m)/(-£-l/2-m). 

m»-£+l/2 2 

Clearly, S does not commute with the rotations, though the j-distinction 
operator does. 
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2.2. SYMMETRY BREAKING 

In calculations for which a transformation S cannot be a self-

consistent symmetry (either because of the choice of nucleus, nuclear 

configuration, or nuclear interaction), an unrestricted SCF calculation 

would contain no reference to the transformation S. There would be more 

degrees of freedom in the s.p. orbitals than for the case in which S is a 

self-consistent symmetry. Sometimes the SCF theory for such "unsym-

metrical" cases is approximated by artificially imposing the symmetry 

through the use of a symmetry-restricted SCF procedure. 

Consider, for example, a nucleus with A = A +1 where A = 2N = 4n. o o o 
One can start the iterations with a trial configuration specified in terms 

of orbitals with the symmetries of the nucleus Afl, e.g. the self-

consistent orbitals or, less accurately, those of an oscillator shell 

model (spherical or deformed, depending on the nucleus). To impose the 

symmetry artificially one can put half of the "last" nucleon in each of 
the two lowest, previously unoccupied, degenerate orbitals. Because the 
_ - -

This is a very simple case of a symmetry-restricted SCF theory for open 
shell systems employing fractional occupancies for the open shells, 
which was initiated by Hartree and improved by Roothaan ', whose method 
has been extended to the general case of several open shells33). This 
approach has been applied to nuclei in a few papers, e.g. Davies, 
et al.15'17). 

addition of a nucleon violates both time-reversal invariance and charge-

independence, the situation is actually a little more complicated than 

described: if nucleus Aq is axially symmetric, one would put one-fourth 

nucleon in each of the four degenerate statec (t?., ±T) . If this 

"averaging over configurations" is done at each iteration, there is an 

exact four-fold degeneracy among the final self-consistent "valence" 
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orbltals. One finally constructs four determinants each containing a 

different one of the valence orbitals. Another example of imposing a 

symmetry is that of an isoscalar-restricted HF Hamiltonian for nuclei 
3 4 ) 

with a general neutron excess . Because no inversion occurs, we are 

not concerned in this paper with symmetry-restricted SCF theories. We 

may note that the existence of several degenerate determinants (not 

orbitals) indicates a failure to take into account deformations or other 

kinds of correlation which would appear if the degenerate configurations 

were allowed to mix. 

A relatively mild loss of symmetry occurs when a symmetry group is 

only partially broken, a subgroup remaining as a self-consistent sym-

metry. More generally, consider the case in which the symmetry S is 

broken but the distinction symmetry, S^, is still a self-consistent sym-

metry, so one does not have to allow mixing of orbitals of opposite dis-

tinctions. That is, in the case of ellipsoidal symmetry without time-

reversal invariance one still does not mix states with opposite values of 

with the breaking of charge independence by N / Z and/or iso-

vector Coulomb interactions one can still employ orbitals of definite iso-

spin projection (n or p); and in spherical configurations one still re-

quires invariance under combined rotations in space and spin space and 

does not mix j = I + 1/2 and j = I - 1/2. However, since the manifold of 

occupied s.p. states is no longer invariant under the interchange trans-

formation S, the partner of an occupied orbital is not necessarily occupied. 

Moreover, the partner under S of a self-consistent orbital is not 

self-consistent in general, though it usually will be similar to a self-

consistent orbital. For example, consider again the case of a nucleus 
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" A = 4n+l In which the initial trial determinant is constructed of 

belf-consistent orbitals of the self-conjugate nucleus A-l. The "last" 

nucleon goes into a "valence" state of definite dgy = (-) and 
T-1/2 d^ = (-) . Its partner under time reversal has the opposite sign of 

d,^ and is not occupied. Its partner under n-p interchange has the oppo-
v 

site sign of d^ and is not occupied. These zeroth-iteration partner states 

are self-consistent orbitals in the field of nucleus A-l (= 4n), but in 

succeeding iterations the partners of the valence orbital fail to be 

eigenfunctions of the s.p. Hamiltonian of nucleus A. 

It is in these situations with partial symmetry breaking that the 

problem of level inversion occurs. When one of the pair of "formerly" 

degenerate levels is occupied, the other (unoccupied one) usually comes 

lower in energy** W e discuss in the next section some represen-

tative HP and RBHF calculations which give a level inversion. 

3. Samples of calculated level inversions 

3.1. j-INVERSION IN SPIN-UNSATURATED SPHERICAL CONFIGURATIONS OF N=Z 
NUCLEI 

In BHF and RBHF calculations13'14) of 12C, 28S1, and 32S with the 
35) Haraada-Johnston interaction and in Rouben and Saunier's HF calcula-

12) 56 36} tlon ' of Ni with the Saunier-Pearson' ' effective interaction SP2 the 

s . p . energy of the unoccupied neutron (A-l/2)-subshell is lower than that 

of the occupied (1+1/2)-subshell (see table 1), and sisilarly for the 

corresponding proton states. Spin-orbit forces have been included, so 

the breaking of j-degeneracy arises '~v/tb from the spin-unsaturation and 

frott the spin-and-orbit-dependent interactions. 
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3.2. n-p INVERSION IN NUCLEI WITH A NEUTRON EXCESS; CASE OF A SPIN-
UNSATURATED SPHERICAL CONFIGURATION 

Figure 1 shows the results of a HF calculation^7^ for (and of 
40 

Ca for comparison) in which the Coulomb interaction has been left out. 

The two-term separable nuclear interaction of Tabakin, as modified by 

Clement and Baranger , was used. One sees that each proton level lies 

lower than the corresponding neutron level. In particular, the unoccu-

pied proton f7y2 level is below the occupied neutron f^^ level. Unlike 

a breaking of time-reversal invariance, an n-p level inversion does not 

give rise to an apparent inconsistency with the prescription to occupy 

the lowest levels: because of the conservation of N and Z it is consis-

tent to fill the lowest neutron and proton levels separately. However, 

the inclusion of the Coulomb force in the calculation raises the proton 

levels about even with the neutron levels and obviates the problem. 

3.3. INVERSIONS OR REDUCED NORMAL SPLITTINGS IN ODD NUCLEI WITH ONE 
PARTICLE OR HOLE RELATIVE TO A SPHERICAL CORE 

Very little work on odd nuclei has appeared in the literature, and 
30 29 24) 

in the few published results ' ' little or nothing was said about 

how the breaking of time-reversal invariance was actually handled. But 

generally the unoccupied partner lies lower, and the usual prescription 

to occupy the A lowest-lying s.p. states leads to an oscillation of 

occupancy from iteration to iteration (see sect. 1). 

A renormallzed Brueckner calculation of single-hole states in ^ 0 

and ^ N calculated with the Hamada-Johnston interaction and pure oscil-

lator s.p. wave functions was reported in ref. 29. We have reproduced, 
as fig. 2a here, fig. 1 of ref. 29 and have accompanied it by a similar 

39) 16 figure ' for 0 plus one particle, fig. 2b. These figures show in the 
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right-hand column the RBHF energies of s.p. states normally occupied in 

The other columns show the corresponding energies in the n u c l e i in 

which a single neutron or a single proton has been removed from (fig. 2a) 

or added to (fig. 2b) specific orbitals. Each column of the figure 

corresponds to a particular valence orbital. The shells in are split 

in the nuclei with A = 15 or 17 because the presence of a valence 

"particle" or hole with a specific magnetic quantum number, mv» implies 

a non-spherical term in the s.p. potential and an m-dependence in the 

s.p. energies. The individual s.p. energies are not shown; instead the 

broadened shells are indicated by rectangles, the length of the rectangle 

representing the spread. 

One notes three things here: (i) that each (unoccupied) hole level, 

represented by a circle in fig. 2a (its energy does not depend on mv), 

invariably lies below the filled states of the same shell with m i mv-

For example in ^ N with a proton missing from the ( s e e the 

third to last column), the a.p. energy of the hole (circle) is more nega-

tive than the s.p. energy of the other (occupied) proton Op^^ s t a t e 

(shaded square); (ii) that when the hole is a neutron the occupied proton 

states are raised relative to the neutron ones, and vice versa; similarly, 

when the "particle" is a neutron the proton states are lowered relative to 

the neutron ones, and vice versa; and (Hi) that the spin-orbit splitting 

of the Op levels is reduced by a valence hole in the Op^^ shell ° r a 

"particle" in the 0d5^2 shell. Thus, fig. 2 illustrates the tendency 

toward level inversion manifested in all three cases of partial symmetry 

breaking discussed in this paper, namely the breaking of time-reversal 

invariance when N or Z is odd, of charge independence when N i Z, and of 

intrinsic-spin independence when an 2.-shell is not spin-saturated. 
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4. Origin of the effect 

AO) The HF equation can be derived from the variational principle 

6[<H,|H|4'> - Ti<H'|,i'>] = 0 (4.1) 

where H is the full Hamiltonian (2.1) and f is a Slater determinant of 

s.p. wave functions The variational principle is satisfied when the 

are eigenstates of the HF s.p. Hamiltonian h, given by 

h = T + U (4.2) 

where the HF s.p. potential U is defined in an arbitrary basis t | a > , . . . } 

in terms of the self-consistent occupied s.p. states X by 

occ 
<a|uHF|b> = I <aX|vlbX>A, (4.3) 

A 

The matrix elements of the interaction are antisyinmetrized, as indicated 

by the subscript A. The BHF equations are quite similar except that the 

two-body matrix elements of "he interaction v are replaced by those of 

the two-tody Brueckner reaction matrix (see e.g. ref. 19) 

G(E) = v + V 2r-G(E). (4.4) S c . K. S 
s 12 

Here the "Pauli operator", Q, is a projection operator which excludes 

normally occupied s.p. states from appearing in the intermediate pair 

states, h^^ Is an unperturbed (reference) pair Hamiltonian 

hj2 » hR(l) + hR(2) (4.5) 
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j 
where h is the reference s.p. Hamiltonian for normally empty s.p. states, 

and Eg is the energy available to the pair ("starting energy"). The BHF 

potential energy of a norc.ally occupied s.p. state A is 

occ 
<MUbhf|X> = I <U' |G(ex+e')|AA*>. (A.3a) 

X 
4 22}* 

The RBHF equations ' ' differ from the BHF equations only in that the 
_ 
The RBHF approximation referred to here is closely related to the lowest 
s^ir-consistent truncation of the generalized-time-ordered version of 
'the Brueckner-Goldstone expansion discussed by Brandow41). A somewhat dif-
ferent RBHF approximation results from the lowest truncation of the 
extended-generalized-time-ordered series'*2). The remarks of the present 
paper hold also for this second RBHF approximation. 

reaction matrix element is multiplied by the "true" occupation probability 

of the normally occupied state with which an interaction is taking place, 

PA. That i'i, 

occ 
<a|URBHF|b> = I <aA|G(Es)|bA> P^. (4.3b) 

A 

The fractional occupation probabilities can be calculated, in the RBHF 

approximation, by a finite set of algebraic equations involving only the 
4) normally occupied states . The coefficients in these equations can be 

4) 
expressed either in terms of Bethe-Goldstone defect functions or, more 

conveniently for rapid numerical calculations, in terms of the energy 

derivative of the reaction matrix4^'^^. 

We now consider the inversion problem by relating the nucleus A, for 

which there is an inversion, to that nucleus, A , nearest to it in the o 
periodic table for which there is no symmetry breaking. For the latter 

nucleus the occupied states, labeled by A, will be called core states. 
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Each s .p . level of nucleus A , whether occupied or not, is two-fold de-o 
generate with respect to the distinction quantum number d = ± 1. In con-

sidering nucleus A we shall be concerned with the s.p. states corresponding 
to those in A of a particular two-fold degenerate level, C = (z,d). The •— o 
main effect producing the splitting of this level in nucleus A is the 

change in potential energy resulting from the changed occupancy. This 

effect appears in first order perturbation theory, as well as in higher 

orders. The change in the s.p. wave functions, on the other hand, does 

not affect the energy splitting in first order, but does contribute in 
* 

second and higher orders. The first-order effect is expected to dominate. 
* 
If it does not, there is a great deal of "core polarization" in A and 
the relevance of the self-consistent symmetry in AQ to the nucleus A is 
rather tenuous. 

Consequently, we shall give a discussion of the splitting based on em-

ploying the orbitals of nucleus A . Some comments on the effects of dls-o 
tortion of the orbitals are given in sect. 5. 

4.1. ODD NUCLEI, A = A ± 1 o 
If partial occupancy occurs only for one degenerate pair, one can 

choose the unperturbed core states to be the filled states either of 

nucleus A+l or of A—1. Consider first the description in terms of a core 

Aq = A-l and a valence "particle". Let us assume that only the d=+ mem-

ber of the pair of states C = (z,d=±) is occupied. The s.p. energies are 

= <?|T|c> + <?|U|?>. (4.6) 

If the wave functions are those of the nucleus Aq, the kinetic energy is 

independent of the distinction number, d, i.e. <?|T|S> = < Z | T | Z > . 
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However, the potential energy reflects the occupancy of (zj,+). In the 
HF theory 

core 
< C | U | C > = I < C , A | V U , X > a + <C , 8+|vk,z+> A. ( 4 . 7 ) 

X 

The first term is independent of d, since the degeneracy in the orbitals 

A is summed over, so we can write 

e = + <C,z+|v|?,z+> (4.8a) 

with 
, v core 

= < Z | T | Z > + I < ? , X | v | C , A > . (4.8b) z x A 

Now look at the s.p. energies of the two states c: 

ez+ = t(zo) + <z+,z+|v|z+,z+>A = e<o) (4.9a) 

ez_ - + <z-,z+|v|z-,z+>A = + v^. (4.9b) 

In the first equation the matrix element <z+,z+|v|z+,z+>A is identically 

zero since it is antisymmetrlzed. However, in the second equation the 

matrix element, which we have called v for simplicity, is non-zero. 

Thus, the degeneracy of the completely empty level z in nucleus A q 

is broken when the level is half filled in nucleus A +1 because the ener-o 
gy of the unoccupied sublevel contains a mutual interaction energy with 

the occupied state, while the occupied state does not have a corresponding 

interaction with itself. That is, a test particle in the "unoccupied" 

state (z,-) experiences one more interaction than does the nucleon in the 

occupied state (z,+). 
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Consider next the description in terms of a core = A+l and a 

"valence hole". In this case also, as in the "particle" description we 

have the result 

e - e = v,. (4.10) z- z+ -+ 

An inversion, 

e (unoccupied) < e .(occupied) (4.11) z— z+ 

occurs if v , < 0. In the cases we have examined v , is always negative. —1" —r 
For example, table 2 gives values of v in the Op and ls-Od shells of i 
the spherical harmonic oscillator basis for four effective interactions. 

These interactions were constructed in quite different ways and, taken 

together, pretty well sample the range of possibilities allowable for a 

successful shell model effective interaction in these two major shells. 

Because the addition or removal of a nucleon breaks both time-reversal 

invariance and charge-independence, there are two sets of matrix elements 

to be considered, those involving states differing in the distinction 

number d _ and those differing in d . 
q 

From table 2 one sees in the case of the Tabakin interaction that if 

the 0^5/2 neutron state with m = 3/2 is occupied, then the neutron 

state with m = -3/2 lies lower, if unoccupied, by about 0.6 MeV, and the 

0d^2» m = 3/2 proton state, if unoccupied, lies lower by about 1.9 MeV 

in the absence of Coulomb interactions. In the case of the Saunier-

Pearson interaction cited in table 2, one sees that if the Op^^ proton 

state with m = 3/2 is emptied, then its s.p. energy is about 2.9 MeV 

below the occupied 0p^ 2 Photon state with m = -3/2 and about 3.4 MeV 
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below the occupied Op^^' m = neutron state (in the absence of Coulomb 

interactions). Similar results for one Os or Op hole in the ^ 0 core 

have been shown in fig. 2a, which was calculated from the Hamada-Johnston 

interaction, the appropriate reaction matrix elements (G_+) of which, 

times the "true" occupation probability P ,, are given in table 2- also. z+ 
It is fairly easy to understand that v , should be negative in the ™ 1 

time-reversal case, since it is precisely these matrix elements coupled 

to J = 0 that are the pairing interaction, which is known to be strongly 

attractive. Likewise, the neutron-proton force is known to be largely 

attractive, but it is not clear why all n-p matrix elements cited in 

table 2 should turn out to be attractive. 

These considerations apply also to deformed odd nuclei. For axially 

symmetric configurations one replaces m by J2, the magnetic quantum number 

in a body-fixed coordinate system. In tri-axial ellipsoidal configura-
/ V - 1 ^ 

tions the distinction number d ^ =((-) s t i H appropriate for 

labeling the time-reversed partners (see sect. 2). 

4.2. SPIN-UNSATURATED SPHERICAL NUCLEI 

The spin-orbit case has to be discussed separately because it in-

volves a sum over the magnetic quantum number, m. We consider first the 

nuclei for which a j=£+l/2 subshell is filled both by neutrons and protons 

and the j=£-l/2 subshell is completely empty (see sects. 1 and 3.1). If 

we neglect the Coulomb interaction and the difference in radial wave func-

tions of the j-subshells, it will suffice to generalize the previous no-

tation only to the extent of writing 5 = (z,j,m,T), where we prefer to 

use j in place of the distinction number d^ = 2(j-£) = Then 

eqs. (4.6) and (4.7), generalized to the RBHF theory, are replaced by 
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core 
ezjmT = < ZI TI Z > + I <2jmx.^|G|zJmTfX>A Px 

X 

1/2 J.+1/2 
+ 7 l <zjmT,z(K+l/2)m,T'|G|zjmT,z(a+l/2)m,T,> P , 

t '=-1/2 m' —(4+1/2) z , ™ z 

, + n (z,*+l/2) (4.12a) 
zj zj 

in which e ^ consists of the first two terms of eq. (4.12a) and is inde-zj 
pendent of m and x after summing over the closed-core shells X. The sums 

in the last term can be evaluated to give 

U2j(z,*+l/2) 2"(2j+iy ̂  <2T+1><2J+1>£1+6
jf£+l/2] 

(4.12b) 

x <zj,z(M-l/2|J'TG|zj,z(£+l/2)>A ^ Z f l + 1 / 2 

* 
which also is independent of M and T. The potential energy of interaction 
* 
Here the (J,T)-coupled matrix elements are with respect to normalized 
antisymmetrical pair states. An element 

J T <X11 1J l »n2^2j2 I ' cl1^®^ 3»nitJli»ji+> contains a factor 
-1/2 r l / 2 

1 + 6 3„3.3 . In eq. (4.12b) this factor is can-nî t+ji. i + 

celed by the explicit factor [i + 6 £+1/2^ 

with the spin-saturated core levels X depends on j, giving a splitting of 

normal sign 

.core _ (o) (o) . n ,, 
*z = ez,A-l/2 " Ez,&+1/2 > ° ( A' 1 3 ) 

as in eq. (lc). If there is no effective two-body spin-orbit force, the 
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first-order splitting from interactions with the core, ^ o r e , vanishes10^. 
A 22) But with realistic forces, RBHF calculations * * give the large 

& 16 
splittings that are seen experimentally in the regions near He, 0, and 
40 
Ca and that are assumed in the Flayer-Jensen shell model. Sy adding the 

"abnormal" contribution to tht splitting from the interaction with the 

(2,4+1/2) subshell (see eq. (lb)) 
5 ^z,4-1/2 " Uz,*+l/2 <».*+l/2> < 0 

one obtains 

. — „ _ .core , .unsat .. 
*Ez = ez,4-1/2 - z,4+1/2 • *z + • <*'I5) 

There is an inversion of the spin-orbit partners, to first order, if 

Acore « i^unsat, 
z 1 z ' 

In table 3 the matrix elements U ^(z,4+1/2) in the Op and Od shells 

are given. One sees that A u n a a t is negative and of five to ten MeV in z 
magnitude. This is sufficient to overcome the normal "core" splitting 

and give a spin-orbit inversion in calculations for the spherical configu-
12 28 32 56 rations of C, Si, S and Ni, as we have seen in table 1. 

The equations of the previous paragraph are easily generalized to 

nuclei with a neutron excess. With neglect of Coulomb interactions and 

differences in s.p. wave functions of the j-subshells, we have for a con-

figuration like that of the ground state of 48Ca or with only one 

spin-unsaturated neutron shell, in the RBHF theory 
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core 
C*j»T " <e!T^iS> * I <«j»t.*lv|*J»*»x>A P x 

1+1/2 
• I <zJm#z(i+l/2)»,l/2|v|*je?,*(l+l/2)»'l/2> P, „ 

—(l+X/2) 

5 + U
ejj,<*»i+1/2'1/2> 

(4.17a) 

where 

U t j t U , W / 2 . 1 / 2 ) - T o f ^ T I l«T._l/a * 'S.1,2 ' T . l " 2 J + 1 > 
iij 

Values of U . Os,*+l/2,X/2) in the Op and Od shells are given in cable 3. 
« 

Neutron-proton splittings as well as spin-orbic splittings are tabulated. 

The "abnormal" spin-orblc splicdng from Inceraccions with Che unsaturated 

shell is reduced by roughly one half because of Che absence of procons 
48 

in thac shell. Thus, calculacions fcr Ca do noc exhibit inversions of 

che Op, Od, or Of spin-orbic doublets, alchough che normal spliccings are 

smaller in magnitude10'12*375 than in A0Ca. 

Equadon (4.17) can be generalized Co more complicated configuracions 

by including a term U for each spin-unsaturated shell. The s.p. levels 

in ^Ni, which han three spin-unsaturated i-shells (the neutron and 

proton Of shell and the neucron lp shell), should show a particularly 

greac tendency coward spin-orbic inversion. However, because ocher 

levels are nearby, conflguraclon mixing should be imporcanc, and che HF 

determlnanC is probably not a very gccd model grsuftu state. Configuration 

mixing is minimized for ground staCes of nuclei in which N and Z are 
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56 208 

"magic numbers". Beyond Ni only 82Pb126 (Jua-'-ifies* B u t f o r such a 

heavy nucleus there are many more spin-saturated core levels; their 

"normal" contributions to the spin-orbit splitting may overcome the 
"abnormal" contributions from the i 1 3/ 2 neutron shell and the hi;1y2 * 
proton shell. Thus, spin-orbit inversions appear to be limited to 

See, however, she inversion of the h9/2~hn/2 doublet produced by the 
interaction^®) SP2 in the calculation of Rouben and Saunier12), table 
4, second last column. 

fairly light spherical nuclei. 

5. Interpretation 

One way of overcoming the inversion problem would be to allow 

breaking of the distinction symmetry, S^, as well as the interchange 

symmetry, S. However, in all of the three cases discussed here this 

complete symmetry breaking considerably Increases the labor of the cal-** 
culation. When time-reversal Invariance is broken, the proposal would 
**" " — — — — — — — — — — — 

In some cases, however, breaking S Q may be preferable to other methods 
of achieving a sufficiently accurate description of the nuclear state 
(see sect. 6). 

imply breaking also axial or ellipsoidal symmetry by allowing components 

with even values of ft-1/2 to mix with odd ones in the expansion of the 

self-consistent orbitals. The mixing coefficients would then not only 

double in number because of the additional mixing, but also would be 

complex because of the breaking of time-reversal invariance, a four-fold 

Increase In difficulty. If charge-independence is partially broken, the 

"complete breaking" proposal implies giving up charge conservation by 
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mixing neutron and proton components in the self-consistent orbitals, 

thereby producing solutions in which Z and N are not good quantum numbers. 

One is no longer dealing with a particular nuclide unless states of good 

T^ are projected from the self-consistent determinant. For spherical 

nuclei with spin-unsaturated shells, complete symmetry breaking would 

imply mixing components with j = t + 1/2 and 4 - 1/2 for |m| 1 - 1/2. 

This would destroy rotational invariance, which could be restored only 

by projecting states of J = 0. Since the deformed fc-shell could polarize 

the core, it probably would be preferable to allow all shells to deform, 

as in a conventional deformed SCF calculation. 

Instead we consider retention of the distinction symmetry in the 

s.p. wave functions, and justify the intrusion of unoccupied levels be-

low occupied ones in the spectrum of the SCF Hamiltonian. The fact is, 

the SCF equations per se have nothing to say about the interpretation of 

unoccupied levels. The equations demand merely that matrix elements of 

h between occupied and unoccupied levels be zero (Brillouin's theorem in 

the cast- of HF theory). The occupied states are the only ones entering 

into the definition of the SCF Hamiltonian and, hence, are the only ones 

involved in the self-consistency process. However, if the SCF equations 

are solved approximately by matrix diagonalization in a finite dimensional 

basis, some of the unoccupied orbitals are obtained as a bonus. 

The question of which s.p. states should be filled in the SCF de-

terminantal approximation to the ground state has a definite answer in 

HF theory, namely those A s.p. states which give the determinant having 

the lowest energy, 
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. WWW 
E - < Y | H | * > « -R I C < X | T 1 A > C . J 

/ x A 

E A - < A | T + U | A > (5.1) 

occ 
<A|U|A> - I <X\•|v|AA'> 

A' 

Suppose one has achieved self-consistency with a particular set of occu-

pied orbitals (C^) and wishes to investigate a slightly different con-

figuration (C2). One can start the iterations for C2 with eigenfunctions 

of the s.p. Hamiltonian h(C^); at least one of the orbitals occupied in 

this approximation to C^ is unoccupied in C^. After Iterating to self-

consistency the orbitals occupied in C^, which are eigenfunctions of 

h(C2), will differ slightly from those of h(C^). The differences between 

corresponding eigenfunctions of h(C^) and h(C2) are referred to as re-

sulting from orbital rearrangement. The s.p. energies are changed also; 

the differences are called orbital-rearrangement energies. To the ex-

tent that the orbital rearrangement is negligible, the difference be-

tween the HF energy of = ^(C^) and of a configuration C2 with only 

one "particle" and one "hole" relative to C^ can be calculated easily. 

If we restrict the label A to refer only to the "core states", those 

occupied both in ¥ and V2> then C = (U),h) and C2 = (U>,p). The HF 

energies of 4* and 4* are 

E1 = Z <A|r|*> + <h|T|h> + 
A 

1 
2 AA 

I <AA'jv|AA'>A + 2 <Ah|v|Ah> A (5.2a) 

and 

E, = I < A | t | A > + <p|T|p> + y I <AA'jv|AA,> + £ <Ap|v|Ap 
A Z AA* A A 

> A (5.2b) 
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so Chat 

e
2 ~ li " <PlT|P> + I <*PlvUP>

A " e h 
X (5.3) 

" £p " Ch " < hP' vl hP >
A 

where the s.p. energy e^ Is that of state p as an unoccupied state in 

the SCF of state 

In the application to the inversion problem p = (z,-) and h = (z,+) 

(see sect. 4). Then by eq. (4.10c) 

E2 - E1 " £z- " e«+ " V-+ = ( 5- 4 ) 

Thus, these two configurations, which differ only in containing one or 

the other member (d s - 1) of a pair of valence orbitals almost connected 

by a (slightly broken) interchange symmetry, are degenerate. 

The usual prescription, to fill those s.p. states having the lowest 

s.p. energies, follows from eq. (5.3) with the neglect of the particle-

hole interaction term. But for the level-inversion problem it is this 

neglect which gives rise to the difficulty. The significance of the in-

teraction term in eq. (5.3) can be understood in a different way as 

follows. First notice that, with neglect of orbital rearrangement cor-

rections, the Cp given by eq. (4.9b) is also the s.p. energy of state p 

in that configuration of nucleus A+7 which p is a valence particle, 

because ^plvlpp^ = 0. Next, notice that the s.p. energy of the state 

h in this same configuration (lA},h,p) of nucleus A+l is 

£h A + 1 ) " £h + < h P M h p > A . (5.5) 
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Thus, 

_ « _ (A+l) (A+l) ,«. E_ - E, a e - E . (5.6) 2 1 p h 

Consequently, the usual prescription for occupation of s.p. states should 

be modified slightly to refer to the s.p. energies in the configuration 

of the adjacent nucleus, A+l, in which both states p and h are occupied. 

This modification removes the inconsistency that in comparing s.p. ener-

gies in nucleus A, c involves A Interactions with other particles where-
P 

as e^ involves only A-l Interactions (no self-energy). For the inversion 

problem 

e(A+l) e ccore £(A+1) {5 
Z + Z ~ + Z -

so that E2 - E^ • 0 as in eq. (5.4). In nucleus A+l with both (z,-) and 

(z,+) occupied, the interchange transformation S is a self-consistent 

symmetry. This is the reason for the degeneracy in eq. (5.7). An alter-

native analysis can be carried out with reference to the nucleus A-l with 

a hole in s.p. state h, again yielding for the inversion problem E^ - E^ » 0. 

Similar considerations hold in the RBHF approximation, but not in 

the ordinary BHF approximation. The difference is related to the fact 

that in BHF theory the s.p. energies differ from the corresponding sepa-

ration energies by large "Brueckner rearrangement energies" associated 

with the non-static nature of the effective interaction (the starting-

energy dependence of the reaction matrix). The renormalization with 

occupation probabilities restores the connection between separation and 
39) s.p. energies, i.e. in RBHF theory there is an analogue of Koopmans1 

theorem in HF theory. Now E^ and E2 can be written in terms of the 
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(A-1) binding energy E of the nucleus A-1, which provides the common core 

for configurations C^ acd of nucleus A, and the separation energies 

f and £ p h 

E £(A-l) +r E , e(A-D + £ (5.8) 
JL n i p 

so that 

E2 - Ex - £ P - C h . (5.9) 

Then by the analogue of Koopmans* theorem in RBHF theory 

just as in the HF approximation. For the inversion problem 

<p = z-,h = z+) 

£(A-1) = £core^ 
Zz Z 

so that E^ and E2 are degenerate. 

The inversion-instability in the case of the breaking of time-

reversal invariance in odd or odd-odd nuclei is avoided easily. The 

preceding discussion shows that there are two degenerate determinants. 

One can put the valence particle in a state of distinction d = + and 

leave it there from iteration to iteration even though the unoccupied 

partner with d - - has a lower s.p. energy in the nucleus A (but not, as 

we have seen, in nucleus A+l). The particle-hole excitation based on 

the d = + solution, obtained by "exciting" the d = + partner to the d = -

level, does not lie lower in energy than the original configuration, but 

is degenerate with it, as shown by eq. (5.4). Each is an equally good 

HF ground state. 
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In the case of spin-unsaturated spherical shells let the neutron 

or proton subshell (z,4+1/2,x) be filled and the neutron and proton sub-

shells with j = 4-1/2 be empty. Consider the energy of state (z,4+1/2,m,x) 

in the configuration of nucleus A+l in which there is a valence particle 
A+l in state (z, 1-1/2, m' ,t) . The extra interaction in e „,,/<» not con-z, *.+i/ A ,m, T 

A tained in c „,, .„ , namely z,£+1/2,x 7 

VL. = <z,4+1/2,m,x; z,4-1/2,m',x|v|z,4+l/2,m,x; z,4-1/2,m!,x> (5.12) mr,m — a 

can give enough extra binding to make 

A+l A+l A rs 
ez,4+1/2,M,T Gz, 4-1/2,M',T ez, 4-1/2, T * 

The dependence of these energies on m and m' is rather weak, so it is 

useful to average over m' in (5.12), obtaining an energy v+
T which is 

independent of m. This average interaction is expressible in terms of 

the s.p. potential of eq. (4.17b) (with j+ = 4±l/2) as 

v+I = - 2JJiJ U z j + T (zj_x) = j ^ j (zj+x) = (5.14) 

Here the second equality, which arises formally from eq. (4.17b) and a 
symmetry of the two-body matrix elements, states the fact that 

(2j,+l)U . (zj x) and (2j +1)U . (zj,f) both represent the mutual in-+ ZJ+T ~ ~ zj_x + 
teraction energy of the neutrons (or protons) in shell j with those in 

j . If both neutrons and protons occupy the shell j+, then we might 

average also over x', obtaining 
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V+- = 2(21750 [ Uzj +T ( Z' j-' T ) + U a V
( 2 ' j - ' " T ) ] = T(2j~flY [ Uzj_ T

C z' 3
+' T ) 

(5.15) 

+ U
z j _ x ( z ' V ' - > ] S 2(2j~Hy u z j . ( z V = ~ 

A+l 

In table 1 the row labeled c o n t a ^ n s renormalized-Brueckner-

approximation values of the s.p. energy of the shell (n^j+) in the 

nucleus with A+l nucleons when one nucleon is in r.he otherwise empty sub-

shell (ntj_). These energies were obtained with Brueckner self-

consistency, i.e. the starting energies of the reaction matrix elements 

were self-consistent. The last row in table 1 gives the estimate of iii flp o 

££+l/2 o b t a i n e d f r o m ecl' (5.15) and table 3. For Si and S the esti-

mate of v is somewhat too large in magnitude because the oscillator T— A+l 
range parameter b is too small. One sees that ^ well 

approximated and that 
«A+1 = A+l CA+1 » — — ,, ... 
AX. " 2.-1/2 ~ M-1/2 % A«. " V+- (5'16) 

is of normal sign (> 0), so that the spin-orbit doublet is not inverted 

when properly treated. We expect this feature would be retained in cal-

culations of higher dimensionality. 

6. Inversions as signals of needed correlations 

It was demonstrated in sect. 5 that two degenerate determinants 

arise from occupying one or the other partner of a degenerate pair of 

s.p. levels of nucleus Aq = A-l and then iterating to self-consistency 

in the nucleus A. Although we have shown the inversion of s.p. levels 

to be unphysical, the existence of the degenerate determinants indicates 
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that the SCF description of the nuclear state in terms of either deter-

minant alone will not be very accurate. The degeneracy indicates the need 

for a supplementary calculation in which the two determinants (actually 

four if both time-reversal and isospin invariance are broken simultaneously) 

are allowed to mix, thereby giving a state of lower energy with some cor-

relations between the nucleons. A more accurate version of this would be 

a two (or four) dimensional mlaed-configuration HF calculation, in which 

one diagonalizes 9 after each HF iteration. 

An alternative way of lifting tha degeneracy is to allow the dis-
* 

tinction synanetrys, S^, to be broken, leading to a more deformed self-
* ~~ -
See the beginning of sect. 5. 

consistent field. Thus, deformations in the ground states of nuclei with 

spherical configurations having an inversion or near degeneracy of an 

occupied and an unoccupied level may be thought of as arising as a means 

of escaping the degeneracy. From the standpoint of the spherical basis, 

the projection of a state of good angular momentum from a non-spherical 

determinant contains configuration mixing and hence "correlations". The 

mixing leads to a state of lower symmetry. The deformed intrinsic s.p. 

levels have a greater energy gap at the Fermi surface. The appearance of 

an inversion or even a significant reduction of the normal spin-orbit 

splitting at the Fermi surface in spherical calculations provides a signal 

that a deformed solution of lower energy may exist. This is the case for 
12 28 32 
C, Si and S in table 1. Similarly an axially symmetric solution 

with an inversion or near degeneracy can deform to a lower-lying axially 

asymmetric solution with a large gap at the Fermi surface. 

The authors gratefully acknowledge interesting discussions with 

Ron Cusson, Edith Halbert, and Paul (H. C.) Lee. 
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Figure Captions 

40 48 Fig. 1. Single-particle levels in Ca and Ca, from the Hartree-Fock 
38) 

calculation of ref. 37. The Tabakin interaction was used, with no 

Coulomb interaction and an oscillator radius parameter b = 1.732 fm. 
Fig. 2. Renormalized Brueckner single-particle levels in (a) A=15 and (b) 

A=17 isobars, from the RBHF calculation of ref. 29. The calculation used 
35) 

the Hamada-Johnston interaction. See text for detailed discussion of 

these figures. The oscillator range parameter is b = 1.571 fm. 
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Table 1 

Inversion of spin-orbit doublets In spin-unsaturated shells of 
spherical configurations of light N=Z nuclei as calculated in 
refs. 12-14. Single-neutron energies are given In MeV. (For 
56 12 Ni the proton energies cited by Rouben and Saunier (RS) have been 
converted by assuming a Coulomb displacement energy of 9.6 
MeV.) The dimensionality D is the number of radial oscillator 
wave functions from which each SCF orbital was constructed. The 

1/2 
oscillator range parameter b = (fi/Mui) is in fm. The energy 
A+1 

E£+l/2 t'ie e n e rSy nucleus with A+1 nucleons (see 
sect. 5). 

RBHF HF 
D - 2 D = 1 D = 4 

1 2 c 1 2 c 2 8 s i 3 2 s 5 6 M 

reference 13 13 14 14 12(RS) 

b 1.571 1.571 1.885 1.885 1.997 

I 1 1 2 2 3 

£l+l/2 - 1 3 . 2 - 1 2 . 9 -12.0 - 1 4 . 3 - 1 2 . 5 

C1-1/2 -13 .6 - 1 4 . 5 -13 .4 - 1 5 . 1 -15.2 

\ - 0 .4 - 1 .6 - 1 .4 - 0.8 - 2.7 
A+1 

E m / 2 - 1 6 . 2 

b = 

-15.3 

1.571 

.unsat (see table 3) - 8 .8 -11.4 -11.4 

.core 
\ = V * 

unsat 
Z 7.2 10.0 10.6 

16) - 3.0 - 2.5 - 2.5 
.A+1 
\ = V v + - 1.4 1.1 1.7 

e£+l/2 + v + - - 1 5 . 9 -14 .5 -16.8 
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Table 2 

Some examples of the matrix elements v , (in MeV) responsible for (m,-m) —r 
and (n,p) inversions in spherical shell model configurations of odd-A 
nuclei, associated with breaking time-reversal Invariance and with partial 
breaking of charge independence. The first three interactions given here 38) 
are taken, respectively, from F. Tabakin , G. Saunler and J. M. 

361 
Pearson , and pp. 249-251 of J. M. Irvine, Nuclear Structure Theory 
(Pergamon Press, Oxford, 1972). The latter are obtained from phenomeno-
logical shell model calculations and consequently may not be very suitable 
for HF calculations. However, they are included here for comparison. The 29 39) fourth effective Interaction involves reaction matrix elements ' of the 

35) 
Hamada-Johnston interaction multiplied by the "true" occupation proba-
bility, P , of the occupied partner state as prescribed in the RBHF i» I/O 
approximation . The range parameter b = (fi/Mw) of the spherical oscil-
lator basis with respect to which the matrix elements are calculated is 
given in fm. The matrix elements depend strongly on b. The value 1.571 is 
more appropriate for the Op states in nuclei with 12 A 16 and 1.74 is 
more appropriate for states of the s-d shell in nuclei with 16 < A < 28. 

G .P. 
Interchange 
transformation 
and distinction 
number, d. 
Time reversal 

, .m-1/2 

n-p interchange 
(-) T" 1 / 2 

State 

n£J 

label z 

|m| 
Tabakin 
b: 1.732 

SP 
1.752 

Shell 
model 
12<A<28 

HJ 
1.571 

Op3/2 1/2 or 3/2 -1.86 -2.86 -1.09 -2.09 
Opl/2 1/2 -0.10 -1.04 -0.28 -0.43 
0d5/2 1/2 -0.73 -0.78 -0.55 -1.27 

I I 3/2 -0.56 -0.81 -0.44 -1.00 
I I 5/2 -0.83 -0.76 -0.62 -1.44 

lsl/2 1/2 -2.15 -1.55 -1.14 -2.49 
0d3/2 1/2 or 3/2 0.20 0.03 -0.14 -0.65 
0P3/2 1/2 -2.81 -2.48 -1.77 -3.76 

I I 3/2 -3.89 -3.35 -2.12 -4.79 
Opl/2 1/2 -0.34 -1.53 -1.27 -2.61 
0d5/2 1/2 -1.65 -1.34 -1.24 -3.22 

I I 3/2 -1.95 -1.59 -1.33 -3.47 
I I 5/2 -2.84 -2.54 -1.75 -5.17 

lsl/2 1/2 -2.67 -2.88 -1.84 -5.20 
0d3/2 1/2 -0.30 -0.98 -1.06 -2.92 

IT 3/2 -1.23 -1.63 -1.30 -4.05 



Table 3 

Contribution from interactions with the occupied j=Jt+l/2 subshell of a spin-unsaturated Jl-shell (in MeV) 
to: 
(1) U (z,£+1/2,1/2), eq. (4.17b), or U (z,Jt+l/2), eq. (4.12b), a part of the single-particle po-Zj T Zj 

tentlal energy of state zjr; 
(2) Ap~n = U , (2,(1+1/2,1/2) - U . (z,Jl+l/2,l/2), showing proton-neutron inversion produced by ZJ z,j,—xfi z,3,1/z 

an excess neutron subshell; 
(3) ° r P = U . , <z,Jl+1/2,1/2) - U ,,1/0 (z,£+1/2,1/2), showing spin-orbit inversion produced Z z,fc—Lf 

by an excess neutron subshell; 
(4) Az = ^ I ~ UZ,JI+1/2,T(z'*+1/2't,£1 = A Z + A Z ' S H O W L N 8 spin-orbit in-

version"pr^luced by a j=A+l/2 subshell containing both neutrons and protons. These spin-orbit 
uns^t core splittings are denoted by A in the text; they are partially compensated by & (see table 1 

and fig. 1). The four interactions used are the same as those of table 2. 

Interaction 
Potential 

Nucleus 
or 

Splitting 
Tabakln 
1.732 

SP 
1.752 

Shell Model 
12<A<28 

HJ 
1.571 

8He U0P3/2n<°P3/2n> 
UOp3/2p(°P3/2n> 

- 4.03 
- 9.72 

- 6.21 
- 9.84 

- 2.38 
- 5.83 

- 3.47 
-11.77 

AP-n 
0p3/2 

U 0 p l / 2 n < 0 * 3 / 2 n > 

- 5.69 

- 6.12 

- 3.63 

- 8.64 

- 3.45 

- 6.73 

- 8.30 

- 6.90 

UOPl/2P
(0p3/2n> -12.19 -13.90 -13.77 -17.09 

AP-n 
Opl/2 - 6.07 - 5.26 - 7.04 -10.19 

- 2.09 - 2.43 - 4.35 - 3.43 

- 2.47 - 4.06 - 7.94 - 5.32 



Table 3 (Continued) 

Interaction 
or Tabakin SP Shell model HJ 

Nucleus Splitting 1.732 1.752 12<A<28 1.571 
12c UOp3/2(°P3/2) -13.76 -16.05 - 8.22 -15.24 

UOpl/2(°P3/2> -18.32 -22.54 -20.50 -23.99 

V - 4.56 - 6.49 -12.28 - 8.75 

2 2o U0d5/2n(0d5/2n) - 2.59 - 3.24 - 1.84 - 4.84 

U0d5/2p(0d5/2n> - 7.63 - 6.79 - 5.45 -14.40 
AP-n 
0d5/2 - 5.04 - 3.55 - 3.61 - 9.56 

U0d3/2n(0d5/2n) - 5.68 - 7.42 - 6.63 - 8.17 

U0d3/2 P
( 0 d 5 / 2 n ) -10.40 -11.63 -13.03 -22.50 

AP-n 
0d3/2 - 4.72 - 4.21 - 6.40 -14.33 

- 3.09 - 4.18 - 4.79 - 3.33 

- 2.77 - 4.84 - 7.58 - 8.10 
28 Si or U0d5/2(0d5/2> -10.21 -10.03 - 7.29 -19.24 
32 U0d3/2(0d5/2) -16.07 -19.04 -19.67 -30.67 

- 5.86 - 9.01 -12.38 -11.43 
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