1CNF INIS

EUR-CEA-FC-785 TR FR7601142

RAYONNEMENT X SUPRA-THERMIQUE DAMS LE Tokomak TM-3

V.V. ALIKAIEV, G.A. BOBROVSKI, K.A. RAZUMOVA

(Institut d' Energie Atomique I. V. KURCHATOV) IAE⁵2506, MOSCOU 1975

Traduit du Russe par R. GRAVIER

Août 1975

EUR-CEA-FC-785 TR

RAYONNEMENT X SUPRA-THERMIQUE DANS LE TOKOMAK TM-3

V.V. ALIKAIEV, G.A. BOBROVSKI, K.A. RAZUMOVA

(Institut d' Energie Atomique I. V. KURCHA'OV) IAE-2506, MOSCOU 1975

Traduit du Russe par R. GRAVIER

Août 1975

RATONNERS NT X SUPRA-THERNIQUE DANS LE TOKOMAK TM-3.

V.V. ALIKAIEV, G.A. BOBROVSKI, K.A. RALUMOVA.

•

;

(Institut d'énergie atomique I.V. KURCHATOV)

IAE - 2506, Moscou 1975

Traduit du russe par R. GRAVIER

Août 1975

RESULE.

L'étude du rayonnement de freinage énis entre 2,5 et 300 keV par un faisceau d'électrons emballés au sein du plasma a permis d'estimer la quantité d'électrons emballés, la proportion du courant toroïdal qu'ils transportent et la quantité d'impuretés dans le plasma. La calibration de la mesure a été faite en rajoutant une quantité connue de Krypton à l'hydrogène.

....

ć

1. INTRODUCTION.

Le rayonnement X émis par le plasma d'un Tokomak pout se produire dans deux gammes d'énergie; le rayonnement "thernique" déterminé par le gros de la masse des électrons, et le rayonnement "supra-thermique" qui est dû aux électrons découplés.

L'étude de la première gamme permet de déterminer la température des électrons et la charge effective des impuretés qui sont recponsables d'un accreissement considérable de l'intensité du rayonnement par rapport au calcul pour un plasma d'hydrogène. De telles recherches ont été effectuées sur TM-3 <u>/</u>17, T-4 <u>/</u>27 et ST <u>/</u>37.

En même temps que le continuum thermique on enregistre aussi le rayonnement des raies caractéristiques des impuretés. L'intensité des raies donne une information complémentaire sur la dispersion en énergie des électrons et permet d'évaluer la densité des éléments contaminant le plasma.

C_{ependant} le rayonnement de raies, surtout pour les éléments intéressants, comme le fer, le molybdène, le tungstène, est excité par les électrons de grande énergie.

Dans le Tokomak IM-3 è partir du rayonnement X supra-thernique (énergie quantique 2,5 - 300 keV) on a obtenu

les caractéristiques du faisceau d'électrons décourlés et une information sur la composition des impuretés. Dans la partie 2 on décrit la méthode de mesure et on donne les caractéristiques des détecteurs ; dans la partie 3 on évalue la densité d'électrons découplés, la part du courant qu'ils transportent et la densité de principales impuretés du plasma. Dans la partie 4 on analyse la précision des évaluations effectuées.

On étudie un régime de décharge : couraut I \simeq 15 kA, densité d'électrons n_e \simeq 1,5 10¹² cm⁻³, leur température (par mesure diamagnétique) T_e \simeq 300 eV, champ magnétique longitudinal Hz = 10 - 15 kOe. Les mesures ont été effectuées dans la phase stationnaire de la décharge pendant 4,5 ms, pour des durées de décharge de 10 ms.

2. APPAREIL DE DIAGNOSE.

Contrairement aux mesures Roentgen sur ST et T-4, on utilise sur TM-3 un montage où la chambre à vide n'est pas dans le champ du détecteur. On peut voir sur la figure ! commert le détecteur est protégé du "rayonnement" de paroi arâce à l'emploi d'un collimateur (deux rondelles de tantale de 12mm avec une ouverture de 5 mm, distantes de 200 mm) et grâce à une manchette verticale en face du détecteur. La nécessité d'une telle collimation provient de la faible intensité du rayonnement en volume dans la gamme d'énergie étudiée,par rapport au rayonnement provenant de la paroi de l'enceinte à vide.

Ge dernier augmente substantiellement avec l'apparition d'une instabilité particulière <u>[4]</u> provoquant la fuite d'électrons à la paroi. Dans ces conditions, des électrons pénétrant dans la manchette de mesure <u>[4]</u>, peuvent produire une luminescence du bord du collimateur (cf. fig. 1). Pour cette raison, le collimateur en tantale, dont la surface est 30 cm en retrait de la surface de l'enceinte, a été protégé par un disque en aluminium. Ces précautions ont été prises pour le cas où, même en l'absence d'instabilité, il existrait une perte d'électrons contre la paroi mince. Les mesures X ellesmêmes, ont été effectuées pendant la période précédant l'apparition de l'instabilité.

Le rayonnement X sort de la chambre à vide du Tokomak à travers une fenêtre en beryllium d'épaisseur 100 µm et arrive sur le détecteur à travers la fenêtre du blindage en plomb protégeant le détecteur contre le rayonnement diffusé. Les mesures ont été effectuées dans la section la plus éloignée du diaphragme.

Le signal du détecteur après amplification arrive sur un analyseur d'amplitude AI-100. On déclenche le comptage de ce dernier pendant 4,5 ms dans le partie stationnaire de la décharge du Tokomak. Après quelques centaines de décharges le spectre X est enregistré. Le stabilité de l'appareillage a été contrôlée systématiquement à l'aide de l'isotope Am²⁴¹, émettant des raiss dans la gamme 6 - 600 keV /67. Avec cet

isotope, et aussi avec les isotopes Fe⁵⁵ (5,9 keV) et Hg²⁰³ (75 et 279 keV) on a contrôlé la résolution en énergie de l'appareil. La détérioration de cette devnière pour une grande charge sur le détecteur détermine la limite de la vitesse de comptage. La vitesse maximale de comptage est proche de 5 - 6 imp/ms.

Los types de létecteurs utilisés pour l'exploration des différentes gammes d'énergie sont : un compteur proportionnel à remplissage xénon dans la gamme 2,5 - 15 keV, résolution à 6 keV - 15 %, à 13,9 keV - 13 % ; un détecteur semiconducteur Si-Li $\int 57$ dans le zone 6,5 - 40 keV, la résolution est limitée par l'appareillage électronique et vaut 1,2 keV sur toute la gamme ; un scintillateur MaI(TI) d'épaisseur $\delta = 1 \text{ mm}$ dans la gamme 7 - 70 keV et $\delta = 20 \text{ mm}$ dans la gamme 50 - 300 keV; résolution MaI(TI) $\delta = 1 \text{ mm} - 30 \%$ pour 60 keV, résolution NaI(TI) $\delta = 20 \text{ mm} - 20 \%$ à 60 keV, 18 % à 280 keV.

Au cours du travail avec le détecteur Si-Li on a eu la possibilité de contrôler l'appareillage pendant l'enregistroment du spectre, en mélangeant au spectre les "raies" d'un générateur d'amplitude, connecté à l'entrée de la première cascade de préamplification.

22.2

3. RESULTATS EXPERIMENTAUX.

Sur la figure 2 est représenté un spectre du rayonnement X supra-thermique qui montre que, dans la décharge, existent des électrons de grande énergie avec une distribution proche de la maxwellienne. La température qu'on peut déduire de cette distribution est voisine de 50 keV. De tels électrons apparaissent par suite de l'accélération dans le champ électrique toroïdal.

Dans le but de déterminer la densité d'électrons découplés et le courant toroïdal qu'ils transportent, une quantité connue de krypton a été mélangée à l'hydrogène $(0,1 \ \%)$. L'addition de krypton n'a pas eu d'influence sur les caractéristiques macroscopiques de la décharge et n'a pas modifié fondamentalement le continuum X dans la zone de 7 à 30 keV étudiée.

Sur la figure 3, on montre le spectre obtenu par le détecteur Si-Li dans une décharge d'hydrogène avec addition de krypton. Pour enregistrer le spectre malgré le diarhragme d'origine en tungstène, on a introduit dans l'enceinte à vide, un diaphragme en molybdène. Sur le spectre on voit les raies K_{i} K_{β} du krypton et les raies mal résolues du molybdène.

L'intersité de la raie K est ,

$$l = n t n: \int_{W_{exp}}^{\infty} \sigma dn_e(W_e) ,$$
 (1)

où w est la probabilité de fluorescence (sa valeur pour différents éléments est publiée dans [7, g7], σ est la section d'ionisation de la couche K $[97, w_{nop}]$ est l'énergie d'ionisation de la couche K, n_i est la densité d'ions d'un élément donné, v_e et n_e sont la vitesse et l'énergie des électrons. La faible dépendance de σ en fonction de w_e [97, pernet, avec $une erreur n'excétant pas 20 %, de sortir <math>\sigma$ de l'intégrale. Alors, en supposant que toute l'énergie des électrons découplés est due au mouvement longitudinal, il reste sous l'intégrale dans (1) une grandeur proportionnelle à la densité de courant J_{ap} portée par les électrons rapides :

$$\frac{\mathbf{I}}{wn;\sigma} = \int_{W_{nop}}^{\infty} dn_e(W_e) = \frac{J_{en}}{e}, \qquad (2)$$

où a est la charge de l'électron.

Comme l'intensité mesurée du rayonnement est moyennée le long du diamètre du cordon de plasma, la densité de courant est

$$\overline{J}_{er} \sim (an_{kr})^{-1}$$
 (3)

(a rayon de la région qui émrt K_r K_α) et le courant transporté par ces électrons

$$I_{rr} \sim -\frac{a}{n_{kr}} \tag{4}$$

Ces deux grandeurs (a et n_{K_T}) ne sont pas connues avec précision. Pour déterminer par excès la grandeur n_{K_T} , nous supposons que le kryptor rempliesant la chambre à vide, se retrouve complètement dans le cordon de plasma. Une telle hypothèse ne contredit, ni le fait exférimental que les raies du krypton frible…ent ionisé (K_T^{III} , $\lambda = 3507,4$ Å) sont absentes de la toute première décharge produite après l'arrêt de l'injection du krypton, ni le fait que son intensité pendant la phase stationmaire de la décharge avec krypton ne représente par plus de 1/100 du maximum initial.

D'après cette hypothèse on peut donc écrire:

$$n_{Kr} = n_{Kr}^{\circ} \frac{\pi a_{\Lambda}}{\pi a^2},$$

où a, est le rayon de l'enceinte à vide. De (4) il découle que, d'après nos hypothèses, la grandeur I_{eff} depend fortement de la précision de la mesure du rayon du plasma $I_{er} \sim a^3$. Une détermination grossière des profils de densité et de conductivité électrique montre que le rayon du plasma dans le régime étudié est de l'ordre de 5 cm. Alors le courant porté par les électrons découplés (d'énergie $w_e \gg w_{nop} \simeq 15 \text{ keV})$ est $I_{er} \simeq 1 \text{ kA}$. Le nombre de ces électrons dans la section du cordon $N_e \simeq I_{er} \cdot (e \cdot v_e)^{-1} \simeq 10^{12} \text{ cm}^{-1}$ pour un nombre total d'électrons dans la section $N_e^{-0} = 2.10^{14} \text{ cm}^{-1}$.

Cette valeur I_{er} , comme il apparaît d'après les hypothèses faites, constitue une limite inférieure du courant porté par les électrons rapides.

Nous passons maintenant à la détermination de la densité d'impureté. Le rapport Q de l'intensité de la raie au continuum de freinage permet d'évaluer la valeur de $\sum_{j} n_j z_j^2$, où z_j est la charge du noyau de l'élément correspondent (pour la plupart des éléments qui nous intéressent, dans la gamme d'énergie étudiée, la diffusion des électrons se fait directement sur les noyaux des atomes).

Lans l'hypothèse d'une distribution max. Allienne des flectrons avec une température T_{e^*} le rapport du nomeau de quart. Appartement au reyonnement caractéristique, au nombre de quantas d'énergie E, appartement à l'intervalle E du continuum X est

$$Q = 6 \ 10^{2^{\alpha}} \frac{\alpha v \, \sigma n;}{\Sigma_j n_j Z_j^2} \ \frac{E}{\Delta E} \ T_e \left(\frac{W_{hop}}{T_e} + 1 \right) \ \exp \left(\frac{E - W_{hop}}{T_e} \right) \ (6)$$

la grandeur T_{ϕ} est en électron-volt. En substituent dans (6) la valeur de T_{ϕ} , estimée Alaprès la pente du spectre dans la région de la raie K du Kr (cf. fig. 3) on peut obtenir la valeur cherchée.

$$\Sigma_{j n_{j} z_{j}^{2}} \sim 6.10^{3} n_{Kr}$$
 (7)

En effectuant un calcul analogue pour la raie K du No, on peut obtenir la concentration relative de molybdène dans la décharge avec le diaphragme entier en molybdène.

Sur les figures 4 et 5 sont représentés les spectres obtenus dans une décharge d'hydrogène avec un diaphragme en tungstène. Sur le spectre de la figure 4 on peut distinguer la raie K du tungstène et une cassure au voisinage de 20 keV. On peut attribuer cette dernière aux raies K de l'argent et de l'indrum, éléments cui peuvent ître entraînés dans la chambre par la décharge HF de la manchette destinée au chauffage cyclotronique électronique.

Sur le spectre de la figure 5 au volsinage 6 keV on voit les raies K du fer, du chrome et du nickel entrant dans la composition de l'acier inoxydable - matériau de l'enceinte à vide.

D'après (7), en remarquant que pour le spectre fig.3

$$\Sigma_{j}n_{j}Z_{j}^{2} = n_{w}Z_{w}^{2} + n_{ex}Z_{nx}^{2} + n_{w}Z_{ng}^{2} + n_{k}Z_{k}^{2} + n_{w}Z_{no}^{2}$$
(9)

nous obtained in a point des concentrations des différentes impuretés $\frac{n_{V}}{n_{Kr}} \simeq 0.5$; $\frac{n_{Fe}}{n_{Kr}} \simeq 2.5$; $\frac{n_{AF}}{n_{Kr}} \simeq 0.25$.

Dans le c2lcul on a supposé que l'addition de krypton et la mise en place d'un diaghragme complet en molybdène n'ont pas eu d'influence sur la densité des principale; impuretés du plasma d'hydrogène.

En admettant, comme ci-dessus $N = N \frac{c_A}{ka^2}$ et en considérant la quantité d'impuretés par unité de longueur du cordon, grandeur qui dans ce cas ne dépend pas du rayon a, nous obtenons

$$\sum_{i} N_{j} Z_{i}^{2} = 1.5 \times 10^{6} \text{ cm}^{-1}$$
 (11)

$$N_{W} \simeq 1.5 \times 10^{2} \text{ cm}^{3}; N_{Fe} \simeq 8 \times 10^{2} \text{ cm}^{3}; N_{Ag} \simeq 8 \times 10^{2} \text{ cm}^{3}$$
(12)

pour une quantité totale d'électrons dans la section $N_p^{\circ} \simeq 2 \ 10^{14} \text{ cm}^{-1}$.

Four N_{Fe} on détermine cette valeur à l'aide de la formule (1). Four l'intensité de la raie K du fer cette formule peut s'écrire sous la forme

$$\vec{I} = w n_{Fe} \sigma \left[\int_{W_{nop}}^{15 \text{ keV}} \tilde{v}_e dn_e(W_e) + \int_{15 \text{ keV}}^{\infty} \tilde{v}_e dn_e(W_e) \right].$$
(13)

La valeur de la deuxième intégrale est connue d'après la raie K du krypton, et la première intégrale a été calculée en supposant que la distribution des électrons dans la gamme 6-15 keV est une maxwellienne de température 10 keV.

I convient de se souvenir que dans N_{Fe} sont inclus aussi le chrome et le nickel. 4. CONCLUSIONS.

L'évaluation de la quantité d'impuretés présentée ici dépend essentiellement de la densité de krypton. De cette dernière dépend aussi la proportion de courant portée par les électrons rapid.s. La valeur, obtinue par la form ... (5), apparaît comme une borne supérieure de la densité de krypton dan : Le plasma : elle ne peut être dépassée qu'en prenunt en conpte la descrption du krypton par les parois de la chambre à vide.

Or l'absence de krypton dans le décharge produite immédiatement aprèn l'interruption de l'injection, montre qu'il n'y a pas de production notable de krypton par les parois. Par conséquent, la quantité d'impuretés déterminée ci-dessus, apparaît aussi comme une limite supérioure.

Cette limite est-elle éloignée de la vraie valeur ? Si, en réalité, la densité de krypton était plus faible, alors la part du courant rapide dans le courant total de la décharge serait plus grande, ou bien alors les électrons rapides qui exc.tent la raie K_a du krypton, devraient posséder une vitesse transversale comparable ou supérieure à la vitesse longitudinale. La deuxième hypothèse est écartée à cause de l'évaluation suivante : Pour la valeur calculée $\sum_j n_j Z_j^2 \simeq 2 : 10^4$ cm⁻³ (cf.(7)) le temps de diffusion d'un électron d'énergie longitudinale 20 keV est $\overline{c} \simeq 450$ ms, au bout de ce temps sa vitesse

longitudinale dans le champ électrique toroïdal a crû d'une grandeur comparable à la valeur initiale. Ceci est encore plus valable pour des électrons de grande énergie. Par conséquent, les sinctrons rapides possèdent essentiellement une vitesse longitudinale . D'un autre côté, contrairement aux régimes d'électrons découplés étudiés sur le Tokomak T-6 [97, dans nos conditions il apparaît que les électrons ravides ne transportent pas une part significative du courant de la décharge. A ce propos on invoquera les caractéristiques du fonctionnement de TM-3 (valeur normale de la tension par tour, existence d'un chauffage du gros du plasme etc ...) et aussi le fait que lors du relentissement des électrons découplés par l'instabilité mentionnée plus haut, le courant ne change pratiguement pas et que la tension par tour du cordon, dans les conditions de cette mesure n'augmente pas. A partir de cela, on peut calculer que \mathbf{l}_{or} ne représente pas plus de 1/10 à 1/5 du courant total, i.e. pas plus de 3 kA. La densité d'impuretés dans ce cas est trois fois trop forte.

D'un autre côté, l'estimation de $\sum_{j=n_j} z_j^2$ peut être exagérée si, dans le continuum X une contribution notable provient du rayonnement de recombinaison. Pour évaluer ce dernier il est nécessaire de connaître la charge des ions d'impuretés. Dans nos conditions ($n_e^0 \simeq 1,5 \ 10^{12} \text{cm}^{-3}$, $T_e^0 \simeq 300 \text{ eV}$ et $\Upsilon < 5 \text{ ms}$) la charge des ions du fer ne peut pas dépasser 12 et la charge des ions du tungstène ne peut pas dépasser 20. Les calculs montrent alors que le rayonnement de recombinaison est négligeable par rapport au rayonnement de freinage des électrons.

. .

Si le courant est transporté par le gros des électrons du plasma, cette valeur de la charge effective qui est une mesure de la diminution de la conductivité électrique due aux impuretés, dépendra du degré d'innigation des impuretés dans le plasma.

Pour le régime considéré

$$Z_{eff} \simeq \frac{N_{Fe} \cdot 12^2 + N_W \cdot 20^2}{N_e^2} \simeq 9$$
 (14)

Pour ce Z_{eff} la conductivité électrique calculée est en accord avec la conductivité mesurée. El convient cependant de considérer la faible précision des mesures de densité d'impuretés et de température des électrons T_e^0 puisqu'une partie notable du signal diamagnétique peut être dûe à l'énergie transversale des électrons découplés. La température réelle du plasma, par conséc ont, peut être plus basse.

Nous remercions D.A. CHEGLOV pour ses discussions stimulantes, V.A. KROUFINE et Y.A. SOKOLOV pour ses remarques utiles et pour son aide dans la conduite des expériences, S.A. Baldire pour le détecteur Si-Li, D.A. GAGANOV pour le compteur proportionnel et le personnel de TM-3 pour son aide technique.

Fig.1

Fig.2

Е, «эв

40

LEGENDE DES FIGURES

Figure 1 - Schéma de la mesure X.

- 1) Manchette de diagnose
- 2) Fenêtre en beryllium,
- 3) Collimateur en tantale,
- 4) Manchette en opposition,
- 5) Support,
- 6) Ondulations du soufflet.

Figure 2 - Spectre du rayonumerent X dans le régime
I = 24 kA ;
$$H_z = 14$$
 kG ; $n_{\phi}^0 = 6 \cdot 10^{12} \text{ cm}^{-3}$ (Na I(T1)
 $S = 20$ mm.

Figure 3 ~ Spectre du rayonnement X dans le régine avec injection de krypton et diaphragme en molybdène. I = 11 kA; Hz = 10 kG; $n_0^2 = 1,5 \ 10^{12} \text{ cm}^{-3}$: $P_{Kr} = 2 \cdot 10^{-7}$ torr pour $P_{H2} = 2,5 \ 10^{-4}$ torr (Si-Li)

- Figure 4 Spectre du rayonnerent X dans le régime de la figure 3, sans krypton avec un diaphragme en tungstène (Na I(TL), $\delta \approx 1$ mm).
- Figure 5 Spectre du rayonnement X dans le régime I = 11 kA; Hz = 13 kG; $n_e^0 = 1,5 \ 10^{12} \text{ cm}^{-3}$ (compteur proportionnel).

REFERENCES

- [1] D.A. CHEGLOV, Lettres JETP. 6,949 (1967)
- [27] V.A. VERSHKOV, S.V. MIRNOV, Nucl. Fusion, <u>14</u>, 363 (1974).
- [3] S. Von GOELER,
 Bull. Am. Phys. Soc., <u>19</u>, 883 (1974)
 W. STODLEK, 1bid, p. 930.
- [4] V.V. ALIKAEV, Y.I. ARSENIEV, G.A. BOBROVSKI,
 A.A. KONDRATIEV, K.A. RAZUNOVA,
 ZhT.P., 45, 515 (1975).
- [57 S.A. BALDINE, L.M. JOANESSLANTS, P.T.E. nº 1,7 (1972).

ŝį.

- [6] J.L. CAMPBELL, L.A. MCNELLES, Nucl. Instr. and Neth., <u>117</u>, 519 (1974).
- [7] J. KEY, T. LEBI, Tables dos constantes physiques at chimiques.M., GIPML, (1962).

- W. BAMBYNEK, B. GRASEMANN, R.M. FLUK, H.U. FREUND,
 H. NARK, C.D. SWIFT, R.E. PRICE, P. VENUGOPALA-RAO.
 Rev. Mod. Phys. <u>44</u>, 716 (1972).
- [9] V.S. VLASENKOV, V.M. LEONOV, V.G. MEREZHKIN, V.S. MUCHOVATOV, Nucl. Fusion, <u>13</u>, 509 (1973).

