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Abstract.

A study of the trapped ion instability in the real geometry of the
large Tokamaks leads to the consideration of @ new branch of thot insta-
bility, driven by a resonance with the magnetic drift of the particles,

both in collisional and non collisional regimes.

The existence of trapped particles in a geometry of the Tokamak
type is known to give rise to instabilies in either the coilisionless or
collisional regime /1/. The Tokamaks of the next generation (PLT, TIO,
JET) will confine plasmas with parameters in the theoretical range for the
dissipative trapped ions instability /1,2/. Simultaneously, those installations
will have small aspect ratios (A ;B,,,B-{- } and may have flat density profiles
and peaked temperature profiles : °s'uch a plasma can result from the limited

length of penetration of cold neutrals.

In the present work we analyse the cansequences of a large magnetic

drift expected in a fat torus for different values of the ratio t-l = ﬁﬁ%’

between the temperoture and density scale heights. A negative value of p

(inverted density profile} has already been proposed as a stabilizing scheme /3/. I o




The main result is the following : for lu-(i there is a bifurcation of i
the purely growing collisionless trapped ion mode /I/ inta two modes : the
ion mode which resonates with the ion magnetic drift frequency ; and the
electron one, with the electron magnetic drift frequency. The electron mode
disappears in the collisional regime but the ion one extends sufficiently to
predict instabiiity of the future large installations even for flat or inverted

density profiles.

Our conclusion is consequently quite different from the previous ones
/47 & for a fat torus, the expansion in inverse aspect ratio breaks and the
mognetic Arift frequency modifies campletely the dispersion relation ; in the
collisionol regime, the sign of the real part of the frequency is opposite for
the main range of parameters (the phose speed is in the direction of ion drift).
Future work should be devoted to a deeper study of the non-linear stage of

such instabilities including reol geometrical factors.

In the following, we give the main anolytical ond numerical results
successively in the collisionless and collisional regimes.

Using a simple collision model, ond ossuming Ti = Te, we stort from

the usval dispersian relation /I/:
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where

-
w= 2N

ond G, which contains the dependence of tuq to the reflection angle for a

trapped particle, is approximately constant ond equal to | for a realistic sheor.

We first study Kadomtsev's non~collisionol mode (interchange mode).

Assuming Veet <K @y ) w <K (J.: , we find :
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Where we have introduced the dimensionless parameters :

= »V - 28\t <G =
T‘r r\/;.<>)yy/v»

AT di .
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and assumed a purely growing made ( u:Lx).

For a given P the integral an the R H S of eq. (2) has a maximum
for o certain value of y. It is the maximum value of = (i.e. the minimum
temperature gradient) for the instability to exist.

Fig. | shows the value of T as a function of y, for the case B = |_
Fig. 2 shows the maximum possible T as a function of w. We see that, F%r
p<d, the interchange mode is easily stabilized (as a reference, we note thai

with typical P L T parameters: R=3 ,r =2, P: , we obtain : T =.,35).

=1
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Far P)% , the maximun T is obtained for y= 0,C=2p1-2. For

[ < 3, it is obtained for a valve y)O. In that case, for T less than this

maximum, one has two purely growing modes. One is Kadomtsev's, while
the second ane has a smaller growth rate and is stabilized by a strong tempe~
rature gradient. Hawever, no morginal mode (y= 0) appeors first when the
gradient is increased, os would be expected.

We are thus led to suspect the existence of a new branch, starting
from a marginal mode.

We then look for o marginal made ( real) in eq. (I), which now

becomes :
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Where we have assumed that w & wy ,

We see thot a real frequency mode is possible only if the «T0d

contribution, due to the resononce £:Léj_’ ', is killed by ):J_l. l -3 Ny
4 gl 2

This gives
T=4-2)+2Vr N2 erfe(VT)
where A= 3 -
2

We have thus found two modes, corresponding to ion {w = Awy;)
and electron (W = Awde) magnetic drift resononces. Retaining w in the nume-
raior of eq. (3) gives an equation that must be solved numericaly , yielding
a somewhot higherT. Fig. 2 shows the curve of the maximum = for the reso-
nant mode, above the one corresponding to the interchange made. The
curves merge for f‘)g , where the resonance is no more passible, giving
T=1-2). z

If we retain the possibility of o positive growth rate in eq. (3), ond
solve it forw and T as functions of K(with fixed '..b) we can see that, as the
growth rate increases from zero, w and T decitease. Eventually, os w goes

to zero, the new branch merges with the interchange branch at its moximum.

Fig. 3 shows the graph of both branches in (r'r) coordinates, and
fig. 4 the value of w as o function of y» for various values ofH.. It is then

visible that, for P.(Q , the domain of instability is considerably extended
2
by the new branch.
We now investigote how these modes extend into the collisional
regime. Eq. (l) now becomes, for the marginal mode :
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for its imaginary and reol port respectively, where o« = Yl /w/

-; :L:p/laﬂ ond we have assumed that

Ye -\ /m . £0 (Deuterium),
A me "

We note thot, given the physical condifions,z is proportional to

|, the toroidal mode number.

We proceed numericaly , first solving eq. (4) for of, with given
zand pr and then eq. (5) for . We also have provided for the presence

of w in the numerator, though it only modifies slightly the results.

Decreasing -s(increasing the collision frequency), we see that :

- the electron mode is very quickly stabilized by electron collisions
but the ion mode extends further, and the frequency remains positive
(w >O ) until a certain value of ; where it becomes negative and we
re"c,’gver the usual collisional mode.

-the T for marginol stability also decreases, and becomes weakly

dependent on kL, for <3, in the collisional region.

Eqs (4-5) have also been solved including a positive growth rate,
when p= I . Fig. 5 shows the valve of T for marginal stability, as o function
of Z, forzvarious values of P and fig. 6 the growth rate as o function of T

ond ¥, with p=1 ;fig. 7 shows the valuz of ¢y as a function of T for
2

the marginal mode.

Withng =nj = 10" cm-a, Te=Ti=3keV, B=50kG and q =2,
and the geometrical values already used, we find :}: 2 |. We then see
that, with ©=0.35, all modes with 122 should be unstable. Typicolly,) is

a fraction of wyq and smaller than w

YW , v~y
It is interesting to compare these results with those obtained for the

"classical" {non resonant) mode.

In a recent paper /4/, Tong included the stabilizing effect of the

smoll number of ions trapped in regions of favourable mean magnetic gradient



(barely trapped ions), but neglected the destabilizing effect due to the
bulk of the trapped ions, which is included here,

In a typical case {n = IOM, Te = Ti=3 keV, Wl } he

finds marginal stability for the | = 4 mode, and maximum growth rate for
| = 6 and g’"_'d.lO3 s-l. Higher - | modes are stabilized by ion-Landau

resonances which we have neglected. In our case, we find similar growth

rates but instability beginning with the | = 2 mode.

We wish to point out the interest of the dimensionless parameters
used here, especially t. These may enuble one to take into account
difterent effects which we have neglected herein .

I:l_omely, to derive eq. (l) it is necessary to make the assumption
that $=9 R where? is the mean perturbed potential seen by a particle
along its orbit. An opproximate calculation, assuming either 'P Ncm‘g
or ?azcoslg , and taking into account the exact number of trapped
porticles, then leads to a slight correction af Z, namely € =0.% %1‘ _5. -

Finally, we wish to thank Dr. J.C. Adam and W .M, Tang for
fruitful discussions abaut this work, and N.AUBY for helpful assistance

in the numerical calecvlations.
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FIGURE CAPTIONS

Growth rate as o function of the temperature gradient for the

purely growing mode with pt=|
2
Minimum temperature gradient for the purely growing (G) and
resonant (R) modes as a function of I

Growth rate as a function af T, for both branches, for various

values oFIu.

Real port of the frequency os a function of the growth rate, for

the non-collisiono! mode .

Marginal stobility as a function of Z, for various volues of Fr

in the collisional regime,
Growth rate as a function of z and 3, withrl-= 1.
2

Real part of the frequency as o function of rand .S B
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