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LLECTRON BOUNCE MCDES 1IN MIRROR PLASMAS

ABSTRACT

Electron bounce modes can occur in mirror plasmas when the spread in the
bounce freqguency is small. This condition iz satisfied in mirror aevices
when electrans are principally confined by an approximately quadratic electro-
static potential., These modes are examined by rumerically sclving an integral
equatign for the peirturbed wave potential in a mirror plasma. A long wave-
length mode is found that can be destabilized by jons because of the loss-cone
nature of their distribution., Threshold densities ard waximum growth rates
are calcuiated using a perturbation method. The theoretical stability thresh-
01d predictians agree ciosely with Baseball Il measurements.
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Instabilities in low-density mivror machines such as Baseball I,
Phcenix II, and Ogra II have bsen attributed to electren plasma waves driven
by ion perpendicular energy.1'5 According to infinite-medium theory these
modes have a frequency w = wpek“/kL’ where k, and k, are companents of
the propagation vector, and mpe is the electron ptasma freguency. If .
is near the ion gyrofreguency e and the ion gyroradius a; is large
enough that kij > 1.85, then the free enargy of a peaked ion distribution
can be effectively transferred to the wave. Instability occurs if tkis ion
drive predominates over electron Landau damping. Sirce damping drops off
when the wave phase velocity w/k., exceeds the electron thermai velocity Ve’
“oe = k_,_Ve is taken as the condition for marginal stability. Threshota
measurements in Baseball @ appeared to support this description, but in
Baseball II {BBII} instability occurred at densities well below threoreticil
predictions.

in this iette., we propose a mechanism irvoiving electron bocunce moges
to explain 3BII instability thresholds. Bounce modes occur when the electron
Lounce frequenc, “b is well enough defined for electrons to retain subs:antial
phase coherence on successive transits. Collective electron behavicr is then
altogether unlike infinite medium response whenever the spread in bounce
freouency Bayy satisfies Aub << LE/L. This coherence condition is met in
typical hot-ion mirror plasmas because the eiectrons are confined crincipally
by a nearly guadratic electrostatic potential. The bounce modes can ccuple
to the perpendicular ion motion just as eiectron piasma waves can, and the
stability threshold is the density at which ion drive talances electron Landau
damping.

The electron modes are treated here by solvirg an integral equation for
the wave pctential in a bounded mirror plasma, and a perturbation method
is then used to determine the threshold density. The electron treatment is
similar to that of Beasley g;_gl.7 and differs frum earlier ﬂuid4 and WKe®
models principaily in using accurate electron trajectories.

We take magnetic field strength B to vary guadratically wit% distance s
along a flux line up to a maximum value Snax and require the plasma potential
% to be a nondecreasing function far s > 0. For the electrons a3 thermalized
distribution that vanishes continuogusiy at the loss surface is chosen. In
terms of the total energy E and magnetic moment u of electrons, the
distribution function is Fe(E,u) = (UBmax * Urax E) exp (-E/Te) far
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B < B,y ¥ vpay 9N zero otherwise. Here, B . and Vmax 8re maximum values
of B and potential energy v = -ed, and T = 3 My V is the mean electren thermal
enzrgy. Tne BBII ion distribution is represented by F {s, v“vz) =

N(s)F . ( )Fn(v“), where v, and v, are the local ve]ocxty components. The
functions used for f, quel two typical situations. A low-density plasra
decays principally by charge exchange with tre background gas, so the
initially monsenergetic ion d1str1butlon remains peaked about <v2> A delita
function rL(vf) = c(;? - <yl ») is then appropriate. At higher densities
jon-ign collisions can spread the distribution during the olasma lifetime, arg
this effect is accounted for by choosing F¢}vf) = vE_exp (—2vi/<vf?).

Also, a thermalized parallel distribution F.(v,) = exp (-v§/2<v§>) and
Gaussian number density N(s)} = K(0) exp (-52/L§) are used.

An inteqgral equation for the wave potential is obtained in the usual way
from Poisson's equation and the linearized Ylasov eauation. Singce tne
electrons largely determine the plasma response, the ion density s ijnorea
in soiving for the unperturbed eigetmodes and is ther treated as a perturba-
tion in the subsequent stability-threshold calculations. 1In Ppisson's
equation the parallel derivative ot the Laplacian is neglected because the
wavelength along flux Jines is long compared with the perpendicular wave-
length. Writing the wave potential as (s} exp (ik,x, - i.t) yieids the
following integral eguation:

2.7 vBH) mx “max ;% )
K2 ols) = 2 f f . S Cr
e WB(s)o(s) Vi

t \ :
+ iu']r dt'{c[s+(t')] + ¢[s'(t')]} exp [-iu(t’ - t)]) , )
Py J1/2 .
where ‘v, = {2[E - uB(s) - (s )1/mer , and electron Debye length Yge 19
defined as (T /ZneZN)]lz = ve/*pe The traj-ctories of positive and negative

meving part1c1es reaching s at time t are denoted here by s (t ). For the
symmetrical unperturbed fields considered, solutions of Eq. {1} are either
even or odd functions of s, and ¢ can be shown to vanish at Smax” The time
integral in Eq., (1) is evaluated by representing ¢ along each electron
trajectory by a Fourier series in harmonics of Wy s given for quadratic
fields by
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2! t / 2 2
3 _ 2 ds' 1 3B, 2°¢
N w (E,u) 13_( T ) Z—(P———*'-——) . {2)
5 b m 0 Vi | Zm 352 as2
i Here, st(E,u) is the electron turning point. The resulting equation for

¢ is

5 2 () vsB(s) f« “Bmax+'*'max ) EFe

kire a{c) = 4n dv dE — = {4(s)
, De " Jo o Ja(s)eu(s) Ve F
i
3 5 3, sel ]
i - s se(20 + o) t] !, {3}
' 70 o - (28 + U)Zug * b

where
R . w/2ub
9 = ;wa dt g[s(t)]sc[{2s + C)'..,btJ .

The symbol sc in Eq. (3) denotes cosine for even solutipons and sine for cdd
ones, and o equals 0 and 1, respectively, in the two cases. Fourier
transforming Eq. (3) over the length of the plasma then leads to a matrix
equation that can be solved numerically:

2 o .
2 7 VaBo 3 oo max Tmax aFe
Kophn ot = dr ==— 3 ¢ di dE — =
40"pel™m rne = L A ;BO ~4 sE

o 2
4 ,
x 5 - = Z —_—T1 T f (4)
[ moT Ty w? - (22 + G)wg me - ng ]

where 0 subucripts label quantities at s = 0, For quadratic fieids, the
matrices S and T may be written in terms of Bessel functions as

- St ds
San © “p . TV:T'SC(kmS)SC(an)

= F {00tk - kdsgd + (107 000, + ks
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=

T - ds
Tms = = _!(- T sc(kms)sc{(ZL + U):.;bt]

- % J21+u(kmst) ' (5

—

Taking k_ = [m+ (¢ - 1}/2] Sy in Eq. (5) is convenient because the

basis functions sc{{m + (¢ - 1)}/2] ELYEN satisfy the parity and

endpoint constraints on ¢. The imad nary part of Eq. (4) resulting from
Lne singularity is neglected in Towest crder when solving for L since

for narginally stable modes it has the same magnitude as the ion term which
has been assumed smail.

Foar the idealized case in which the magneti~ force on electrons is
negligible, the eigenvalues of Eq. (4) for even ¢ {orm a family of curves
shown in Fig. 1, with the Tongest wavelength solution. for a particular
eigenfrequency being associated with the largest value of kic)éeD' (dd
solutions have eigenvalue curves that resemble those in Fia. 1. The long
wavelength even solutions far the shorter wavelength modes are of particular
interest because for given « and k, these can become unstable at the
‘owest plasma densities. An approximate analytic solution of Eg. 1<) shows
the important qualitative features of this mode. When = is represented by
tie lowest-order Fourier component ard the magnetic force on electrons is
neglected, Eg. (4} reduces for even : to

v 2

2.2 2 Yo : .

Kipde nmas — 4 exp (-]} Ia(v] + == 1) | - exp (2] - 1} )
+~070e0 i Smax ) G ‘CZ . ﬂug 2 !

(6)

2.2 This analytic result is plotted as a dashed line

where v X wzvg/ambsmax.
in Fig. 1.

A mirror field affects the electron bounce modes principally by spreading
the bounce frequency and weakening the resonances. The eigenvalue curves in
Fig. 2 show the variation of the longest wavalenath even mode with Bmax/B0 > T,

Stability thresholds are calculated by the following perturhation
procedure. The equation for ¢ is integrated over a flux surface to give a
functional of the farm {k,.) = {ds [ds'k(s,s'w)e{s)s(s') = 0. The kernel K
is split into an unperturved part KO with real eigentunctions o and
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eigenfrequencieas < and a perturbing part K1 that includes the imaginary

response terms. A linear Taylor expansion then gives

Jhs-[ds k(5,5 ,w0)¢0(5? {s") p(k],uo) (
= . 7)

T
stfds {s,s' ,uo)yo(s),g(s I f. "“0)

If the perturb}ng ion and electron terms in the kernel are called respectively
K1 and K , the condition for marginal stability is that the corresponding

1maglnary frequency <:iTts have the same magnitude:
Im[F(kj,uo)]
.__.__?%____.: 1. {8}
im{“ (k'l ndU)J

The procedure is valid so long as K; and Kf are small compared with K.
For the chosen distribution functions, the appropriate ion and electron

dissipative terms are

. R it *max
(') = ____c_g_o_mg_ P ni ne f dsc(s) —(—)-f dv. v_

0 Nt = jO
Smax 105 = s'! LS+5I)2 (5_51)2
x f ds'al(s') exp | - —J——v—-l- w = Mecsp 1o+ > + =
- n 9
Smax 4Lm LL‘r
(9)
and
e 3@ 2e0 aFe ¢e
In(r€) = -2’ —BE2 )3 = > , (10)
=0 awb
ERVACT
where

The non-negative se¢lutions of w = (22 + s)ub(E,pf) are denoted here by L,, and

Lo is a magnetic field scale length
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(1 fg)'”g
,2 dsz. ‘

Since the ion term is strongly peaked around u. = beig® only the n = ]

term in the sum contributes significantly, and other terms may be neglected.
To calculate the stability threshold for a particular eigenfrequency, the
kiy satisfaying Eq. (&) is first fgung numerically, and plasma density is
then obtained using the value of kK1 0?pen associzted with the eigenmode.

The sharp peaking of the ion term ensures that the minimum threshold will
occur when the eigenfrenuency satisfies w = “eip OP some flux surfage in

the plasma. In BBII, . varies abgut 15" radially, and the minimum

threchold density found Yor o« within this range should correspond tc the
experimentally observed threshold for similar plasma parameters.

Tne stability threshclds predicted for the electron bounce modes are
close to BBII values. The experimental values of the density parameter
. “510/“510 in Table 1 were obtained by keeping perpendicular ion
temperature constant wnile varying plasma length with an axiel limiter.

With similar fields and plasma parameters, the theoretical thresholds
calculated using the peaked and broad ian aistributions bracket many of the
experimental values. The Tcwest BBII thresholds are close to the values
calculated using the peaked ion distribution, while the higher threshold
casas matcti the broad distritution predictions better. This behavior is
consistent with the expectation tha. at the nigher threshold densities,
collisions spread the initially peaked ion distribution.

Infinite medium wave theory is clearly unable to describe the stability
of a mirror plasma in which the periodicity of particle orbits is important.
The agreement of the calculated thresholds with values observed in BBII
suggest: that the proposed bounce-mode model is more adeguate. Current work
will e~tend the comparison to BBI ana other low-density mirror experiments.
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Table 1. Experimental and theoretical values of e = (“pio/*cio) in

Baseball II for Yrax’ e = 3.0.
Ti Experimental
B /B oo IT.
(keV) max’ "0 max £ Peaked Broad
distribution distribution
0.83 1.26 0.069 0.031 0,029 0.057
1.64 G, 090 0.074 0.047 0.087
1.9 3.090 0.093 0.049 0.0%0
2.2 0.095 0.104 C.053 0,088
1.34 1.26 0.049 0.02% G.024 0.045
1.43 0.056 0.046 0.030 5.052
1.64 0.060 0.070 0.034 0.064
2.2 0.064 0.105 0.039% 0.075
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Fig. 1.
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Eigenvalues for even eigenfunctions in a quadratic

2 .
R </ o = =
g *max( ’Smax} with Vmax”e 3.0 and Brax’ B0

Tine is the analytic solution Eq. (6).
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By 1.5, T0h, and 20, and L /T = 3.0,

ig. 2. Ligen > ro sigenfenctions wi 3
Fig, 2. Ligenvalues for even eigenfunctions with anx’ 0 ARAIN




