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The possibility of describing superselection structure in
elementary particle physics in terms of observable quantities was
first pointed out by Haag and Kastler {Ij. Their idea was that the
charge quantum numbers should appear as labels for those ineguivalent
irreducible reprosentations of the observable algebra whose vector
states are relevant to elementary particle physics. Tine first attempt
to give concrete shape to these ideas was undertaken by Borchers [2].
He postulated that the relevant representations were those which are
“strongly local equivalent” to the vacuum representation and showed
how the unobservable fields could be recovered as the intertwining
operators which realize this equivalence. However his postulates,
already suspect because his analysis apparently ruled out the possibi-
I\ty of . parastatist!cs. were sho a in [3] to be violated if the super-
selaction sectors are generated, ‘s in canventional field theory, by a
principle of gauge invariaace of the first kind. Nevertheless a slight
madificatfon of the terms "strong 1ocal equivalence" alTowed Borchers'
results for systems obeying ordinary Baose and Fermi statistics to be
recovered and extended [4].

The systematic treatment of superselection structure in [S,G]
classifies the particle statistics compatible with locality and analyses
the operations of charge addition and charge conjugaticn. On its own
terms, this anmalysis is rather complete ; it is true that it has not
yet proved possible to show that the superselection structure may alweys
be described as the representation theory of some compact gauge group.
However, even if such a result holds, it would add little to our under-
standing of the structure. [f it daes not hold, it is conceivable, but
perhaps unlikely, that it would open new, interesting possibilities for
the phensmenalogical classification of elementary particles.

The real weakness gf the present analysis lies elsewhere :
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it is guite possible that the most interesting quantum field theory
models do not fall within the scape of the analysis. This is certainly
the case with quantum electrodynamics because, as pointed out in [5].
sectors with non-zero electric charge do not satisfy the selection
criterion used there. Furthermore as gauge groups of the first kind
are so intimately related to superselection structure, the question
naturally arises as to whether this is also the case with gauge groups
of the second kind. Admittedly, the naive answer is that gauge inva-
riance of the second kind does not generate superselection sectors but
serves instead to rule out unphysical states. However, in the absence
of a deeper understanding ¢f its intrinsic role, this conclusion is
suspact.

The approach advocated here has the great advantage of promising
¢o resGg ve these problems as well as shedding 1ight on other structural
features of quantum field theory. Instead of studying representations
that satisfy some selection criterion as in [5]. the superselection struc-
ture will be deduced as part of the analysis of the "local cohomology”
of the observables. The "local cohomology" may be thought of as the
quartum analogue of the cohomolagy of differential forms., Here vie shall
only be using the local 1-cohamology of the observables. We recail that
in the cohomology of differential forms, a closed 1-form,cor:g;pcﬂﬂs to
a vector field  Al(>)  whose curl vanishes '

WA ) - VAL = @ {11) :
and it is exact if there is a scalar field +l=l such that
Aluo = Wdu, (1.2)
These equations may be looked at in integrated form. If L 15 any path,

f.e. a smooth mapping of the unit interval [0,11 into Minkowski space,
we may consider the path integral

d bt
Al = j: A"'(lr:.n)-.l-f—-rk. (1.3)
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Eq.{1.1) means that the integral round a closed path bounding a 2-
dimensional surface is zero and (1.2) that

A(l.) c +(bm! - +(u.ﬂ. (1.4}

The most obvious way of producing a guantum analogue for the’
equations is to require that Ao be 3 1gcal quantum vector field satis-
fying (1.1)and to askwhether there is a Tocal guantum scalar field 4=
satisfying (1.2). The really important new ingredient here §s the loca-
Tity requirement. This iestion, which arises naturally in discussing
certain models, has been treated by Pohimeyer [7] " He shows, among
other things, that, in a covariant theory with a mass gap in more than
two space-time dimensfons, it s always possible to find such a field
¢u=) . From the point of view adopted here this is a negative result,
analogous to the Goldstone theprem, showing that (1.1) cannot generate
superselection sectors under the above conditfons Just as thes Goldstone
theorem shows that a conserved current cannot generate new vacuum sectors
in the absence of zero-mass particles.

The more interesting analogue of {1.1) and (1.2) avoids using
,unbounded operator-valued disiributions which, quite apart from being
awkward to handle mathematically, have the flaw of making the cohomology
classes into real vector spaces. [t is based on a notion of “"charge
transfer” along a path. There are three physically plausfble properties
of this operation™’ :

a) 1nvertibility (we can transfer charge back along the same path)}
b) charge neutrality {the total charge s unchanged)
¢) localizability (the operation should be TocaTized about the path

in question}. ' R
If we assume as 1n [5_] that the observable algebrxz satfsfins dualfty in
the vacuum sector, f.e. for each double cone 9  we have in the vacuum
representation

(1) The term operation here is being used in a technical sense, see [1]
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Then the above properties imply that the operation of charge transfer
is an inner automorphism of the observable alqgebra generated by a uni-
tary operator from some oLy

If we transfer charge along 2 path from a to b and then
along a path from b to c¢ we may plausibly assume that the net result
is the same as if charge is transferred along the composed path from a
to ¢ . The really crucial restrictive assumption we make here is that
thc operation of transferring charge along a path fre» 2 to b s
independent of the path chosen and depends only on i ~adpoints a
and b . It is here that we exciude the electric c.argz because, by
a plausible extrapolation of Maxwell's equations, the effect of trans-
ferring charge around a closed path should be the operation of creating
a flux of magnetic field through a surface spanning this path.

The above discussion may be summed up by saying that we
assume that the operation of charge transfer is represented by a local
l-cocycle over Minkowski space with values in the group of inner auto-
morphisms of the observable algebra. The precise definition of these
terms will be deferred until section 2 where we show that the resulting
local l-cohomology is equivalent to the approach to superselection struc-
ture described in 5]. However the relation between charge transfer and
superselection sectors is quite simple and has already been discussed
in ES]. A limiting procedure allows one to transfer charge in from
spacelike infinity- ; the resulting operation is, in general, no longer
an inner automorphism of the observable algebra but Teads to a new sector
and describes the creation of a localized charge.

It is perkaps not surorising that the above results must be
modified in a 2-dimensional space-time where one may distinguish a space~
Tike left from a spacelike right. If one tries to create a charge by
transferring charge in from spacelike left infinity, say, the resulting
operation is not necessarily localized. The operation fs trivial on
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the spacelike right but on the spacelike left it may correspond to per-
forming an internal symmetry on the system. This internal symmetry is then
the result of transferring charge from spacelike left infinity to spacelike
right infinity. If, as can happen, this internal symmetry is sposntaneously
broken, then one is describing a typical aspect of soliton behaviour and
the resulting sectors may be regarded as soliton sections. This forms the
subject matter of section 3.

To understand how the local l-cohomology comes to be related
to internal symmetry, one .2y recall that, in a 2-dimensional space-
time, the dual tensor of a vector field satisfying (1.1) is a conserved
current, In fact this aspect of local l-cohomology, in contrast to fts
relation to superselection sectors, emerges clearly from the discussion
in [7}. Reverting now to the four dimensions of physical space-time,
the local 3-cohomoloqy will correspond to the notion of a conserved cur-
rent, a,. ir-. ©. Hence one may plausibly conjecture that soliton
behaviour is now associated witk the local 3-cohomology. Indeed the
higher local cohomologies promise to be an interesting field of study
for other reasons as well. Thus the local 3-cohomology in its role of
generating a gauge symaetry should couple with the local l-cohonology
to describe the measurement of charge. The lacal 2-cohomology, exem-
plified by one of Maxwell's equations F3S 1 0 RO » Should lead
to a description of theor’es such as electrodynamics with a gauge grouﬁ
of the second kind.
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¥e suppose given the observable net (O — IV}, Ve X
of von Neumann algebras on the Hilbert space 4, of the vacuum
representation. Here XK  denotes the set of closed double cones in
Minkowski space and we shall use j(., to denote the subset of doubl:
cones centred on the origin. We suppose, as usual, that U e G
iplies G&L(8,) € BB and Tet &  denote the C*-inductive Timit
of the algebras TUB) . OL is sunposed to be irreducible on ¥,.
If ©  denotes the spacelike complement of U , then &L(8" denotes
the C¥-subalgebra of OL generated by { AlGY: O, & U', Ge X},
As indicated in the introduction, we suppose that © ~ G} s not
only Yocal but also satisfies the duality condition (1.5).

By a morphism of Ot we mean a linear mapping p: &> &
such that  p(AB) = pIAIP(RY ,  P(AY = p(A%) , A,Beot
and  p(IV> X . We let MorOL  denote the set of morphisms of (+. 98
We say that two marphisms p, and p, are equivalent 1{f there is
an inner automorphism o  such that p, = Ly If we let =
denote the inclusion mapping of & into B(H,) , the set of bounded
linear operators on ¥, , then wop is again a representation
of €L on the Hilbert space #, . We say that a morphism £ is
localized in a compact subset F of Minkowski space if for any

(9‘“, (’GF'

pLRY = A, A€ ALY, (2.1)

As a consequence of duality, two localized morphisms £ and fo are
equivalent if and anly if the corresponding rgpresentations LATN and
Mo fa are unitarily equivalent. As in 'LS_‘,, we write pe F
if p is localized in 9 and if, qiven any translate O+x of O |
there is an equivalent morphism p' localized in Ur= . We set

A, = olier“” and refer to the elements of A, as trans-

portable localized morphisms.
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In these terms, the basic assumption in_ iS: ray be expressed
as follows : the relevant representations for elementary particle physics
are those of the form T, ep . vhere p ey . A superselecticn
sector may then te considered as the set of vector states of an irredu-
cible representation of the form "":,°f’ . This cescription does
not do justice to the physical reasoning behind this basic assumption
however we shall see how the set A  arises naturally when analyzing
the local cohomplogy.

He let £ _ denote the set of n-simp}exesz) in Minkowski
space. To incorporate locality into the cohomolony we need a good notion
of a function on &2, with values in Yn OL , the group of inner auto-
morphisms of ©C ., or Mor & which preserves localization regions.
Inner automorphisms cannot, however, be localized as sharply as n-
simplexes and to cope with this we allow for a certain unifarm error
specified by a double cone O€ ¥, . Ue write e C(G) if

§: =, - TG and if 4$tay 15 localized in U +a =i=+5 :
xe® , y=aled... O} for each a€Z,, If

re U CMMG) . we say that { s a local function from X,
T " gex,

to Tl . Wewrite z e Z'(0) if reCN®) adif z isal-
cocycle, f.e. if for every e¢ X4

zl2ae) (%) = Z(ye), (2.2)

¢
vewrite 20 = U Z'U) ; an element of Z° will be called
Ve,

a Jocal 1-cocycle. A local l-cocycle is the basic object of study in
this paper and s supposed to represent the operation of transferring
charge along a path as discussed in the introduction.

If ge C°118) and we defin:

dy() = YW YOV e Z

{2 The definition of an n-simglex and other elementary notions from
cohomology may be found in the Appendix.
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4
then dy € Z(8) and we say that dy s a local 1-coboundary. More
generally if z°' and 2 are local l-cocycles and if we can find a y
from some C°(() such that

') yb) = Ji31z(H), bLe %, (2.3)

then z' and z will be said to be cohomologous. Cohomologous local
1-cocycle should be thounht of as transferring the same charge.

As lMinkowski snace is contractible any l-cocycle will be a
1-cchoundary {(Lemma A.2). ¥hilst this does not mean that any locail 1-
cocycle is a local l-coboundary, it does imply that if ze z! » then
2(b) depends only on 3% and ¥ . This has an important con-
sequence for the localization properties of z{b). -

2.1 Lemma
1 ze 218, eeZi | and G e (st A 0+3,0)
then

(A = A A e GLLY,).

’
Proof : Since (U,-U) is path-connected, we can find e .,

with ' =23, , 3,b'= 3t and (9( < (6+6Y | Hence
Z(WU(AY = z[DCAY = A + Aeouy) as required.

We shall now describe a procedure which allows one to decide
whether a given local l-cocycle z is a local l-coboundary or not. The
strateqy is very simple : supnose z =dy , Y& C°(9) then we may
compute y as follows : gqiven we Z, , A€ &G, » pick

bes, ,with Jb=a ad  O+3bc O , then
gL, LIAY = A and kence

year(p) = =z(W(a),  Ae OU©,), (2.9)
We mdy use this procedures) to define y for any given 2 ¢ Z' and

it turns out, in general, that y takes values in A@, instead of
TInll .

(3) : ; - . f
Compare the discussion of Lerma 3.1 in L5].
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2.2 Theorem

If z e Z'(Y) , there is a unique local function Yy @ E =¥ Ag
such that

ZU) (%) = gl ve Z, (2.5)

Furthermore Yytay e A, (§+a) s, & € Zg . If z2* and 2
are cohomologous so that there is a local functicn Wi Z¢ = Tult
such that

I WR) = W@ G, LeZ, 56

then the associated functions, y' and y are related by

y'ta) = wia) ytay, aeX, 2.1

Hence the equivalence class of y(a) in At depends only on the
cohomology class of z .

Proof : If A € 8((¢,) , we want to define yea)(A) as in
(2.4}, but must first show that this definition does not depend on the
choice of 3;&* . However if ceZp , 3,3,¢ =a and

9, € (0433,) 5 [B+33e), then by Lenma 2.1, =2(3,e)(A) =R .
The cocycle identity (2.2) now gives  Z{R)(A) = 2(}<}{A) .
showjng that  gta)(A) in (2.4) is independent of & . It follows
that y(a) is a morphism on ULJX 2248} and hence extends uniquely

to a morphism of CL . Lemma 2.1 implies that y(a) is localized in
O+a and (2.5) will show that  yea) € & . To prove (2.5),

it suffices to prove it on each OL(U‘) and this we do by choosing
ce X, with 3cwb and O, € (O+d3%e}’ when (2.5 is a conse-

quence of the cocycle identity (2.2). Similarly we prove (2.7) on each
oes,) by first picking ©e¢ X,  sufficiently large so that

z,z'€ Z(VW) and we& C'O) and then picking b eI,
with Qbwa and U, <(G+2k) when (2.7) follows from (2.6).
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There is one more step to take before we can claim that the
local I-cohomology and Tccalized transportabie morphisms give equivalent
descr ptions of superselection structure because we must show that every
equivalence class in £\,  corresponds to some cohomology class. This
is achieved in the following theorem.

2.3 Thegrem

let UeX, and y: Lo~ B¢ be such that y(a'} is equivalent
to yta) € Ay{v+a) for each a, a’€ L, | Then there is a
z¢ 29 such that

(L) y3,b) = yRb), e T, | (2.8)

Proof : If LeXl, , yea.4 and .93+ sre equivalent by

hypothesis so let 28 be any inner automorphism satisfying {2.8}.

If O, & (0r0) 5, (U+230) . =N = A , for
Ae awe) . .
Hence we nay find Z: I3 L@ satisfying (2.8) and it automa-

ticall, has the correct localization properties although 3t is not necessa-
rily a l-cocycle. However if h s any contracting homotopy {see
Appendix, (A.7)) and we set -

. -1
z(6) = 206L3,6) z(La,6) (2.9)

then z* s a l-cocycle and still satisfies (2.8). Hence z'e Z'U)
as required. '

The reader may have noticed that the duality assumption has
not been used in deriving the above results. However it is only under
this assumption that the local l-cacycles or localized transportable
morphisms are necessarily associated with superselection structure.

The Tocal I-cchomology remains unchanged if we wereto use some
other suitable set of simplexes on Minkowski space to define it.  For
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exanmple we could use C* -simplexes or affire simplexes. One could also
consider local l-cozycles with values in  ULCL) . the unitery group

of & , instead of I.& . ke say that a unitary ue W) is
localized in a compact et F of Minkowski space if the corresponding

inner automorphism o is localized there. The image of a local 1-
cocycle in  U(R) under o is a local l-cocycle in  Ta G to which
Theorem {2.2} apnlies. Furthermore if g: Z, A, is as in
Theorem 2.3, then we may proceed as above to find a local l-cocycle =

with values in U(&) satisfying

e Yy = gy, teXx,. (2.10)
Hence the resulting iocal l-cohotwology is again unchanged. This con-
ciusion could be criticized on the grounds that the correct notion of

a local function z1 T, —» WUI&} {s that there s an U< X,

such that

Zla) € O.(G*-(l-'—ﬂ), ae Z‘ .

'
se[0,13 {2.11}
However duality (1.5) implies that every local l-cocycle is automatically
3 local function in this more restricted sense.

It is natural to ask how the analysis of superselection struc-
ture would look if nresented in terms of local cohomology. The appro-
priate choice of coefficients for the cohomology here would be the al-
gebraic system of localized mornhisms and intertwiners. Such a deve-
lopment might lead to further insight into the structure, particularly
as regards the geometry underlying the permutatiga symmetry (statistics)
of a sector. However the investigation of higher cohomologies would
seem to be a more urgent task.
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3. 2-DIMENSIONAL SPACE-TIME

zzzEzczzsss=sossS==SSssssss=oss

We turn now to consider the special case of a 2-dimensional
space-time where the equivalence proved in Section 2 is no longer valid.
There are two reasons for doing this ; in the first place, a 2-dimensional
space-time is, at present, a nroving ground for field-theoretical models
and it is as well to be presared for structural phenomena peculiar to
this situation. In the second place, there are physical phenomena
associated with the s -dimensional local cohomology, where s is the
number of space-dimensions. In a 2-dimensional space-time such phenp-
mena will appear in analyzing the local 1-cohomology. The mativating
equation from the cahomolagy of differential farms is now the charge
conservation equation

‘b,_il‘._:, _— (3.1)

Using the metric tensor of Minkowski space, we get a dual tensor j'(z)
whose exterior derivative vanishes, in other words a closed s-form.
Now in quantum field theory, as is well-known, a conserved local current
can be used to generate an internal symmetry of the system. The infini~
tesimal generator $ of such a symnetry is defined as follows : if

A e 818g) , where Ug is the double cone whose base
is the ball ==0 , [21¢ R »

W = [ 409,50, A, (3.2)
where R'> Rwg | fer and 9 are smooth functions of compact

support such that Foetm)nd + Imic R’ > Get=*3mo if
tx*1> ¢ and J g txdaa 1, and

}.( ,e‘fnl) = j j.(x‘, =) z‘tx'){k,ta_:)dfda .

If we Yook at this from the point of view of the dual tensor i" » We
would compute the generator as follows : fet | be a smooth approxima-
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tion to the & -function, fl-tx‘,y detdx s 1 with suppbhc G,
and let -",: be the tensor obtained by smearing }' with b ., We
may consider the base of (Sgl as an s-simplex b and then

s = tDj, A, e sy (3.3)

where }’.: 48] is the result of integrating the closed form }1
over the s-simplex b . Of course it is perfectly possible that

&{N=0 for all A ; this would be the case in particular if if‘
generates a gauge symetry.

Now that we have described the construction of § in cohomo-
logical terms, {t is clear how one should proceed by analogy when the
local cohomology takes its values in T-& . If 2z is a local s-
cocycle and A and b are as in (3.3), we should be sometimes able
to define a non-trivial internal symmetry J by setting

Ja) = z(61(A) |, Ae QUBR). {3.4)

One may hope in this way to obtain discrete internal symmetries, whereas
(3.1) will give only continuous internal symmetries.

In a 2-dimensional space-time if we could apply Lemma 2.1,
we would be able to deduce that the internal symmetry ] 1s trivial.
However this lemma cannot be applied because if Be X . O
is no longer path-connected but decomposes into two components denoted
by 97 and l9‘ » the right and left spacelike complements of (¢]
respectively. (87 s defined by the convention that (o,x} € (9™
if x is sufficiently positive. All we can say using the argument of
Lemma 2.1 is :

3.1 lLemma

If ze 2°W . bE€Z, Lad imw, L , then
(A = A, Ke &yY,)
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whenever O, (t9+a,kr\" N ((9-»31")‘ .

In place of Theorem 2.2 we have

3.2 Proposition

If e (O and L= 7 or £  then there is a unique
3: Y I, MavQ such that
20 (R0 = §A ,  beZ, 3.5
and if o c ((9+~);
-ftn(_M = A, Ae OO, . (3.6)

If 2z' and z are cohomologous, so that there is a local function
w2 Z'. -y T\ @ with

Zw(3W = w(dezlel, beZ,

114 [y

then the associated functions y and 4 are related by

§tar = wia 3":4\ ., ae I, (3.7)

Thus one may associate with a local l-cocycle morphisms which
are either left localized or right localized. Unfortunately there seems,
in general, to be no information either on the relationshin between 3'
and j‘ or on the way 39 acts on the spacelike right and 3"
on the spacelike left. The best we can do is to impose an additional
locality requirement on local l-cacycles which allows more precise results
in the direction anticipated by the discussion at the beginning of the
section.

Vewrite z ¢ ZWO  if z¢ ZUW  and if for
r
any ceZ, and (916 K N G, € (8« 3,‘5,:)',\ (U+3,2) .

76/P.816



-16-

2( b‘:]-‘ 2(3,2) 203,V (A = A A&, (3.8)

In same ways this additional requirement may be looked on as a penalty
for indulging in non-Abelian cohomology. Certafnly if z takes its
values in some Abelian subgroup of I~O - then (3.B) is a consequence

of the lgcality of z . In more than two space-time dimensions, Lemma 2.1
implies that any local cocycle satisfies (3.8).

3.3 Theorem

et ze Z (9 and let {,j, k  denote ¥ or v then
there are unique autamorphisms §.: such that if O,¢ X and be X,
with Jr+6 < O , st c O} then

Y = z{t) (A, Ae Qo).

{3.9)
Furthermore J..  is the identity and
L Y= Buns (3.10)
slt.c.) r}k: :j"'-" , aée Z‘ .
(3.11)
If g f1s a real number > 2 then
+
IES {ay e OLLY, q,l;?), Ac outs,) | (.12)
, 24 ~
If z' is cohomologous to z, then 2z'e¢ 2 =« U Z{0) and
Vel
z' gives rise to the same automorphisms I;- B
Progf : The uniqueness of the automorphisms 7ollows from (3.9) ;

what really has to be checked is that the right hand side of ({3.9) is
{ndependent of b under the stated conditions. 1f 1§ = J this follows
from Lenma 3.T which states that  J;;  is the identity. If f#j

then @, ¢ (3b+0) i and (3.5) and (3.6) show that
IO U016 so that  =(¢)(A) can depend
76/P.816



i

-17-

only on 3 & . Given ce Ty with G+2e B and
@ +3,3¢c (9} , the cocycle identity  implies

2L (A = 2(3,¢) 2(3,e) (AN = 2(23,a Z“&EW-“LLS,(-) 2(3,0)) (W) .

Applying (3.8) we deduce that  2(3,¢1(A) = 2(3.)(A) and
this is enough to skow that z{b)(A) im {3.9) is independent of ¥,
As usual, this independence implies that 3’;- is a morphism. Now

Yy duality we know that z(b) is induced by a unitary from OL(G,)
where U, is the smallest double cone containing ©+3 & and (+3%.
However we may pick b€ ¥, such that §,= 46+ 06, and

Li (A) = 24 (A s Ae ) o This proves (3.11).

Now pick ¢ € T,  such thait (B«33,c & ((.9“1[9)",
B+3,c @ {0+ g% and B c & lG+40)", evaluate
the 2-cocycle identity on A€ &(®,) using (3.12) and we deduce
(3.10). This also shows that 5’;- fs an automorphism. If we Teave
93, ¢  and 3 as above and pick 9Y3e = a  then the cocycle
identity implies (3.11).

1f z' 1s cohomologous to 2 , there is a local function
wti L, -» TaQ& so that (2.6) holds. We may suppose without Toss of
generality that G« X,  has been chosen so that z'e Z'(9) and
we oW . Nowpick beZ, such that B3t C{lG+q8)?
and  U+3y < (9,+4 0" , apply (2.6) to Ae QW) , and
we get using (3.12},

Z' WA = s‘i (A, Aebus,).

If we now return to (3.8), we see that this suffices to show that

e 2749 .

Actually duality and covariance of the vacuum are enough to
show that we may take q = 2 ftan (3.12). It should, however, be noted
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that (3.12) does not imply that 3,, is an internal symmetry i

3“ might implement the snace-time translation through some »¢ Q@
for example. [ndeed this situation is not so unlikely if we realize
that -}I‘* in (3.1) need ngt transform like a vector under the Poincaré
group but might be er' , say, where ©7™ is the energy-momentum
density. On the other hand, if the cohamology class of 2z cantains
elements of 21 Q) for arbitrarily small 8¢ ¥, , then 31‘_
will be an internal symmetry.

Now that we know that y™{a) behaves 1ike 3,4  on the
spacelike left, we have engugh information to given an anatogue of
Theorem 2.3. ’

3.4 Theorem

let Q¢ 5(, and Tet ¥ be an automorphism-of OL such that

o) € asa®, e k. (3.13)

“tet 9" s T, MorOL  be such that 3™  is equivalent to
y ety for o,ad¢ T, and
§C R = A, At QL")

gTea (&) & 5CA) 5 A€ ALLS%S] (3.14)

Then there §s a Tocal l-cocycle z € 2'(1 9) . 1>?- with

23RN ~ 3RY, te Z,. (3.15)

’S is the automorphism ’S_l assoctated with 2z 1in Theorem 3.3.

el
Proof : (3.15) for z € Z‘(-],U) implies that ¥  is the auto-

morphism I,( associated with z in Theorem 3.3. The remainder of
the theorem will follow as in the proof of Theorem 2.3 provided we can
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show that any inner automorphism satisfying (3.15) automatically his
the correct localization proverties. However if O, < (¢6+6)
then either 9, < (ﬂ.‘i«-a.b)l n.(‘l("" E'H" o @, <
(,un,n’n(.iwa,»)‘.' He deduce that z(W({A) =A . A aw)
by applying (3.15) to 7 e G+ in the former
case and directly to A 1in the latter case.

This concludes our discussion of the lgcal 1-cohomology in a
2~dimensional space-time. Ve have, at least for local cocycles in i‘.
reduced the study of this cohomology to the study of tranmsportable mor-
phisms which are, say, right Yocalized and behave on the left 1ike some
almost Tocal automorphism . How much can be said aboutsuch morphisms is not
yet clear and it is worth roting that there has been, as yet, no syste-
matic study even of transportable localized morphismgin a 2-dimensional
space-time. One knows that the basic Lemmas 2.4 and 4.1 of [5] fail
in this case. The proof breaks down because 8 is no longer path-
connected. The physical reason why the results must fail is that even
if §=o0 in (3.2) we might be generating a non-trivial gauge sym-
metry and thi, influences the cammutation relations of the associated
unobservable fields.

0f course any theoretical analysis of what might happen must
be backed up by models showing what does happen so as to minimize and
localize the srzculative content. Such models do exist in the literature
and deserve a more detailed comment than that given here. The earliest
such model is the treatment given by Streater and Wilde [81 of the free
Skyrme model. From the point of view of the local cohomology it is a
very natural model to think of ; there is no free scalar field of mass
Zero in two dimensions so the conserved current which ought to be its
derivative should, and does, generate non-trivial lpcal l-cocycles. This
work was extended by 8onnard and Streater [9] to the massive free field
with U(l}) or 0(2) symmetry. However undoubtediy the most interesting
results to date have been those obtained by Fréhlich [10]. They show
how the Tocal 1-cohomology in two space-time dimensions can generate
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the soliton sectors for interacting models with spontaneously broken
internal symmetry such as the quantum “sine-Gordon" model. This
is best seen by comparing eq.(77) of []0} with eq.(3.14) above.
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APPEMDIX

te gather together here for the reader’s convenience a few
basic definitions and elementary factsrelating to cohomology. The
reader wishing more detailed information might consult, for example
[11]. The standard n-simplex, denoted b A s {(k’.t’,h.,@e R"™',
¢ %0 and ‘2?‘ ttet } . There are affine mappings,

“at . -t
d;: & - A * , i%0,4,7..,mand s o -,

3
§=0,1,2,...,n-1 cefinec by

LU ) = (o, e )

. . A1
TRV TN RN B

Any orientation preserving affine mapping from A" to A‘ is 2 com-
position of manpfngs of this sort. The following ruTes may be used to
manipulate composite mappings

S}J; = d: s

Gide = di 4y, i3y L

s‘,di 1 3 i‘!uhtj‘ ‘-i.:‘bi

S;Se = SeSjer VH N
‘1"" = ‘i—-’a’- "j“

If X 1is a topological space, an n-simplex of X 1is a con-
tinuous mapping «: A" X . The set of n-simplexes of X is
denoted by T, (X) . The mappings d; and ‘.I induce operations
on the simplexes of X : if « €72, (X) .
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a = ad; . in8,92,gn

{7.3)

th,‘. LETE I

These operations are called the t undary and degeneracy ops rations on
the simplexes of X respectively, and (A.2) gives

'),c}: g-‘_qa‘ , <
3.'3} = 9%, ™

3;? = identity , vsj jet (A.8)
G T T, 8 2w, = w3 o Srjaa

d

A 0-simplex of X may be considered as a point of X and a
1-simplex is a path in X . If a € 2. (X) , nd>»0 , thenwe
define & .\ » the oppositely oriented simplex by

Al ) = el et L), (R.5)

Suppose X 1in a convex set and let x ¢ X then we can
define a mapping h + I (X) —bz:m()() as follaws

M L, e %) = Ex td) alet’, e el), €41
~ i (A.6)

= X Exq .

-q
Here we have written ¢ = (t~t") . The geametric interpretation
of hee) 1is that it s the n+l-simplex constructed by joining each
vertex of the n-simplex a by a straight line to the point ¢

We have

Yhty = a 3;htay = L(a‘_,.) , . > 0 (A7)

except that if & & T, {X) then 3 Wiajex R mapping satisfying
(A.7) is calTed a_contracting homotopy.
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Cohomology usually means Abelian cohomology ; however we only
need the formal definition of the l-cohomology and there is no difficulty
in de®ining the l-cohomology with values in some non-Abelian group G .

A l-cocycle with values in a group G 1is a function
2: Z, )= G such that

Z(3,0) 2(3.8) = z2(3,), ce £.(x) (A.8)
A function z: I (X} — G is a I-coboundary if there is a function
such that

WL (X) > &
Z( = W@ W™ ke ZX). (A.9)

Every l-cocycle is a l-coboundary. Two l-cocycles are said to be coho-
mologous if there is a function w: fa(x) ~» (> such that

2w L) = w36 2(6), Ge T (%), (A.10)

This defines an equivalence relation on the set of l-cacycles and the
corresponding equivalence classes are called cohomology classes.

A.l Llemma

tet z be a l-cocycle then
2, a) = 1, ae Zx),
z (L) = ZL-\;)"‘ , Le Z.LX)'

Proof : Given @& I (X) apply (A.8) to 0} 65 a € 5, (%)
and we get using (A.4), z(a) z(ga) = Z(5a) , which implies
z{Ga) = 1 . Given b e T (X) ., define ce LX) by
(€58, 8) = L{k%ELY) and we get applying (A.8) z()2ly) = (g e)=1 .
A.2 Lemma ‘

If X is a convex set, or, more generally, if we have a contracting
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hamotapy  h: &, (X)— Z.{X) then every 1 . cycle is a 1-coboundary.

Progf : Llet z be a l-cacycle. Given ag ZolX) define
wia) = z{kta)) . Given L eZ (%), apply {A.8) ta hltle T(X)
and we get using (A.7),  2{&? w{3 b)) = wlab) showing that

z 1is a l-coboundary.
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