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ABSTRACT : If A r is a vector field'satisfying "SPA"- 3'Af-O 

can one fifid a scalar field £ such that rV*« V^ 7 

A novel quantum analogue of this classical problem 

incorporating locality is introduced and is shown to 

generate those superselection sectors whose charge can 

be strictly localized. In a 2-dimensional space-time 

there are further possibilities ; in particular, soliton 

sectors can be generated by this procedure. 

FEBRUARY 1976 

76/P.816 

Centre de Physique Théorique, C.tt.R.S. - Marseille 

POSTAL ADDRESS : Centre de Physique Théorique, 
C.N.R.S. 
31, chemin Joseph Aiguier 
F - 13274 MARSEILLE CEDEX 2 
(France) 



-z-

I. INTRODUCTION 

The possibility of describing superselection structure in 
elementary particle physics in terms of observable quantities was 
first pointed out by Haag and Kastler [_1 . Their idea was that the 
charge quantum numbers should appear as labels for those inequivalent 
Irreducible representations of the observable algebra whose vector 
states are relevant to elementary particle physics. The first attempt 
to give concrete shape to these ideas was undertaken by Borcliers [2J. 
He postulated that the relevant representations were those which are 
"strongly local equivalent" to the vacuum representation and showed 
how the unobservable fields could be recovered as the intertwining 
operators which realize this equivalence. However his postulates, 
already suspect because his analysis apparently ruled out the possibi­
lity of parastatlstics, were she n in L3J to be violated if the super-
Selection sectors are generated, 's in conventional field theory, by a 
principle of gauge invariance of the first kind. Nevertheless a slight 
modification of the terms "strong local equivalence" allowed Borchers' 
results for systems obeying ordinary Bose and Fermi statistics to be 
recovered and extended [ 4 J. 

The systematic treatment of superselection structure in |_5,6J 
classifies the particle statistics compatible with locality and analyses 
the operations of charge addition and charge conjugation. On its own 
terms, this analysis is rather complete ; it is true that it has not 
yet proved possible to show that the superselection structure may always 
be described as the representation theory of some compact gauge group. 
However, even if such a result holds, it would add little to our under­
standing of the structure. If it does not hold, it is conceivable, but 
perhaps unlikely, that it would open new, interesting possibilities for 
the phenomenological classification of elementary particles. 

The real weakness of the present analysis lies elsewhert : . 
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it is quite possible that the most interesting quantum field theory 
models do not fall within thé scope of the analysis. This is certainly 
the case with quantum electrodynamics because, as pointed out in [5J, 
sectors with non-zero electric charge do not satisfy the selection 
criterion used there. Furthermore as gauge groups of the first kind 
are so intimately related to superselection structure, the question 
naturally arises as to whether this is also the case with gauge groups 
of the second kind. Admittedly, the naive answer is that gauge inva­
riance of the second kind does not generate superselection sectors buf-
serves instead to rule out unphysical states. However, in the absence ' 
of a deeper understanding of its intrinsic role, this conclusion is 
suspect. 

The approach advocated here has the great advantage of promising 
co rescl"«! these problems as well as shedding light on other structural 
features of quantum field theory. Instead of studying representations 
that satisfy some selection criterion as in [~5j, the superselection struc­
ture will be deduced as part of the analysis of the "local cohomology" 
of the observables. The "local cohomology" may be thought of as the 
quantum analogue of the cohomology of differential forms. Here vie shall 
only be using the local 1-cohomology of the observables. We recaVl that 
in the cohomology of differential forms, a closed 1-fona corresponds to 
a vector field ATt.*) whose curl vanishes 

and 1t is exact if there is a scalar field $1x1 such that 

fcl*00 - * ^ » r f . (1.2) 

These equations may be looked at in integrated form. If i> Is any path, 
i.e. a smooth mapping of the unit Interval LCl"! ' I n t 0 MtnkowsU space, 
we may consider the path integral 

h(<r) • i % A*\lrt*0"2f-«. (1.3) 
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Eq.(l.l) means that the integral round a closed path bounding a 2-
dimensional surface is zero and (1.2) that 

A , 0 ) « f O t » l - 4 ( V * > ) . ji,4) 

The most obvious way of producing a quantum analogue for the 
equations is to require that r V c o be a local quantum vector field satis­
fying (1.1) and to ask whether there is a local ouantum scalar field 4t«> 
satisfying (1.2). The really important new ingredient here is the loca­
lity requirement. This ;estion, which arises naturally in discussing 
certain models, has been treated by Pohlmeyer M . He shows, among 
other things, that, in a covariant theory with a mass gap in more than 
two space-time dimensions, it is always possible to find such a field 
4i«*• from the point of view adopted here this is a negative result, 
analogous to the Goldstone theorem, showing that (1.1) cannot generate 
superselection sectors under the above conditions just as the Goldstone 
theorem shows that a conserved current cannot generate new vacuum sectors 
in the absence of zero-mass particles. 

The more interesting analogue of (1.1) and (1.2) avoids using 
unbounded operator-valued distributions which, quite apart from being 
awkward to handle mathematically, have the flaw of making the eohomology 
classes into real vector spaces. It is based on a notion of "charge 
transfer" along a path. There are three physically plausible properties 
of this operation ' : 

a) invertibility (we can transfer charge back along the same path) 
b) charge neutrality (the total charge is unchanged) 
c) localizability (the operation should be localized about the path 

in question). 
If we assume as in [5J that the observable algebra satisfiss duality in 
the vacuum sector, 1,e. for each double cone 19 we have irt the vacuum 
representation 

I ' The term operation here if being used in « technical sense, ses[l]. 
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Then the above properties imply that the operation of charge transfer 
is an inner automorphism of the observable algebra generated by a uni­
tary operator from some CHio; . 

If we transfer charge along a path from a to b and then 
along a path from b to c ne may plausibly assume that the net result 
is the same as if charge is transferred along the composed path from a 
to c . The really crucial restrictive assumption we ma:<e here is that 
the operation of transferring charge along a path fir ' i to b Is 
independent of the path chosen and depends only on ti -\idpoints a 
and b . It is here that we exclude the electric c .orga because, by 
a plausible extrapolation of Maxwell's equations, the effect of trans­
ferring charge around a closed path should be the operation of creating 
a flux of magnetic field through a surface spanning this path. 

The above discussion may be summed up by saying that we 
assume that the operation of charge transfer is represented by a local 
1-cocycle over Minkowski space with values in the group of inner auto­
morphisms of the observable algebra. The precise definition of these 
terms will be deferred until section Z where we show that the resulting 
local 1-cohomology is equivalent to the approach to superselection struc­
ture described in [_5_j. However the relation between charge transfer and 
superselection sectors is quite simple and has already been discussed 
in j_5 I. A limiting procedure allows one to transfer charge 1n from 
spacelike infinity ; the resulting operation is, in general, no longer 
an inner automorphism of the observable algebra but leads to a new sector 
and describes the creation of a localized charge. 

It is perhaps not surprising that the above results must be 
modified in a 2-dimensional space-time where one may distinguish a space­
like left from a spacelike right. If one tries to create a charge by 
transferring charge in from spacelike left infinity, say, the resulting 
operation 1s not necessarily localized. The operation 1s trivial on 
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the spacelike right but on the spacelike left it may correspond to per­
forming an internal symmetry on the system. This internal symmetry is then 
the result of transferring charge from spacelike left infinity to spacelike 
right infinity. If, as can happen, this internal symmetry is spontaneously 
broken, then one is describing a typical aspect of soliton behaviour and 
the resulting sectors may be regarded as soliton sections. This forms the 
subject matter of section 3. 

To understand how the local 1-cohomology comes to be related 
to internal symmetry, one >..;y recall that, in a 2-dimensional space-
time, the dual tensor of a vector field satisfying (1.1) is a conserved 
current. In fact this aspect of local 1-cohomology, in contrast to its 
relation to superselection sectors, emerges clearly from the discussion 
in I 7\. Reverting now to the four dimensions of physical space-time, 
the local 3-cohomology will correspond to the notion of a conserved cur­
rent, Z^'^fmo. Hence one may plausibly conjecture that soliton 
behaviour is now associated with the local 3-cohonology. Indeed the 
higher local cohomologies promise to be an interesting field of study 
for other reasons as well. Thus the local 3-cohomology in its role of 
generating a gauge symmetry should couple with the local 1-cohoniology 
to describe the measurement of charge. The local 2-cohomology, exem­
plified by one of Maxwell'f. equations V* F*"J « o , should lead 
to a description of theories such as electrodynamics with a gauge group 
of the second kind. 
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2. LOCAL COHCWCLOÇY 

Vie suppose given the observable net O — * Ot((3' , iSe H 
of von Neumann algeDras on the Hilbert space "*l0 of the vacuum 
representation. Here X denotes the set of closed double cones in 
Minkowski space and we shall use #„ to denote the subset of doubl-j 
cones centred on the origin. We suppose, as usual, that l)t c O^ 
implies &l(9,) = fiUUj and let Ot denote the C*-inductive limit 
of the algebras OttlSl . ft is snnposed to be irreducible on fta. 
If 19 denotes the spacelike complement of " , then &(<>'> denotes 
the c"-subalgebra of <9t generated by { S.l<V f W, c. «', CJ,« % } . 
As indicated in the introduction, we suppose that O -* QUO) is not 
only local but also satisfies the duality condition (1.5). 

By a morphism of 6L we mean a linear mapping p : 6L-+CL 
such that f ( * B ) * f(Klf(-B.%) , p ( M * « p { A * ) , A , ï f « -
and />Cx1 » I . We let HorCL denote the set of morphisms of (X, 
We say that two morphisms />, and f>± are equivalent if there is 
an inner automorphism r such that p, = rfx . If we let ""» 
denote the inclusion mapping of A into S W O , the set of bounded 
linear operators on "itt . then •"".<>f> is again a representation 
of fit- on the Hilbert space « „ . We say that a morphism f 1s 
localized in a compact subset F of Minkowski space if for any 

f(A1 « A-, A f «C<ST • (2.1) 

As a consequence of duality, two localized morphisms ft and p t are 

equivalent if and only if the corresponding representations ir^p, and 

"""••fx are unitarily equivalent. As in [5_J, we write f « A t W ) 

if f> is localized in (5 and if, given any translate O + x of W , 

there is an equivalent morphism p ' localized in i S t * . We set 

Ai a U A t((S) and refer to the elements of A * as trans-

portable localized norphisms. 
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ln these terms, the basic assumntion in 5 may be expressed 
as follows : the relevant representations for elementary particle physics 
are those of the form TT. o e , where f * ̂ t . A superselecticn 
sector may then be considered as the set of vector states of an irredu­
cible representation of the form ir^oo . This description does 
not do justice to the physical reasoning behind this basic assumption 
however we shall see how the set A t arises naturally v;hen analyzing 
the local cohomology. 

He let E , denote the set of n-sinplexes ' in Minkowski 

space. To incorporate locality into the cohouolo^y we need a çood notion 

of a function on 51„ with values in I » OL , the group of inner auto­

morphisms of o t , or Horfflt which preserves localization regions. 

Inner automorphisms cannot, however, be localized as sharply as n-

simplexes and to cope with this we allow for a certain uniform error 

specified by a double cone Qe X0 . He write f * c"(tS) if 

f ; 2I„'-* X»«. and if fc«.l is localized in »-»•• * 1 =*+3 : 

x e 13 . 4 = «•(*".«\..-.Oj for each «•«£,. If 

' t U Cl<9) • w e s a y t n a t f Is a local function from 2r„ 

to X.CL . He write z. t Z'ttS) if t € C'llS) and if ï Is a 1-
cocycle, i.e. if for every e c 2T t 

Zt».0 * C » t O «• * < V ) • (2.2) 

Vie write Z' - U Z'W) ; -in element of Z will be called 

a local 1-cocyc'e. A local 1-cocycle is the basic object of study in 

this paper and is supposed to represent the operation of transferring 

charge along a path as discussed i'i the introduction. 

If g £ C°(.IS) and w « defiw; 

"' The definition of an n-simplex and other elementary notions from 

«homology may be found In the Appendix. 
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then dy (• 2(131 and we say that iy is a local 1-coboundary. More 

generally i f z' and i are local 1-cocycles and i f we can f ind a <j 

from soiw C'llS) such that 

I'tUJ'jl», 1 ') » J i ^ X W , l » e Z , (Z.3) 

then z' and z will be said to be cohomologous. Cohomologous local 
1-cocycle should be thought of as transferring the same charge. 

As Minkowski space is contractible any 1-cocycle will be a 

1-ccboundary (Lemma A.. 1). Whilst this does not mean that any local 1-

cocycle is a local 1-coboundary, it does imply that if z « Z. , then 

z(b) depends only on 3 t t

b and \* . This has an important con­

sequence for the localization properties of z(b). 

2.1 Lemma 

If zeZ'US) , L-tr, f a n d o i C {.tf<-».l.yn ((5+S.U'. 

then 

î O H A i = A , fte 0tCC5t). 

Proof : Since (t3,-L9) is. path-connected, we can find t * 2"( , 

with s.u'r-a.t- , a,t'= a,ir J n d u t <=. (y+fr'/ . Hence 
Z[(rKA1 = 2 ( t ' ! W l = A . A t CUIS,) as required. 

We shall now describe a procedure which allows one to decide 
whether a given local 1-cocycle z is a local 1-coboundary or not. The 
strateny is very simple : supnose z » dy , j e C"(tf) then we may 
compute y as follows : qiven j_e T„ , A t £XCc5,J . pick 
fc t 2T, .with »4tr = 4 and D H , V c ( ) ( ' .then 

3 f» , l r )M l " A a f l d h e " C e 

ut«.)LAl = z lWCA] , A t 0LC(S,). ( 2 . 4 ) 

We may use this procedure ' to define y for any given 2 < Z and 

i t t'jrns out, in general, that y takes values i n A t instead of 

XnOt . 

' 'Compare the discussion of Lemma 3.1 in L5J. 
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2.2 Theorem 

If z c Z ' W ) , there is a unique local function 5 ' 5£. —* ^ t 

such that 

rClr) •}0>,V> = b ( 3. t'> « <r* £, . 
(2-5) 

Furthermore y Co.) E 4 t(tS+») , a c ? , . If z* and z 

are cohomologous so that there is a local function w : Z", "* 1^to-

such that 

i'|fr)wt»,H - w(.Vr) xUr), f't^", , ( ? . 6 ) 

then the associated functions, y' and y are related by 

y'tA) « w(») yt«.J , * * £ « (2.7) 

Hence the equivalence class of y(a) in ^ t depends only on the 

cohomology class of r . 

Progf : If A € (St((î,) , we want to define yt«)(A) as in 

(2.4), but must first show that this definition does not depend on the 

choice of 3,(r» . However if c f ^ i , *o\c ""• and 

S, C (0-»d,a,O' „ C(y+î,V)'. then by Lesma 2.1, *fa Ee>(A)- A • 

The cocycle identity (2.2) now gives Zt?.0(.rV) - iC'i'KA.) • 

showing that J(«-HA) in (2.4) is independent of t . It follows 

that yfa) is o morphism on V fllltf) and hence extends uniquely 

to a morphism of & Lemma 2.1 implies that y(a) is localized in 

(S*«. and (2.5) will shew that y<«J f £ t . T o prove (2.5), 

it suffices to prove it on each OUtf,) and this we do by choosing 

e £ TL with \c « t- and IS, c ( ( S + W ' i ' when (2.5) is a conse­

quence of the cocycle identity (2.2). Similarly we prove (2.7) on each 

ft(s,\ by first picking (9 e # . sufficiently large so that 

t, r' ( Z'((S) and >*i C'((S? and then picking <r «• r i 

with a.tr.a and 0 f C ( 0 + «>,»)' when (2.7) follows from (2.6). 
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There is one more step to take before we can claim that the 

local 1-cohomology and localized transportable morphisms give equivalent 

descr ptions of superselection structure because we must show that every 

equivalence class in A , corresponds to some cohomology class. This 

is achieved in the following theorem. 

2.3 Theorem 

Let 13 c Xa and y •• E 0 "*
 A * be such that y(a') is equivalent 

to j<«.) i ût((9+«.) for each a, a' € C„ . Then there is a 

Z C Z'(l" such that 

i f » S ( v > •= •}Lit.v> (.« r , (2.8) 

Proof : I f I-fr E, , a£»iO and j K / ) are equivalent by 

hypothesis so l e t * ( H be any inner automorphism satisfying (2.8). 

I f W, <= ( m - a . l j M U*i0k)' , iC&JJ/V-A , for 

A 6 <UuV 

Hence we may f ind z '• *"i " * ^ ^ satisfying (2.8) and i t automa­

t i ca l l y has the correct localization properties although i t i s not necessa­

r i l y a 1-cocycle. However i f h is any contracting homotopy (see 

Appendix, (A.7)) and we set » 

2'iu = 2<i4>fr) *n.a,tr (2-9) 

then z' is a 1-cocycle and still satisfies (2.8). Hence z'e Z'lO) 

as required. 

The reader may hove noticed that the duality assumption has 

not been used in deriving the above results. However it is only under 

this assumption that the local 1-cocycles or localized transportable 

morphisms are necessarily associated with superselection structure. 

The local I-cohomology remains unchanged if we wereto use some 

other suitable set of simplexes on Minkowski space to define U . For 
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exaraple we could use C"-simplexes or affir.e simplexes. One could also 

consider local l-co:ycles with values in Ul(.<2<-) , the unitary group 

of ft- , instead of l»a. . lie say that a unitary u t V4.QCI is 

localized in a compacf cet F of Minkowski space if the corresponding 

inner automorphism ff^ is localized there. The image of a local 1-

cocycle in tUCO under <r is a local 1-cocycle in X " â. to which 

Theorem (2.J) apnlies. Furthermore if jt £ „ — » A t is as in 

Theorem 2.3, then we may proceed as above to find a local 1-cocycle B. 

with values in IMS.) satisfying 

ri(w b t a , l T l = 3 ( 3 ° M • *"• *•'• • l 2 - 1 0 > 

Hence the resulting local 1-cohoraology is again unchanged. This con­

clusion could be criticized on the grounds that the correct notion of 

a local function n Î , -* UIO.) is that there is an 49* Jf. 

such that 

s « D M 7 * • (2.11) 

However duality (1.5) implies that every local 1-cocycle is automatically 

a local function in this more restricted sense. 

It is natural to ask how the analysis of superselection struc­

ture would look if presented in terms of local cohomology. The appro­

priate choice of coefficients for the cohomology here would be the al­

gebraic system of localized moronisms and intertwiners. Such a deve­

lopment might lead to further insight into the structure, particularly 

as regards the geometry underlying the permutation symmetry (statistics) 

af a sector. However the Investigation of higher cohooologies would 

seem to be a more urgent task. 

1 
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3. 2-DIKENSI01ÎAL SPACE-TIME 

We turn-now to consider the special case of a 2-dimensional 

space-tine where the equivalence proved in Section 2 is no longer valid. 

There are two reasons for doing this ; in the first place, a Z-diroensional 

space-tine is, at present, a proving ground for field-theoretical models 

and it is as well to be prepared for structural phenomena peculiar to 

this situation. In the second place, there are physical phenomena 

associated with the s -dimensional local cohomology, where s is the 

number of space-dimensions. In a 2-dimensional space-time such pheno­

mena will appear in analyzing the local 1-cohomology. The motivating 

equation from the cohomology of differential forms is now the charge 

conservation equation 

Using the metric tensor of Minkowski space, we get a dual tensor ^ <*> 

whose exterior derivative vanishes, in other words a closed s-forro. 

Now in quantum field theory, as is well-known, a conserved local current 

can be used to generate an Internal symmetry of the system. The infini­

tesimal generator S of such a symmetry is defined as follows : if 

A £ SH.ISR.1 • where IS^ Is the double cone whose base 

is the ball x* « o , 1^1 < R 

sua- * C J , I J « * « . ) . A 3 , P.*) 

where K > R + f , f R, and j { are smooth functions of compact 

support such that ^-,»5)»i . 1*1 < <?' » 3 «»•)»» 1f 

ix't > t and J 3£(.«*)<ix« • i .and 

If we look at this from the point of view of the dual tensor i* , we 

would compute the generator as follows : let K he a smooth approxima-
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tion to the ^-function, J U « \ *> i » - i j » 1 .w i th >-,•<» c Ot 

and let j f e be the tensor obtained by smearing i with I» . We 
nay consider the base of (3g' as an s-simplex b and then 

SLW = ' L i * W . - A 3 . M t t « V (3.3) 

where j ̂  W is the result of integrating the closed form j ^ 

over the s-simplex b . Of course it is perfectly possible that 

?(A)-0 for all A- ; this would be the case in particular if j/* 

generates a gauge symmetry. 

Now that we have described the construction of S in cohono-
logical teres, It is clear how one should proceed by analogy when the 
local cohotnology takes its values In T-.ft . If z is a local s-
cocycle and A and b are as In (3.3), we should be sometimes able 
to define a non-trivial internal symmetry J by setting 

ÏU1 » iCM(A) , kttUBtf. Î3.4) 

One may hope In this way to obtain discrete internal symmetries, whereas 

(3.1) will give only continuous internal symmetries. 

In a 2-dimensional space-time if we could apply Lerma 2.1, 
we would be able to deduce that the internal symmetry J Is trivial. 
However this lemma cannot be applied because if (Se. J( , (9 
is no longer path-connected but decomposes into two components denoted 
by ( S T and IS , the right and left spacelike complements of (9 
respectively. (9 is defined by the convention that (o,«> « l?* -

If x is sufficiently positive. All we can say using the argument of 
Lemma Z.I is : 

3.1 lemma 

1 
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whenever (9, C (19 + * , ^ f\ ( 0 + 3 , ^ . 

In place of Theorem 2.2 we have 

3.2 Proposition 

If s t Z (19' and L - r or •£ then there is a unique 

a1*- r o - * M o - a s u c h t n a t 

sttrM'wa-afau. i^z* 0.5) 

and if (9, « ( 0 +• «0* 

y'"(«>(A1 = A , A t «10,). (3.6) 

If z' and z are cohomologous, so that there is a local function 

w i ZT e -» X, 0. with 

t'((r)w(^lr) =. w(.30M tl« . (r € £\ 

then the associated functions jj'; and g 1 are related by 

Jj'Val = viCo.1 y'tai , «•« S o (3.7) 

Thus one may associate with a local 1-cocycîe morphisms which 

are either left localized or right localized. Unfortunately there seems, 

in general, to be no information either on the relationship between <i* 

and u or on the way u* acts on the spacelike right and j 

on the spacelike left. The best we can do is to impose an additional 

locality requirement on local l-cocycles which allows more precise results 

in the direction anticipated by the discussion at the beginning of the 

section. 

We write ï t ^ l l » if z i Z'(<S> and if for 

any C É I ^ .and (9, «ft , IS, c (.0+ ! (1,0'n (CS*V?'-

1 
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l l \ ^ ' ' lie.:) 2(S^1 ( M = * , * ' * W , 1 . (3.8) 

In some ways this additional requirement may be looked on as a penalty 

for indulging in non-Abelian cohomology. Certainly if z takes its 

values in some Abeiian subgroup of I-w then (3.8) is a consequence 

of the locality of 2 . In more than two space-time dimensions, Lemma 2.1 

implies that any local cocycle satisfies (3.8). 

3.3 Theorem 

Let z £ Z LO) and let i,l, U denote -4 or r then 

there are unique automorphisms î£- such that if Q,< jf and t< £, , 

with ».(r*tf C 0,' , î,(n-(3 c Q> then 

Furthermore J., is the identity and 

(3.11) 

If q fs a real number ?• 2 then 

Ij. (M £ cut?,«- vW, AS 6tta,). ( 3 1 2 J 

If z' is cohomoloaous to z, then z'« Z •* U Z. W ) and 

MX. 
z' gives rise to the same automorphisms Jj- . 

EC29f : T h e uniqueness of the automorphisms follows from (3.9) ; 

what really has to be checked is that the right hand side of (3.9) is 

independent of b under the stated conditions. If 1 » j this follows 

from Lemma 3.1 which states that Jj£ is the identity. If f / j 

then (9, C 0,«r + lS) v and (3.5) and (3.6) show that 
r C W O f l • 3*"C»ofr)(.Pi) so that r ( « ( W can depend 

1 
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only on 3,1/ . Given c i 2Tt with U + V c 0,' and 
U + j 5 t c (9 . the cocycle identity implies 

Applying (3.8) we deduce that z.<a,£KA) = z(V0tft1 and 
this is enough to show that z.{frXA) i" ! 3-9) is independent of Jttr. 
As usual, this independence implies that î t - is a morphism. Now 
by Cjality we know that z(b) is induced by a unitary from 011(9̂ 1 
where tfr is the smallest double cone containing 8*3,fc and (9+i.t. 
However we may pick b ( 3T, such that I9t- ^0+ Oi and 

ïc îUO = * W l M • A ««.WO • This proves (3.11). 

Now pick c « r t .such that O-t-Vi." ^(.<V<jlS) . 
0 + V t c C (.«,• \01* and (3 + V i e «= l(J,+^(9)1, evaluate 

the 2-cocyele identity on £ e 6ttO,) using (3.12) and we deduce 
(3.10). This also shows that Jy 1s an automorphism. If we leave 

' t * t

c and \ a , e as above and pick \^c «ft then the cocycle 
identity implies (3.11). 

If z 1 is cohomologous to z , there is a local function 
w t 2TD -»Tv,& so that (2.6) holds. He may suppose without loss of 

generality that S t %0 has been chosen so that _:'«. Z'ttS? and 
W J C ' W • Now pick (>£r 4 such that Q*-3,t <= «S,+^8)> 

and lS + a.«f <i tiS,«-\6)'' . apply (2.6) to fkeCLU»,) , and 
we get using (3.12). 

If we now return to (3.8), we see that this suffices to show that 

Actually duality and covariance of the vacuum are enough to 

show that we nay take q » 2 in (3.12). It should, however, oe noted 
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that (3.12) does not imply that 5{,. is an internal symmetry -, 

J, might implement the space-time translation through some xs <3 

for example. Indeed this situation is not so unlikely if we realize 

that 4 P in (3.1) need not transform like a vector under the Poincaré 

group but might be ô ^ , say, where Q** is the energy-momentum 

density; On the other hand, if the cohomoiogy class of z contains 

elements of Z 1 1 0 ' for arbitrarily small (3« jV. , then 5 ^ 

will be an internal symmetry. 

Now that we know that y''(a) behaves like T,t on the 

spacelike left, we have enough information to given an analogue of 

Theorem 2.3. 

3.4 Theorem 

Let ©e3Y. and let Ï be an automorphism of ft. such that 

r ' le i iAO <=• <5u<ve), i9,e:fc. (3.13) 

Let *j*" : 2T, •* Mo-rot. be such that 3*i<o is equivalent to 
3*t«.') for ou, «,'t E„ and 

3*c«.) CM • SCM > ^ e tUU**-} (3.14) 

Then there is a local 1-cocycle t e Z ' ^ l S ) , ^ > t with 

(3.15) 

^ is the automorphism ^ . associated with z in Theorem 3.3. 

Proof : (3.15) for z c Z ^ ^ U ) implies that Ï is the auto-

uorphisni J,^ associated with z in Theorem 3.3. The remainder of 

the theorem will follow as in the proof of Theorem 2.3 provided we can 
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show that any inner automorphism satisfying (3.15) automatically hjs 

the correct localization prooerties. However if O, <• (̂ .(9 + 1*) 

then either S , c ( ^ B * » , m ' n ( ^ ( J + J , H l or (S, c 

('̂(S + V' l'nCatS+a.<'r Ke deduce that iMlK) - h ,P>e 0.100 

by applying (3.15) to ï"lftl e 6(.(.<3,+l9) in the former 

case and directly to A in the latter case. 

This concludes our discussion of the local 1-cohoniology in a 

2-dircensional space-time. We have, at least for local cocycles in "Z. , 

reduced the study of this cohomology to the study of transportable mor-

phisms which are, say, right localized and behave on the left like some 

almost local automorphism . How much can be said aboutsuch r.iorphisms is not 

yet clear and it is worth noting that there has been, as yet, no syste­

matic study even of transportable localized morphisrasin a 2-dimensional 

space-time. One knows that the basic Lemmas 2.4 and 4.1 of [ 5J fail 

in this case. The proof breaks down because 19' is no longer path-

connected. The physical reason why the results must fail is that even 

if 1= O in (3.2) we might be generating a non-trivial gauge sym­

metry and thii influences the commutation relations of the associated 

unobservable fields. 

Of course any theoretical analysis of what might happen must 

be backed UD by models snowing what does happen so as to minimize and 

localize the speculative content. Such models do exist in the literature 

and deserve a more detailed comment than that given here. The earliest 

such model is the treatment given by Streater and Wilde [sj of the free 

Skyrne model. From the point of view of the local cohomology it is a 

very natural model to think of : there is no free scalar field of mass 

zero in two dimensions so the conserved current which ought to be its 

derivative should, and does, generate non-trivial local 1-cocycles. This 

work was extended by Bonnard and Streater j_9J to the massive free field 

with U(l) or 0(2) symmetry. However undoubtedly the most interesting 

results to date have been those obtained by Frohlich [lOJ. They show 

how the local 1-cohomology in two space-time dimensions can generate 
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I 
the soliton sectors for interacting models with spontaneously broken 
internal symmetry such as the quantum "sine-Gordon" roodei. This 
is best seen by comparing eq.(77) of \}0\ with eq.(3.14) above. 

1 
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APPENDIX 

He gather together here for the reader's convenience a few 

basic definitions and elementary facts relating to cohomology. The 

reader wishing mare detailed information might consult, for example 

flQ. The standard n-siraplex, denoted b;- A " is ? U W ••»'& <?**'« 

t % o and £ i l " i j . There are affine mappings, 

<ii : /ïT -» A"** , i.. o,<,r...,«nand s. : a." -* A*"* , 

j « 0,I,2,...,n-l defined by 

V t U * , f <="> = Cl-.tV.-.t'-'.o.l1 ,...t"7 

Any orientation preserving affine mapping from /-i to A Is a com­

position of mappings of this sort. The following rules may be used to 

«anipulate composite mappings 

•fjdi «= tin+i.. '•*] 

S: S. - s 4 l i + , >
 v * i ( A. 2 ) 

If X is a topological space, an n-simplex of X is a con­

tinuous mapping « : A " - * X . The set of n-simplexes of X is 

denoted by J T n O O . The mappings d; and e; Induce operations 

on the simpTexes of X : if « c J ( x ) , 
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1;, a « ai;. ' « « i M n " 
(A.3) 

r-». » a s: , jiCiMi»i" . 

These operations are called the t undary and degeneracy opt rations on 

the simplexes of X respectively, and (A.2) gives 

»4o> c identity, »'»},)»< (A.4) 

* i * « <r 4<r{ 

A 0-simplex of X nay be considered as a point of X and a 

1-simplex is a path in X . If a. € r„CX) , n >o , then we 

define 5. . JT^OO . the oppositely oriented simplex by 

•.u',k\...,fc") = •.iC,f\...Xh < A - 5 ) 

Suppose X in a convex set and let *c0c X t h e n w e c a n 

define a mapping h i £",, 0 0 - » Z^,CX) as follows 

U w U \ f c \ f M ) - l \ * L M ' ) ' « W > , , , - « f ) 1 ***< 

(A.6) 
* » . , «:*» -i. . 

Here we have written -c = lt-k*)~ • The geometric interpretation 

of hi*.) is .that it is the n+1-simplex constructed by joining each 

vertex of the n-simplex a by a straight line to the point «i, . 

lie have 

Î.U10 = * , a^t»! - U(a<_,*), i"> ( f l 7, 

except that if o e T0 (."<) then • l(o)Kje, A mapping satisfying 

(A.7) is called a contracting homotopy. 
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Cohomology usually means Abelian cohomology ; however we only 

need the formal definition of the 1-cohomology and there is no difficulty 

in defining the 1-cohomology with values in some non-Abelian group G . 

A 1-cocycle with values in a group G is a function 

Z . r , t X ) - * G- s^h that. 

zC3»c> iCa„.«0 a z(3,c), ci.ZJX) (A.8) 

A function z : r , 0 0 —• G- i s a I-coboundary i f there is a function 

w:r oOO-*&- s u c h t h a t 

ZCIr) - W(3 0W w c a » " \ I r t Z T ^ X ) . (A.9) 

Every I-cocycle is a 1-cobDundary. Two 1-cocycles are said to be coho-

nologous i f there is a function v i : £ " 0 0 -» G- such that 

Z.'(lr)wC3,0 - wC3.W2(.t), (r«2;tX). (A.10) 

This defines an equivalence relation on the set of 1-cocycles and the 

corresponding equivalence classes are called cohomology classes. 

A.l Lemma 

Let z be a 1-cocycle then 

z(W = ZLÛ)-" > U I , W . 

Proof : Given at I^CX) apply (A.8) to r4t;a.4 r,_t>0 

and we get using (A.4), Zto^a.) Z(<£a.) = Z.C«i«0 . which implies 

ZUÇa.) = 1 • Given Ir £ ZT..CX) . define ct Z^CX} by 

e(fc°1f,
t\) = t(.tVtv,t7 and we get applying (A.8) z(Q2(t) » *t^»,k)» i . 

A.2 Lemma 

If X is a convex set, or, more generally, if we have a contracting; 
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honotopy W : 2Z H 00—» ZT.,^,00 then every 1 . cycle i s a 1-cobaur.dary. 

EC29f : Let z be a 1-cocycle. Given o.« VaLK) define 
«•CO » * l M < o } • Given lr«Z".,tX.) , apply (A.8) to M.UC Ç.IX) 

and we get using (A.7), i(M>»i(3,<r) = «!(.«„(») showing that 
z is a 1-coboundary. 

flCKNOHLEt-EMENTS 

R. Naag has stressed to rae on several occasions over the past years 
the importance of locality as the novel Ingredient of a cohomology 
of differential forms in quantum field theory, citing quantum elec­
trodynamics as an example. His remarks eventually fell on fruitful 
ground. D. Buchhoiz has suggested to me that looking at path-dependent 
unitary operators might be a good way of trying to exploit these ideas 
in an algebraic setting. From here it is but a short step to realize 
that the resulting 1-cohomology is Just the existing theory of super-
section sectors. 

I 
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