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dbstract

skyrme's interaction is shown to lead to signifi-
cant simplifications in generator coordinate calculations. As an
illustration giant resonances are calculated using pure oscillator
wave functions. We present results for monopole, dipole and quadru-
pole lsoscalar and isovector modes using two different Skyrme
forces SIII and SIV. A good agreement with available experimental
data is obtained.
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T - INTRODUCTION

In the past few years the Skyrme interaction {1}
has praved to be a very useful tool for inveatigating ground state
proparties of nuclei in the Hartree-Fock approximation. Indeed,
because of its computational simplicity, it has allowed calculations
which would become prohibitive with other interactions, e.g. defor-
mation properties of heavy nuclei including their f£ission barriers

[21.
The purpose of the present paper is to demonstrate

that the Skyrme force alsa leads to significant simplifications in
yenerator coordinate calculations and to generalize some preliminary
results which nave already been reportéd elsewhere 1[29]. In’
particular we show in section II that the energy kernel occuring

in the Hill-Wheeler equation can be canstructed from a local energy
functional involving one-body densities only. As an illustration we
aonsider in section III the calculatlon of giant resonances, for
which the Skyrme force 18 expected to be an appropriate effective
interaction | 3,41 . Usin¢ pure harmonic oscillator wave functions we
are able to obtain analytic expressions for the energy and overlap
kernels ip the case of isoscalar and isovector monopole, dipoles and
guadrupole vibrations. In section IV our numerical method for solving
the Hill-Wheeler eguation is presented while section V discusses the
corrections arising from the center-of-mass motion. [n Section VI

we cansider the eva}nation of energy weighted sum rules and in
saction VII we present numerical results for rwo different Skyrme
torens SI1L and $IV [ 5] whuse parameters are listed in Table 1.
“inally ¢ summary of our main conclusions is given in section VIII.



IT ~ EXPRESSTON OF THE ENERGY KERNEL WITH THE SKYRME INTERACTION

In this paper we shall work with a set of Slater
Jdueterminants depending on one or two generator coordinates o, i.e.
t{a}) or ¢$(«,3 ). Ne shall restrict our description to spin saturated
N=72 nuclei and we shall neglect spin-orbit and Coulomb forces. The
Slater determinants¢(a) are products of proton and neutron Slater
determinants ¢ (a}, op(u) . Each orbital ‘An(;") ‘ﬁp(:'il” in ¢, {a)
(¢ (a)) is occypied by two neutrons (protons) with spin up or down.
A straighforward calculation (see for example .the appendix of Ref.é})
shows that with the Skyrme interaction one obtainz

<h(al{H[4ati> = so(a)|o(a')> fd’r H{Z) )

where S {u}i2(w?}: and <& {x} (ﬁ;'d-(n'):- are respectively the averlap
Kertnied (/'[/" {1i,u') and the hamiltonian kernel ¢ {z,a') of the Hill-
Wheeler eqguaticn and H(I.") is a functionnal given by
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The coefficients to, t;, L2, t: and xy are the parameters of the
Skyrme force. The densities O D ,the kinetic eneryy densities Tn'

'L‘p,qnd the current densities jn,jp, are defined by



e = 5 e

s -1 x> -
) =2 3wt ek e, )

ol Ve, Ga T, (et 3

i

B = D0 o ¥ Gmbe, (=Pl (Ea e, (Fa))
Ap=l

where A is the mags number of the nucleus and the neutron overlap
matrix (N“)“1 is desined by
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Similar equations hold for the densities o_, T_, ﬁ'p and the matrix
NP . The determinant of the averlap matrix 1s equal to the total
overlap kernel

JV" (w,a') = (det N det Np)’ (5)

The exponent 2 appears because each orbital 1s occupied by two
particles with opposite spins .

. . . » - >
For isusvalar modes we have v, lrp) £ "xn('i‘l which implies
""p=?'"‘n and wimilar relations for T and j and
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III - CALCULATION OF GIANT RESONANCES WITH OSCILLATOR WAVE FUNCTIONS

A) Evaluation of the densitiles p, T and 3

In this paragraph we shall only congsider neutron
densities. Proton densities are trivially obtained by interchanging,
indices n and p. The Slater determinant ¢n(ql contains the loweat
eigenstates of a spherical or axially deformed oscillator well not
necessarily centere? st the origin. The occupled states are defined
by

2o, + {A]l +n, <N (%))

with nr,t‘. and a, being the usual asymptotic quantum numbers {7]. The
number N is 0 for que, 1 for %0 and 2 for 4Cca.

To describe monopole and quadrupole modes we choose

the genegacor coordinates to be the oscillator parameters Y= Tz
and y;= —= whers w and m are oscillator frequencles along tple z-
h

axis and in the xy plane.

To evaluate the densities (3) corresponding to the
inaividual wave functions pAn(Yz'Yl';) and "An(Yé’Yi';) it is conve-
nienl to note that the following relatlons hold
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In eqs (8) and (9) L, and M, are two triangular matrices. Their
. Yz Y i

coefficients are respectively functions of :—z- ’ _-_i and — , _—‘l .
Yz T Yz W

As a consequence of Eqs (8-9) we {ind that the one body operator
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wh:l.ch thanks to the definition of “A satisfles the relationa
Tra =A/2 and on=pn(but not pn-q.l can be related to tha density
matrix
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The densities {3) are then immediately obtained from equation (14)

Pa(E) = o, (F) T(E) = T () - e () ()

Jat®) = = oo, E1 ¥y, () (15)

Here Py, and '1' are the density and kinetic energy density cons-
ttucr.ed from t.he density matrix p (E,i’:') .




The generator coordinate is now the distance z,
of the center of the harmonic potential generating the set {'An}
to the origin. We shall consider motion along the 2z axis (unit
vector k). We then have

0ynizT) = v, (0,5~ ZK) (16)

We also choose the wave functions -p‘\n(D,I-) to be eigenvectors of

a spherical oscillator potential whose parameter Y minimizes the
total binding enefgy. In analogy with the definition (11} we intro-
duce

> 1
2, = ; (zn + z;l) {17}

When one expresses the wave functions {w)‘n(zn,f)} and (-p;\n(z;‘,f)}
in terms of the set ('p,\n(in';“ one obtains expressions identical
to (8) and (9) with
> 1 >

An (D) == A {zg-2l)r.k (18)
2
Equations {14) and (15) can also be shown to hold provided ?"on (;,E')
is defined as
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B) Explicit expressions of the overlap and energy kernels




The relations {15) show that the quantities
.z .2
DnTn+Jn, p T +j are respectively equal to Pon Ton'popTo .
Furthermore for isoscalar modes pT+ji=mp, Ty and the gquantity /SH(x)

defined in (6) is

- :
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The quantity B(?z,TL) is just the expectation value of the Skyrme
hamiltonian for the Slater determinant containing the wave func-
tions ¢, (TB,Vl,E) and depends only on the arithmetic mean of gene-
tor coordinates. Thus the only term in (20a) dependlng on the
difference of the generator coordinates arises from the kinetic
energy. -

In order to include isovector modes we need to
consider four generator coordinates Yan’ sz, Yin’ ylp. In this
case the quantity (o T +pPTn+z'j’ﬂ3'p) is still a function of x, and
Xp and the part of H depending on (Y, =Y; ). (yzp—y;p) and (y) =Y/},
(Ylp'Yip) will be a function of the Skyrme-parameter combination
(ti+ts) -

In appendix A we present detalls of the calcula-
tion of fH(r) d’r for coupled isoscalar ard isovector monopole
modes. The value of E(y,y) {(Eq.{20b))1is obtained from Eq.A4 by
setting y'=y. To obtain B(yz'Yl) we notice that deformatlion of the
harmonic oscillator wave functions correspond to Lhe scale transforma-
tions
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v, = vy . (22)
We then obtain
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The values of the coefficients ci,4;,.ho.ge and jo are givel; in
Table 8 for the three magic nuclel "He, 1 0 and oca. We finally’

note that

2 ly, =y} )? tyy =y ?
h foon(VXn)’d’r=—ri =3 ( z 2 ., A 1 124)
2m 2m 3 “z 4Y) J

At this point we stilll need the value of the overlap kernel. Using
formulae (8) and (9) one notices that

L PSS A S (25)

Since l'n and M  are triangqular matrices their determinants are
equal to the products of theilr diajonal elements
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In equation {26) n,,n, and |A] are the amymptotic guantum numbsrs
of the state A. We thus find
20
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with D=l for 4!'le s 6 for 1 O and 20 for ‘OCa.

8) dipole mode

Using the same procedure as in the above subsection
and setting z,*2,=2 in Eq. 16 and its analog for protons we obtain
for the isoscalar dipole mode (translation) from Eg.6

3 02 a o2
MH(x)@’r = Ely,y) - — = y{(z-2‘) (2B)
2m 4

where E(Y,y) is defined by eq.(23).
The calculation for the isovector dipole mode, which corresponds to
z = -z =z in Eq.1§, is still straighforward but more tedious.

n
Details and results are given in appendix B. Not1c1n|g that

(L )y, = exp(~ § Y(z-2)7) 04),, = expi- é Ylz=2z')?)  (29)

for all A we find for the neutron overlap kernel

det N, = exp (- % lz-2")?) (30)
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IV ~ SOLUTION OF THE HILL-WHEELER EQUATION
As usual we replace the Hill-Wheeler integral
equation
5 Wiy -8 HMaa £ dat =0 31

where o stands for one or two generator coordinates, by a matrix
generalized eigenvalue problem

n
n Y Reeyp -8 Kageite) =0 (32)
=

The guantity h is the step of the (regular) mesh (ai) while n 18 the
number of points of the mesh., In our calculation n was choosen equal
to 143% . This value is large enough to ensure the stability of
all the observables under consideration (energies, root mean sguare
radii, quadrupole momentsa, transitions rates) against any change of
the mesh.

For the nonopole. modes we use a regular mesh in
Yn and yp. The isoscalar monopole mode is obtained by choosing iden~
tical values of Yn and v _.
For the guadrupole mode we define

1 \

q= = and yi= oy, 7)) (33)

For a pure guadrupole mode y is fixed. For coupled monopole &nd
quadrupole modes g and y are two independent generator coordinates.
We have used a regular mesh in the guantity (g-1) {1+y).

For dipole modes the generator cocordinates are
2, and z_ i.e the dlstances of the centers of mass of the heutron
and protons densities from the origin. The isnvector mode corresponda
to opposite values of z  and %y (zn--zpsz) .

%Such 2 large number of mesh points is necessary to descrik~ accuraéely
the weight functions graphed on Figures 5 and 6. However a smaller number
of mesh points e.g. 15 is sufficient to obtain energies and radii with

4 gignificant Figures.
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[URURUTPRES |

The solution of the generalized eigenvalue problem
{32) cannot be achieved by a direct :anersion of the matrix
(uilaj) i 26]

Indeed uhen the um:h (“1} i1s dense the matrix ‘-}l4 (“1'“ ) is nearly
gingular. To bypass th:ls difficulty we diagonalize the hermitian
matrix. df and: eliminuto all the eigenvectors of c/(’ with eigen-
values lower than a small positive numbexr €. In the subspace spanned
by the remaining eigenvectors we construct and diagonalize the
operator N-1/2E, =1/2 e prescription amounts to substrac-
ting from the original variational space all the vectors with a
zero (or nearly zerb) noxm. It can be shown that the solutions of
" -this restricted eigenvalue. problem are stable with respect to small
. perturbations of the matrix [8]. In particular the results presented
- - hereafter do not depend on the value of the quantity e which 1n our
calculations was 10 3.
As a conseqguence of the non-orthogonality of the
- G.C.M. bagis the Hill-Wheeler functions £ are not orthogonal and
i their discussion becomes rathex invélved [ 28] . ¥urthermore they are not
stable against any change in the mesh. For this reason we have cal-~
culated the set of orthonormal functions {g,} which are obtained
from {fj_} by

R TR e 253

L g = N2 g ‘ (34)

‘and are numerically stable.

In eq. (34) £; is a vector-and gﬂu/z a matrix
satisfying

l" ; | - dfuz J,.1/2 I

"The index i just labels the different solutions of the Hill-Wheeler
t.eguat:l.on. In section VII of this paper we thall diecuas the behavior
-ofvthése' functions., It should be noted that the functions g are the
natural quantities to consider when trying to replace the integral
“Hiil-Wheeler problem by a Schrédinger-like equation [9,10l].




12.
V = CORRECTIONS

Center of mass {C.M.) effects are known to be
important for light nuclei. A standard way to correct for them is
to subtract from the total energy average value of the operator
$2/2mA where ¥ is the total momentus of the system i.e. to make the
substitution A + H-P/2mA in the left hand side of Eq.1. This
prescription seems to be rather accurate as far as energy levels
are concerned but less aatutaéwty for properties involving nuclear
wave functions e.g. form factors (21} . In our calculations we
substracted only the one-body part of 5'/2m4\. For the nucleus 4l-le
this approximation is exact since the two-body term vanishes
identically. For the heavier nuclei 160 and ‘OCa for which C.M.
effects are smaller we have checked that C.M. corrections affect
neither correlations nor energy differences between the ground state
and the £irst excited states. From a technical point of view the
correction of C.M. motion will not change the formal expression of
fi(r)d_’_r (23,28 , a3, B2)- One needs only to replace the coeffi-
cients ¢, by c; = ci{A-1)/A, where A ig the mass of the nucleus.

our calculations do not include angular momentum
projection effects. As was found in the calculations of Reference 13
these effects are negligible for energies of guadrupole modes in
oxygen-16 and calcium-40, but may be sizeable in helium-4 [ 21).

V1 - ENERGY WEIGHTED SUM RULES (E.W.S.R.)
In appendix D we show that energy weighted sum rules must be satu-
rated in the present generator coordinate calculations. In thia section
we recall some results which have been obtained and discussed in Refs.4,11).
Although the Skyrme interaction is velocity depen-
dent it can be shown that the formal expressions for isoscalar
monopole and guadrupole E.W.S5.R. are identical to those corresponding
to local two-body interactions.
For a given reference ground state |o> we have for the monopole sum ruleEMs

s = <oll e aEtife = Mg <olEfos {as)
2 2m

where $* is the one body operator I xi+yi+z§_. For the gquadrupole
i

isoscalar mode the L.W.S.R. is

- o ’ 2 - -
508 = <0|3GMA 0> = 12 4 (2<0127)0> + <0]d]0>) (36)
2 m
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where Q is the quadrupole operator { = E ZIi-xi-yi.

In the isovector case the interaction appears in the EWSR through
its neutron proton exchange part. The monopole lsovector sum rule
(correspond_ng to the one body operator I r’i 1; where 1,=1 for
neutrons and ~1 for protons) calculated with the Skyrme interaction
is

v s<o|§(§ rf TdRE 5 rilie -

h? =2 1 1 2 >
40 2= <0|T?]0> + Z(t1+£2)<0|= E (1-1,v,)x28({k,-F.)]|0>) (37)
pid ! 2 o lz 15 LT I

The dipole isovector sum rule corresponding to the operator i LY %is

BDV <o|§(i ziri.[ii,i 21,010 = -
h? 1 1 + -
(=~ A + =(ty+te)<0]= L {l=t 7.)8{x ~r,)}0>} {38)
m 2 T gy 17y 8 Gy

If one chooses {0> to be the gemerator coordinate ground state the
evaluation of EMV and EDV will involve the calculation of

1 - 122 2 vy 1 »
<¢(a )|z 1z:j (-t reds E-E) o e")> M@ an zfr Popgd’s  (39)
and

l - * _ 3
<®(a )Iz 1):1(1 titj)G(ri rj)lotu'p = d(‘(a ,a') 2fpnpp a’r (40)

where o, and °p are defined in (3).




VII - RESULTS FROM THE GENERATOR COORDINATE METHOD (G.C.M)
A) Isoscalar modes
@) monopole mode

In Table 2 we give the elgenvalues of Eq. 32 for
the first monopole states of the nuclei ‘He, 166 ana *%a. we have
also included the variational binding energy E, of a pure Slater
determinant of oscillator wave functions as well as the difference
Ey~E,=AE, .

From Table 2 one can gee that except from the case
of ‘He the eigenvalues By of the lowest generator coordinate state
are very close to the variational values E,. We shall return later
to the special case of ‘He. The differences AE; give the monopole
excitation energy. The small difference between the SIII and SIV
predictiens is correlated with the inctmpressibility modulus in - '
nuclear matter which is 356 MeV for the first interaction and 325
MeV for the second. One can also calculate directly the incompressi-
bility modulus K in %0 and %Oca. For a nucleus with mass number A
described by a Slater determinant of oscillator wave functions we
define K as

k=% 2E(y (41)
A ay? Jy=ve

In this expression the notation is that of equation (20) and y, is
the variational wvalue of the oscillator parameter y. Using equation
{20) one finds for 165 a value of K equal to 200 Mev for SIII and
182 MeV for SIV. From these numbers one can easily verify that AE,
1s proportional to /K as is the case for the hydrodynamical mpdel
[12]. For 40ca values of K are 231 MeV for SIIY and 210 Mev for
SIV. As expected they lie between the values for 165 and those

for nuclear matter. As compared to other theoretical approaches
[13-18] our monopole excitations enermies are generally larger
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by 4 to 10 MeV due to the rather larger incompressibility associa-
ted with the Skyrme interaction, That the Skyrme interaction and not
the G.C.M. treatment is responsible for this difference is demons-
trated by the evaluation of the same guantity by the R.P.A. method.
Indeed using the pame Skyrme forces the authors of Refs. 4,11,14.
obtain very similar results. We should also mention that recent
experiments [19] suggest that an important fraction of the isoscalar
monopole strength may be located near 20 MeV in calcium=40, which
is considerably lower than our predictions,

The calculation of E.W.S8.R. shows that the first
monopole state of 160 and “)Ca exhausts more than 903 of the sum
rule. This seems to be a typical feature of the generator coordinate
method (13]l. In the case of dge the first excited state exhaust only
45%. The rest is presumably assoclated with transitions to the
continuut., Such transitions are not included in our variational space.
Furthermore they cannot be computed accurately with our discretization metiod.

in fig 1 %e haxe.plotted.as a function ofethe

- -
parametex Y trh2 diagonal part of the energy kernel of 160. When y=0

the nucleus has an infinite radius and the corresponding energy
is zero. Due to the kinetic repulsion the energy first becomes
pusitive. When the nuclear forces become important they overcome
the kinetic energy increase. After the equilibrium point the short
distance nuclear repulsion starts predominating and the energy tends
to infinity as the nuclear radius decreases.

In the same figure we have reported the functions
g of the three first G.C.M. states of 16(). The ground state function
has the usual bell-shape and the g corresponding to the first and
second states are very close to the first and second derivatives
respectively of the ground state g function. This result is remi-
niscent of the well known scalinq method which describes the monopole
vibration as L Oo(w, ...yr ]] where 9o is the ground state wave

function [201

In figure 2 we have presented the functions g, of
the three magic nuclei 4He, 16(), 4OCa . One notices that the width
of g, decreases with increasing values of . The vertical bars indi-
cate the values of the oscillator parameter yo, which minimizes the
energy. The maximum of g, occurs for " Ca and 165 at apout Yo. On
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the contrary that of the 4lﬂe curve is noticeably shifted from Y.
This leads to a 0.2 fm decrease of the root mean equare radius
associated with the inclusion of the G.C.M. correlationa.

This can also be seen in fig.3 where we have
plotted the charge density of He'1 and its form factors. The form fac-~
tor of the oscillator density (vy=y,)}is a straight line while that
of the G.C.M. ground state exhibits adip (in agreement with experi-
mental data). However the second maximum of the G.C.M. form factor
is not high enough as compared to expe:i.ment’. In the same figure
we have plotted the results obtained by a complet:.e Hartree~Pockx
(H.F.) calculation. At low momentum transfer the H.F. form factor
is very close to the oscillator form factor. The dip appearing in
the B.F, curve occurs at a too small momentum transfer .

The G.C.M. and oscillator densities of 150 and
4004 have been found to be very cloza and the small differences bet-
ween them do not lead to any significant effect on electron~scattering
diffeventia® cross sections. = - -

Let JR> be the state deduced from the oscillator
ground state |0> by a translation R. wWithin -he pushing morel the
energy B; of the nucleus moving with a velocity

e
‘;=P-E is
m

+
r ¥R o> atx
142)

By =
! ARE 3 jos a'r

The evaluation of <R[H|0> and <R[0> 1s trivially obtained from

Equations 28 and 30 by replacing (z-z')? by R?.

®it is not clear that one can draw definite conclusions in the case
of 4He since an exact treatment of center of mass motion would presu-
mably affect noticeably the G.C.M. results for the form factor [21].
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Notice that equation (42) involves the hamiltonien i and not
f-p?/2mn.
Using equations (1), (28) and (30) one immediately obtains
2 2
Eg=E (v -2 3) &+ B g (a3

2m 2 2mA

The first term on the right-hand side of (43) is just the oscillator

energy. The second term is the center of mass energy of the oscilla-

tor state <OIP—-IO> . The third term which is the only one depending
2mA

on ~ is the kinetic energy. One sees that the translational mass is
correct, This result ia due to the fact that we use 2 harmonic oscilla~
tor Slater determinant to describe the nucleus.

In the figure 4 we present the ground state wave func-
tion g, of the three magic nuclei 4He, 16(J, 400y plotted as
a function of the dimensionleas quantity q=11/~{=. It i3 seen that the
width of gy decreases with the mass of the nucleus.

In Table 3 we give the results of a calculation
with SIII for coupled monopole and guadrupole modes. The comparison
with the results of the G.C.M. calculation of monopole mode alone
shows that the ground state corielation energy nf 160 and 4°Ca is not
much increased by the inclusion of the gquadrupole degree of freedom.
For these two nuclei the energy of the second excited state of the
coupled Hill-Wheeler problem is close to that of the breathing mode
{Table 2). One is then led to identify the second excited state with
the giant mopopole resonance. This is confirmed by the consideration
of its quadrupole moment which 18 nearly zero and by the contributions
to the E.W.S.R. reported in the columns EMS and EGS. This state nearly
exhausts the monopole sum rule { 9135 Mev fu® for 1%0 and 38267 Mev
t‘m‘l for 4al’.‘a) and does not contribute to the guadrupole sum rule.
(18288 Mev fm® for 150 and 76576 for ‘Oca). The first excited atate
which exhausts more than 90% of this latter E.W.S.R. can thus be
identified as the guadrupole mode, .

—f
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In figure 5 we show a contour plot of the three

firat functions g solutions of the coupled calculation for 40c,,
The ground state function g, loods like a bell shaped surface cente-
red around the optimal values (y.s.zsﬂtm'z,q-l) . From the two lower
graphs thie guadrupole and monopole character of the first and second
excited state is evident.

The results of Table 3 indicate that in ‘He there
exists some mixing of the monopole and quadrupole vibrations. The
guadrupole degree of freedom has induced a decrease of 1.6 MeV of
the energy of the ground stats cbtained with the inclusion of mono~
pole correlations only (Table 2). On the other hand the first
excited state, although it exh an important fraction of the
quadrupole sum rule (2470 MeV tm‘) , contributes also in a non negli~
gible way to the monopole sum rule (1234 MeV fm‘) . Therefore the
two excited states whose energlies are rather close 4o not have a
definite monopole or quadsupole character. It would then be interes-
ting to sed {f a treatment including projection of total angular
momentum would not change these results.

In Table 4 we give the energiles of the gilant
quadrupole resonance calculated with SIXI and SIV and the curvatures
RQ=1/A a: g (y.,q"/:’,y.q‘/:‘)/aq'|q_l. The lower energies obtained
with SIII are seen to be assoclated with lower values of the curva-
ture.

It is now very likely that the set of observed
resonances [ 22,23] with energies following the empirical law
E=60 A'I/ 3 have an isoscalar quadrupole character. It should be noted
that this law is very close to the estimate - sohr and Mottelson
{ 24] for the same resonances. Before comparing our results to experi-
mental data one must not forget that our calculated quadrupole

resonances exhaust almost completely the E.W.S.R.. Therefore it should

be more suitable to compare the G.C.M. energies to tha center of
gravity of the experimental E.W.SR[25]. However the available data
do not allow yet a precise determination of this center of gravity-
1{f one assumes as a first approximation that it corresponds to ithe
energy of the resonance,the experimental data agree better with the
results obtained with SIII.

' I
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B) Isovector modes

o) Monopole mode

The results of a G.C.M. calculation with interac-
tion SIIT of coupled monopole isoscalar and isovector modes are given
in Table 5 and figure 6. The contributions to the isoscalar (EMS)
and lsovector (EMV) aum rule show clearly that the excited state
have a pure T=0 or P=1 character. The isoscalar mode is as expected
the lowest, This is also vigible on the drawings of figure 6 which
display the contour plots of the thres first solutions of the Hill-
Wheeler problem. The comparison with results of Table 2 also shows
that the monopole isovector degree of freedom does not affect much
the ground state. Because of the proton-neutron sxchange part of
the interaction the T=1 E.W.S.R. is larger than the T=0 E.¥.S.R..

The enhancement factor can be written as (l+x) with x equal to .12
b‘ﬂe 21 4in 164 and .25 in 40, Finally we compare in '1";;19 s”
the resonance energies of the T=1 modes calculated with SIII and SIV.

8) Dipole_mode

In the lower part of figure 7 we have reported as
a function of the half-distance between the centers of gravity of
neutron and proton densities the diagonal part of the energy kernel.
It locks like a parahola. However for larger distances *z an inflexion
point appears and when z goes to plue or minue infinity the enexgy
reaches a constant value which is the total energy of the nucleus
minus the proton-neutron interaction energy.

The upper part of the figure 7 shows the functions
go of the three first solutions of the G.C.M. problem in mca. The
ground state function gyie an even function of z while g; is odd,

We find that the first excited state exhausts nearly all the dipole
sum rule in the three magic nuclei. This sum rule (105 Mev Emz in

“se, 441 Mev fn? in '®0 ana 1133 Mev £m® in *0ca) is larger than the
Thomas-Rejiche-Ruhn value [ 26] . The enhancement factor 18 1.24 in 4He,
1.33 in 16 and 1.37 in ‘°C¢. FPor interaction SII11 theee resulta

QU
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compar~ reasonably well with those obtained by summing all the
experimencal contributions to the E.W.S.R. up to 30 or 40 MeV. For
interaction SIV the enhancement factoxs are 1,8 for 4l-le. for "0,
and for 4uCa.

In figure B we show the ground state functions gp
of the three magic nuclei. Here also the width decreases with increa-
sing values of A.

Finally in Table 7 we give the energies of the two
first solutions of the Hill~Wheeler equation. The comparison with
the oscillator energies (Table 2) shows that the dipole correlations
do not affect much the ground state energy. Since our calculated
resonances exhaust completely the sum rules the discussion already
made concerning the comparison with experimental data in the T=0
quadrupole case also applies here. The measurement of the contribu-
tion o E.W.S.R. up to 30 MeV seems to show that the center of gravity
of the contributions is about 21-22 Mev for %Uca and 24-25 MeV for
18y { 27223} . PRE Tlfferences (E)=Eo) obtained with SIII agree with
these numbers.

In table 7 we aleo give the dipole curvature

calculated for the two interactions SIII and SIV. As

it was expected this quantity decreases with 1/A. Indeed in nuclear
matter it should vanish. It is also seen that the different results
obtaiped with SIII an? SIV for the giant dipole resonance energles
are not compatiple with the simple irrotationalformula 2h/K /mA.
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VIITI - SUMMARY AN CONCLUSIORS

The structure of the Hill-Wheeler equation has
been investigated in the case of the Skyrme force. We have shown
in partiecular that a simple formula involving one-body denaities
only can be derived for the Hamiltonian kernel. From this formula
analytic expressiocus have been obtained in the case of monopcle,
dipole and quadrupole modes calculated with oscillator wave func-
tions, .
Numerical results ha.2 been presented in halium-4,
oxygen-16 and calcium~-40 using two different Skyrme interactions
SIIT and SIV, Except for the case of helium, it has been found that
the coupling to collective modes does not affect the properties of
the nuclear ground state, namely its density distribution ard its
binding energy. We have also found that the Hill-Wheelex weight-
functions become narrower with increasing mass number, in heavy
nuclef.

It has been shown that the Skyrme interactaon
SIII provides a good agreement with available experimental data
concerning isovecror dipole and isoscalar quadrupole resonances.

For isoacalar monopole modes our predictions are somewhat higher that
those of other theoretical approaches. This difference has been
attributed to the rather high nuclear incompreseibility obt ined
with the Skyrme force.

One systematic feature of our calculations is that
the cclliective strengtn is always nearly exhausted by one single
stare. This means that in our model, gilant resonances are well
described by a multipole operator acting on the ground state wave
function.
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Appendix A

Hamiltonizn kernel for coupled isoscalar and isovector voncpole modes

We denate by 2p (V,E) the mass distribution
obtained by £illing oscillator states with a parameter ¥ = mo/h
and by 2T(y,F) the corresponding kinetic energy density. With these
notations we define the following quantities

ci= yfp(y,?)r‘a’r -1 f‘;.,f;uu r oBenreY) -fp(y.rm.'.rm‘r
Y

J

By (y,v") =fp(y,E)p(y',E)r=a'r ¢ Balv,v') =fp’(y.¥)p(y-,2)d=:
(A1)

Baly,y") =pr(v.§).Vo(v'.E)d’r, au(v,v')=ﬁp(y.?)wty-.r)+pn',?:)w(v,?nd?r

The functions B are algebraic functions of y and y' namely

Boly.y') = v2/? (@otdixsdax?)

72/2 (eqterxtezXz) /2(y+Y")

By (v,v")
" 3/2
B2 (v, v)=L- (—LL) (£o+E1u2+£2uv+E3v + £ udv42E5ulvi4f50" +Eeu'v?)
7 \2y+y!
By(v,y') = 2n 7,5/2 (go + gix + gax*)

Bulray") = tyrr') ¥)/? (hethixehax?enix?) /2 (a2)

where yo=2yy'/m(y+y') , x=a(y=y')2/(y+y")? , u=y/{(2y+y') and v=y'/(2y+y'}.
The coefficients ¢, d, e, £, g and h are given in Table 8 for helium-4,
oxygen-16 and calcium=-40,

In the case of coupled isoscalar and isovector
monopole modes the two generatér coordinates are the oscillator
parameters y, and yp of the neutron and proton distributions. Denoting
by |y,Y,> the corresponding Slater determinant we have from equations
2, 10, 15 and Al

®—
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i
H
3

i
{

~5.
<ynyp|ﬂlyny'>/<ynyp|yny'> - B(yn.Y )= L3 01 (6'/- +6;/7P)
tr+ - - :
- =7—-—(5 -4 ) B: (’{-nﬂp). e : (33)
where ¢ n=Vn~ Yn’ [ Yo" 'p v, 2Y -1n+7 and 2Y_=y, . The function

E(Yn.Y ) is the expectation value <Yn,y IHT n'Yp . Prom the defini-
tions Al this function is

E(Y,y') = E: ¢ (r+y")+ f“-((l-xo) (Bo{y,¥)+Bo (Y37 ")) +2(2#x0)Bo {v,¥") }
1)

+ fl(su {¥,y')+Ba (v, v))+ E1X3C2
16

(B (Y, Y2 +Ba (Y' ¥ "))+ 3%1 Buly,y")

+ 3—(;;'—“L(B-(v.v)+ns(v'.v‘))+ ?—-'-;'—t" Batver") a4

The expression of the overlap kernel is given by eguation 27.
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Appendhi. B

Hamiltonian kernel for dipole modes

Let us denote by Zp(z,'f) and 2'1‘(:,;) the total
mass and kinetic energy densitiea obtained by filling oscillator
states with a parameter y=mu/h centered at (0,0,z). We define

Do (2} =fo(z,?)p(-z,§)d‘r D, (2) -jrp’(z,?)a(-z,:-)d’r
(Bl)

Di(z) = f Tote,d) Fo-z, Da’r Ds(z):l(-p(z.;)TH,;HpHE)T(IE)ld’r

For dipole modes the gemerator coordinate is taken to be the distance
22 between the centres of the neutron and proton distributions.
Denoting by ]z> the corresponding Slater determinant we obtain from
equations 2, 15, 18 and Bl

<z|H|z'>/<z/z'> = E(T) - 2 bt yesr - Butt 252 po () (B2)
4 2m 4

where 2%=zz+z', érz-2', E(z)=<Z|H|Z> and where A is the mass of the
nucleus. From equations 15 and Bl the function E is found to be

2
B(z)= 2 22 iy« E0(1oxa)De (014 E2(24x0)D, (2)+ E2 Dy (z)+ ELE3E2 p o)
w2 2 2 8
. S—.x:_"-L Ds(z) + &azta) (o) + azta g, (4 (B3)
16 8

where ¢, is given in Table 9. Simple analytic expreasions for the
funct:ions B, which can be derived in a straightforward but tedious
way, are given in reference 30.
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Appendix C

Energy weighted sum rules and the generator coordinate method
Let us first prove a preliminary statement.
Let S be a Hilbert subspace and {|m>} a set of eigenvectors (with
eigenvalues Em) of the projection of the hamiltonian H, on S, [0>
being the ground state in S. Let 0 be an operator such that 8]0>
belongs to S then one has the relation

Lcoll8, 08,0100 = £ (E;~Ea) |<m|B|0>|? (D1}

2 m

In other words the E.W.S.R. corresponding to O 13 exhausted in the
subspace S, Indeed

1 coy15,ld,000> = <0|0 i 810> - L <0j0 O H[0> - L <o)t O Sfo>
2 2 2

By definition the states {|m>} verify

m|filn> = E & . (D2)

Using this property and the fact ihat 5|O> belongs to 5 one obtains

<06 # 0f0> = E, [<m|B[0>|2

I
m
and

L (018 6 @jo> + <0|H 6 6]0>) = I Eo|<m|B[0>|? Q.E.D.
2 -]

When 5 is the G.C.M. space spanne@ by a set of
wave functions {|a>} the G.C.M. ground atate |{0> is a linear combi-
nation of states |a>. Therefore proving that O|a> belongs to S will
prove that 00> also belongs to S.

" e vege
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When {|a>} 18 the set of Slater determinants
©(y,,y,) containing the lowest oscillator,wave functions ¥, (Y,,v %)
{1 <1 <) and 6 the one~body operator S.El zi) one has

-

A
(T z%) ety 7)) = - = e(yly) (p3)
=y 1 e’’l ay} 2’7l v,

A similar property implying derivatives with respect to y, holds for
the operator [ (xi+yi) . This proves that within the space spanned

i=1
by the functions 0(75,-11) the monopole and quadrupole isoacalar sum
rule are exhavsted. Mutatis mutandis a similar proof holds for the
igovector monopole and quadrupole sum rules.

When |a> is the set of Slater determinant ¢(z,)

containing tha lowest osclllator wave functions wi(y,y.;-zui)
(wi(v,y,'{wzoi)) for neutrons (protons) and O the one-body operator.

A
(I 2,1.){1,=1 for neutrons, -1 for protons) one haa
1=1 i

A
(E zrpelz = — Leiep +Azq ©(z4) (D4)
= 2y dz§ z¢=37¢o

This relation proves that in the space epanned by 0(2Z,) the dipole
lsovector sum rule 1s exhausted. i
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Table Captions

Parameters of the SKyrme interactions SIII and §IV.
Notations and units are those uf Ref.5

Energies of the three first solutions of the
Hill~-Wheeler equation for isoscalar monopole modes.
The winimum B, of the energy calculated with oscil~
lator w.f. ia also shown

Results of a G.C.M. treatment of coupled isoscalar
mongpole and quadrupole modes (SIII)

Energies EQ of the giant igoscalar quadrupole
resonance, The values of the isoscalar quadrupole
incompressibility Ko (see text) are also shown

Results of a G.C.M. treatment of coupled isoscalar
ard isovector monopole modes (SIII)

Energies in MeV of the giant isovector monopole
resonance

Energles in MeV of the two first solutions of the
Hill-Wheeler equation for isovector dipole modes.
The values of the isovector dipeole incompressibility
K, in Mev fm™2 (see text) are alsc shown.

Numerical values of the coefficients ¢, d, e, £, g,
h and ) occuring in Eqs. A2, A3 and 23.
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Table 1
to ty t2 ts X W
SIIT ~1128.75 395.0 -95.0 14000,0 .0.45 120.0
sV -1205.6 765.0 35,0 5000.0 0.05 150.0
Table 2
e 16, 10,
£, |-26.40 -132,16 -402.5
Eo | -32.93 -140.32 ~403,26
8IIX B, - £ 75 =-108.65 -374.86
Ex - - 81.75 -346.97
AE, 27,58 31.67 28.4
B, |-26.72 -138.82 -403,88
Eo | -32.04 -139.66 -404.42
s1v E, ~ 5.69 ~109.42 -377.2
E: - - 83.67 -350.64
AE, 26.35 30.24 27.22

RSN

PRSI
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Table 3
E Byey r e, EMS ‘ BS
Mev fm fm MeaVfm MeVEm
o | -35.58 - | 16 | -4 - - :
4 1 | -8.06| 27.52| 2.39 |18.5 108.7 916.8 A
2| -6.39| 29.19] 2.67 [ -9.4 2.1 343.7 l
0 | -146.41 - 2.62 | 0.2 - -
16, 1 |-118.38 | 22,03 | 2.73 [13.1 4.2 1701:.2 :
2 |-107.58 | 32.83 | 2.90 | 0.1 | 7467.1 17.0 |
0 {-403.41 - 3.40 | 0.6 - - |
0ca | 1 y-3se.01 [ 17.4 | 3.43 [14.6 0.1 |[73300.8 |'
2 |-375.50 | 27.9 | 3.47 | 2.6 ]36249.1 2.3 i
Table 4
16, 40,
"0 yev | " e Il "0 wy "2 yav
SITI 22.03 4.67 17.40 4,60
sIV 25.59 6.68 22.06 6.69

S
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Table 5
{
| E ' AR r EMS . v .
H meV £fm MeVEm MeVEm
I !
! Poo | -3383 - 1.78 - -
54 = H i 7
e -0z 288 | 300 | 2207 0.0
1 '
. . T 1 t :
2 "= 408 '29.65 | 2.98 | 0.0 347.3 :
. . ; i
T =
0 ~141.03 - to2.61 - -
: - H T H
16, ; ~109.19 31.84 ! 2.81 [ o298 0.0 :
H ' K
| 2 ~100.38  40.65 | 2.73 0.0 1 10352.3
- . : ;
0 ~dud.u8 - 3.40 - ! - i l I
Aoy 1 -375.59  28.50 | 3.48 37641.1 0.0
{2 -sesas 5. 1.44 0.0 47642.3
. L
Talelee &
[ —
: lbfl 40Cd |
]
{OSIET D 40.65 35,40
i T
tosSrv = 3%.4% 41.09
R

i s s s
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Table 7
L 16, 400,
Eo -27.64 ~139.89 -402.99
SITI E - 0.63 ~115,5%9 =382.99
K, 3.8 2.64 1.74
Eo -26.86 -138.86 -403.88 | I
81v E: - 0.24 -112,57 -382.71
| 3.03 2.04 1.32

i i a1
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Table &8
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Pigure Captione

Figure 1 Weight-functions g for the first three G.C.M.
states of oxygen-15 in the case of monopole vibra-
tions. The diagonal part of the energy kernel is
also indicated by the dot- dot~ dashed line (SIII).

Figure 2 Ground-state weight-functions g, for monopole vibra-
tions in helium-4, oxygen-16 and calcium-40 (SIII}.

Wigure 3 Density and fonn factor of helium=-4 calculated with
harmonic oscillator wave-functions (H.0.), with the
Hartree-Fock method (H.F.) and with the generator
coordinate methed (G.C.). Experimental data are
taken fram reference 27 (SIII).

Figure 4 Ground state weight-functions go for guadrupole ' I
i:oscalar vibrations in helium-40, oxygen-16 and
calcium=-40 (SIII}.

Fiyure 5 Cantour plot of the first three weight-functions
g for coupled isoscalar monopeole and quadrupole
vibrations in calcium=-40 (SIII).

FPiyure o Contour plot of the first three weight-functimns g
for coupled isoscalar and isovector monopole vibra-
tions in oxygen-16 (SII1}).

rigure 7 - Weight-functions g for the first three G.C.M.
rtates of calcium—-40 in the case of dipole vibrations.
The diagoaal part of the energy kernel is also
irdicated by the dot~ dot- dashed curve (SIII).

Figure 8 Ground state weight functlons g, for dipole vibra-
tions in helium-4, oxygen-16 and calcium-40 (SIII).
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