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AbBtract 

Skyrme's interaction is shown to lead to signifi­
cant simplifications in generator coordinate calculations. As an 
illustration giant resonances are calculated using pure oscillator 
wave functions. We present results for monopole, dipole and quadru-
pole isoscalar and isovector nodes using two different Skyrme 
forces SIII and SIV. A good agreement with available experimental 
data is obtained. 



I - INTHODUCTÏON 

In the past few years the Skyrme Interaction 11) 

has proved to ha a very useful tool for investigating ground state 

properties of nuclei in the Hartree-FocJc approximation. Indeed, 

because of its computational simplicity, it has allowed calculations 

which would become prohibitive with other interactions, e.g. defor­

mation properties of heavy nuclei including their fission barriers 

I2|. 

The purpose of the present paper is to demonstrate 

that the Skyrihe force also leads to significant simplifications in 

generator coordinate calculations and to generalize some preliminary 

results which nave already been reported elsewhere 129]. In 

particular we show in section II that the energy kernel occuring 

in the Hill-Wheeler equation can be constructed from a local energy 

runctiunal involving one-body densities only. As an illustration we 

consider in section III the calculation of giant resonances, for 

which the Skyrme force is expected to be an appropriate effective 

interaction I 3,41 . Usina pure harmonic oscillator wave functions we 

are able to obtain analytic expressions for the energy and overlap 

kernels in thy case of isoscalar and isovector monopole, dipole and 

quadrupole vibrations. In section IV our numerical method for solving 

the Hill-Wheeler equation is presented while section V discusses the 

corrections arising from the center-of-mass motion. In Section VI 

we consider the evaluation of energy weighted sum rules and in 

snetion VII we present numerical results for TWO different Skyrme 

fcorc.->s &Î1I anr) SIV I 51 whose parameters are listed in Table l. 

f-'iiidlly ,i summary of our mu.in conclusions is given in section VIII. 
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II - EXPRESSION OP THE ENERGY KERNEL WITH THE SKYRME INTERACTION 

In this paper we shall work with a set of Slater 

Otfterminants depending on one or two generator coordinates a r i.e. 

4*(a) or *<u,3 ). We shall restrict our description to spin saturated 

N=Z nuclei and we shall neglect Bpin-orbit and Coulomb forces. The 

Slater determinants *(a) are products of proton and neutron Slater 

determinants *n(<x>. *„(<")• Each orbital « l n(rp) t^lrp) ) in * nta) 

(* (a)) is occupied by two neutrons (protons) with spin up or down. 

A stralghfoirward calculation (see for example -the appendix of Re£.6ïl 

shows fcbat with the Skyrrae interaction one obtains 

/ M-UJ (H[<Mix')> * <•(«) |*(a')> / d 3r H{r> U ) 

'vJaeru •-*{(*; .'--Ma* ) - an<J <* ta J (H<* (,<.*, > a r e r e spec t ive ly the overlap 

Kernel t/« (•*,(*'> and the hamiltonian kernel 3"L (a,a*) of the H i l l -

Wheeler equation and Hir) i s a functionnal given by 

' n n J n p p J p ' 
(2) 

t i - r t 

The coefficients to» ti» tz, tj and x 0 are the parameters of the 

Skyrme force. The densities 0 , p ,the kinetic energy densities T 

T .and the current densities j j , are defined by 
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A/A 

A/4 

A/4 

*„<*> " S ,0 1uK n

< ?*>Hn ( r* ,>- <K.< ?*">>''V^*>> 

where A is the m.iss number of the nucleuR and the neutron overlap 

matrix (N„) A u is defined by 

«V*,. = /*L< i f<»*'„„ ( î< J ,> d 3 r ,4) 

SimiJar equations hold for the densities p r T , j and the matrix 

w . The determinant of the overlap matrix is equal to the total 

overlap kernel 

jff* (a,a») m (det N n det N I
2 (51 

The exponent 2 appear* because each orbital is occupied by two 

particles with opposite spins 

For isustralar modes we have V\0tr/*) £ f, (îjt) which implies 

i',*"i',.Ti,«-2f)„ cjnd similar relations for T and n and n p n 

H(î) - --T + -tcM 2 + —(3ti+5t!)(|)T+32J + —(9ti-5ti)(?p)' C6) 
2m 8 lC 64 

+ ?- t, p" 
16 
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Ill - CALCULATION OF GIANT RESONANCES WITH OSCILLATOR WAVE FUNCTIONS 

A) Evaluation of the densities p, T and ? 

In this paragraph we shall only consider neutron 

densities. Proton densities are trivially obtained by interchanging, 

indices n and p. The Slater determinant *_(a) contains the lowest 

eig«nstates of a spherical or axially deformed oscillator well not 

necessarily centered at the origin. The occupied states are defined 

by 

2n r + |A| + n z < N (7) 

with n ,A and n being the usual asymptotic quantum numbers ( 7! . The 

number W is 0 for 4He, 1 for 1 6 0 and 2 for 4 0 C a . 

-j J WongEgle_ and _guadrupgle_modes 

To describe monopole and quadrupole modes we choose 

the generator coordinates to be the oscillator parameters y - ^S, 

and ï ( * — - when* w and m. are oscillator frequencies along the z-
1 II Z X 

axis and in Hiu xy plane. 

To evaluate the densities (3) corresponding to the 

individual Wtivw functions V \ „ ( Y fY, ,r) and <fi. (yl,yl ,r) it is conve-An z •* An z A 
rUûnL to note that the following relations hold 

. v lr> ^ » _ _ * 

**n<'z ''i •*> " e 2 J < L n , A « * v n ( V l ' r > 1 8> 
v=l 

A/4 
-X„(r) ^-, _ _ -• 

V' T* 'V 'r> = e 2-» '"n'icii « V n ( V Y l ' r > 

M»1 

(9) 

whero * n = i(y 2 -yj )z' * - ( Y X -Y J I U ! + y J ) (10) 



and Vz " - <YZ + Yi> . Tt - i < Y i + Yi> (ID 

In eqs (8) and (9) L n and H n are two triangular matrices. Their 
Y, Yi Yi Yj 

coefficients are respectively functions of —- , — and — , — . 
7 z Tl Y, Y A 

As a consequence of Eqs (8-9) we find that the one body operator 

\V-1 

which thanks to the definition of N^ satisfies the relations 
Trpn=A/2 and pj,=pn(but not pjj'pi} can be related to the density 
matrix 

A/4 

? o n < S f ? , ) = 2 È ^ n ^ f T l ' 2 » •Xn^.^'*'» < 1 3 ' 
X=l 

by 

pn(rr'| = t

 n P o ntr?M « " U4> 

The densities (3) are then immediately obtained fron equation (14) 

V r ) = " ('on ( ^'' ?Xn ( î , ( 1 5 ) 

Here p Q n and T Q n are the density and kinetic energy density cons­

tructed from the density matrix P__ (*/*'>• 



The generator coordinate is now the distance 2^ 

of the center of the harmonic potential generating the set (f i n} 

to the origin. We shall consider motion along the z axis (unit 

vector ic). We then have 

* A n(z,r) - * A ntO,r- Â) (16) 

We also choose the wave functions ^. (0,r) to be eigenvectors of 

a spherical oscillator potential whose parameter Y minimizes the 

total binding energy. In analogy with the definition (11) we intro­

duce 

When one expresses the wave functions {*i_(z„,r)} and to. (z',?)} 
> A n n A n n 

in turms of the set ^ i n ^ n '
r ) Î o n e obtains expressions identical 

to (8) and (9) with 

Xn(r> = - JÏ i2 n-
zn )'- i' ( 1 B ) 

2 

is defined as 

A/4 

X=l 

B) Explicit expressions of the overlap and energy kernels 

c ) mono£ole_and_guadrup>gle_modes 



The re lat ions (15) show that the quanti t ies 
p n V j n ' p p T p + j P " e r e s e e e t i v e l v e < 3 u a l t o P0n

 T on ' p op T op -

Furthermore for isoscalar modes pT+j 2 -p 0 T 0 and the quantity /H(r) 
defined in (6) i s 

/Hlrjd'r = E(7,,7,) - — /PI (?x) 2a sr (20a) 
z x 2m 

where 

,cvn» •/[ 

i - t î P | l , 
16 J 

— T o + -toPo + — (3t,+5tj)PjT» + —(9t!-5t!) I^Ps)2 

2m 8 16 64 

120b) 

The quantity E(7Z<Y£) is just the expectation value of the Skyrme 

hamiltonlan for the Slater determinant containing the wave func­

tions *x<Yz»Y^.r)
 a n d ^ e P e n d 9 only on the arithmetic mean of gene-

tor coordinates. Thus the only term in (20a) depending on the 

difference of the generator coordinates arises from the kinetic 

energy-• 

In order to include isovector modes we need to 

consider four generator coordinates Y»„/ Y-„< Yi„# Yi_. 1» this 
zn &p xn xp 

case the quantity 'P n

T

D

+P p

T

n

+ 2J f l3p>
 i s still a function of x n and 

X p and the part of H depending on (Y z„-Y z n). <Y z p-Y zp> and (Yj^-YÏ,,). 

',lo"1'Jp' " H I be a function of the Skyrme-parameter combination 

(ti+tj). 

In appendix A we present details of the calcula­

tion of /H(r) d 3r for coupled isoscalar and isovector monopole 

modes. The value of E(y,Y) (Eq.(20b))is obtained from Eq.A4 by 

setting Y'=Y- T O obtain E(Y Z,Y^> »e notice that deformation of the 

harmonic oscillator wave functions correspond to the scale transforma­

tions 



x* * x 2 ï- , y 2 » y 2 ï_ , z** z*ï_ , (21) 

*i TL Y Z 

with the "volume conservation" condition 

Y 2 Y z = Y J . (22) 

We then obtain 

E(Y,,Yi) = — - C , < Y + 2 Y , > + t, 2___ d, ( Y Y Î ) 3 / 2 

Z -1 2m 3 Z -1 2<2n> / 2 Z X 

+ |(3ti+5t2> °- + <it,-5t2) ° }(Y2Yf)
1/2(Y,+2Yi> 

< 24 (2.) 3' 2 «(*,!»^i 

(23) 

4 jo 

(tf/T)3 

The values of the coefficients ci,dfl,ho<go and j D are given in 
Table 8 for the three magic nuclei 4He, 1 € 0 ana 4 0 C a . We finally 

fc2 f , , # . , /(Y, "Y, > 2 <Yi -Yi ) 2 \ 
— / e„n<7Xn> d r = — Si -2 2 + 2 — ) 
2ia J °n n 2m 3 \ 47 47 x / 

(24) 

At this point we still need the value of the overlap kernel. Using 
formulae (8) and (9) one notices that 

" V x u " (Ln-«n'xp ( 2 5 ) 

Since L n and H_ are triangular matrices their determinants are 
egual to the products of their diagonal elements 

L 



- L 

» h.+è « 2n +|A|+1 A - ,,,L, 

(26) 

In equation (26) nt ,nr and |A f are the asymptotic quantum numbers 

of the state X. He thus find 

(det *• • (^ )' ( v - r -
with D»l for 4He , 6 for 1 6 0 and 20 for *°C». 

B) dipplemode 

Using the sane procedure as in the above subsection 

and setting z

n *
z

D

M S S ^ n E<3- 16 a n o- * t s analog for protons we obtain 

for the isoscalar dipole mode (translation) from Eg.6 

/H(r)d3r - E<\,-0 - — - Y<«-«M* UB) 
2m 4 

where E(Y,Y> is defined by eg.(23). 

The calculation for the isovector dipole mode, which corresponds to 

zn= -z0~z in Eq.lS, is still straighforward but more tedious. 

Details and results are given in appendix B. Noticing that 

'VjU " e x p ( " ~ Y<*-**>2> <V>U * e xP<- i T<«-»')*) (2») 

for all X we find for the neutron overlap kernel 

det N n » exp (- - tlz-z')1) (30) 
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IV - SOLUTION OF THE HILL-WHEELER EQUATION 

As usual we replace the Hill-Wheeler integral 
equation 

/ (9C(aja')-H Mf (a,a')> f; •')<*«'- 0 <3l) 

whrre u stands for one or two generator coordinates, by a matrix 
generalized eigenvalue problem 

n 
h J ^ { 1 t ( a l ( a J - E cA°(a i (a j)}f(a j) = 0 (32) 

1*1 

The quantity h Is the step of the (regular) mesh {a^} while n Is the 
number of points of the mesh. In our calculation n was choose» equal 
to 143* • This value is large enough to ensure the stability of 
all the observables under consideration (energies, root mean square 
radii, qyadrupole moments, transitions rates) against any change of 
the mesh. 

Tor the monopole, modes we use a regular mesh in 
Y and Y • The isoscalar monopole mode is obtained by choosing iden­
tical values of y and y . 
For the guadrupole mode we define 

q = — and Y 3 = (Y- Y?l <33) 

For a pure guadrupole mode y is fixed. For coupled monopole And 
quadrupole modes q and y are two independent generator coordinates. 
We have used a regular mesh in the quantity iq~iy il+q). 

For dipole modes the generator coordinates are 
z_ and z„ i.e the distances of the centers of mass of the neutron n p 
and protons densities from the origin. The iaovector mode corresponds 
to opposite values of z and z ^ zn"" zn S z' * 
Such a large number of mesh points is necessary to describe accurately 
the weight functions graphed on Figures 5 and 6, However a smaller number 
of mesh points e.g. 15 is sufficient to obtain energies and radii with 
4 significant figures. 



The solution of the generalized eigenvalue problem 
(32) cannot be achieved by a direct inversion of the matrix 
«^(o^Oj) 128]. 

Indeed when the mesh {a,} is dense the matrix cJi (<»,><».,) is nearly 
singular. To bypass this difficulty we diagonalize the hermitian 
matrix e/T and eliminate all the eigenvectors of cX with eigen­
values lower than a small positive number e. In the subspace spanned 
by the remaining eigenvectors we construct and diagonalize the 
operator ert ' * X eir~l/«, j ^ , prescription amounts to substrac-
ting from the original variational space all the vectors with a 
zero (or nearly zero) norm. It can be shown that the solutions of 
this restricted eigenvalue problem axe stable with respect to small 
perturbations of the matrix ! 81. In particular the results presented 
hereafter do not depend on the value of the quantity E which in our 
calculations was 1(1 . 

As a consequence of the non-orthogonality of the 
G.C.M. basis the Hill-Wheeler functions f are not orthogonal and 
their discussion becomes rather involved [ 28]. Furthermore they are not 
stable against any change in the mesh. For this reason we have cal­
culated the set of orthonormal functions {g,> which are obtained 
from {f^} by 

*i < * * 1 / 2 «\ (34) 

and are numerically stable. 
In eq. (34) f^ is a vector- and cff a matrix 

satisfying 

y/2 y / 2 - JC 
The Index i just labels the different solutions of the Hill-Wheeler 
equation. In section VII of this paper we shall discuss the behavior 
of these functions. It should be noted that the functions g are the 
natural quantities to consider when trying to replace the integral 
Hill-Wheeler problem by a SchrSdinger-like equation [9,10] . 
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V - CORRECTIONS 

Center of mass (CM.) effects are known to be 
important for light nuclei. A standard way to correct for them is 
to subtract from the total energy average value of the operator 
5 J/2nA where P is the total momentum of the system i.e. to make the 
substitution H * H-P!/2mA In the left hand side of Eg.l. This 
prescription seems to be rather accurate as far as energy levels 
are concerned but less satisfactory for properties involving nuclear 
wave functions e.g. form factors (21) . In our calculations we 
substracted only the one-body part of p"V2mA. For the nucleus He 
this approximation ia exact since the two-body term vanishes 
identically. For the heavier nuclei 1 6 0 and °Ca for which C M . 
effects are smaller we have checked that C M . corrections affect 
neither correlations nor energy differences between the ground state 
and the first excited states. From a technical point of view the 
correction of C M . motion will not change the formal expression of 
/H(r)d !r (23^28 , A3, BJ ) • One needs only to replace the coeffi­
cients Cj by c 2 = ci (A-D/A, where A is the mass of the nucleus. 

Our calculations do not include angular momentum 
projection effects. As was found in the calculations of Reference 13 
these effects are negligible for energies of quadrupole modes in 
oxygen-I6 and calcium-4D, but may be sizeable in helium-4 [21). 

VI - ENERGY WEIGHTED SUM RULES {E.W.S.R.) 
In appendix D we show that energy weighted sum rules must be satu­

rated in the present generator coordinate calculations. In this section 
we recall some results which have been obtained and discussed in Kefs.4,11). 

Although the Skyrme interaction is velocity depen­
dent it can be shown that the formal expressions for isoBcalar 
monopole and quadrupole E.W.S.R. are identical to those corresponding 
to local two-body interactions. 
For a given reference ground state |0> we have for the monopole sum ruleEMS 

EMS = <0|i{f 2;Hr 2n |0> = — 4 <0|r2|0> (35) 
2 2m 

where r* is the one body operator I xî+y'+zî. For the quadrupole 
isoscalar mode the E.W.S.R. is 

EQS = <0|ijQjHOIl|0> = ti 4 (2<0|r'|0> + <0|Q|0>) (36) 
2 2m 



13. 

where Q is the quadrupole operator Q - I 2z'-x'-yi. 

In the isovector case the interaction appears in the EWSK through 
its neutron-proton exchange part. The monopole Isovector sum rule 
(corresponding to the one body operator : rî T. where TJ-1 for 

neutrons and -1 for protons) calculated with the Skyrme interaction 
is 

BMV =<0|i(E r' x.iH,£ r' Tt]\\0> 

4( ^ <0|r» |0> + i ( t i + t » ) < 0 | i £ ( l - T , T 4 ) r ; s f r 1 - r 4 ) | 0 > ) (37) 
2m 2 2 i j l 3 l x - > 

The dipole isovector sum rule corresponding to the operator £ z^t^ is 

EDV = <0|ij£ I.lJH,! z,T (H|0>-
2 i l l i * X 

(—A + -(t t+t 2)<0|i I ll-T1T.i)«<r.-r.,>|u>) (38) 
2m 2 2 ij 1 3 * 3 

If one chooses |0> to be the generator coordinate ground state the 

evaluation of EMV and EDV will Involve the calculation of 

• (a )|i Z (l-T 1T j)rJS(? 1-r j)|*(o
,)> - jfla »«'> 2 J'**Pn

ppd,r 

2 ij 

and 

(39) 

<»(a )|i I (l-T 1T j>6<r i-r j)|*<u
, )> - <jfl.a ,a' ) 2 / p n P p d'r (40) 

where p R and p are defined in (3). 
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VII - RESULTS FROM THE GENERATOR COORDINATE METHOD (G.C.M) 

A) Isoscalar modes 

a) monODgleJQOde 

In Table 2 we give the eigenvalues of Eg. 32 for 
the first monopole states of the nuclei *He, 0 and Ca. We have 
also included the variational binding energy E, of a pure Slater 
determinant of oscillator wave functions as well as the difference 

From Table 2 one can see that except from the case 
of He the eigenvalues E 0 of the lowest generator coordinate state 
are very close to the variational values E v . Re shall return later 
to the special case of He. The differences AEi give the monopole 
excitation energy. The small difference between the SIII and SIV 
predictions is correlated with the incbnpresslbility modulus in 
nuclear matter which is 356 MeV for the first interaction and 325 
MeV for the second. One can also calculate directly the incompressi-
bility modulus K in 1 6 0 and Ca. For a nucleus with mass number A 
described by a Slater determinant of oscillator wave functions we 
define K as 

K = *£ a'E( T, T)| ( 4 1, 
A dY a JY-YO 

In this expression the notation is that of equation (20) and Y< is 
the variational value of the oscillator parameter Y« Using equation 
(20) one finds for 1 6 0 a value of R equal to 200 MeV for SIII and 
162 MeV for SIV. From these numbers one can easily verify that oEi 
is proportional to /K as is the case for the hydrodynamics I model 
I 121 . For 4 0 C a values of K are 231 MeV for SIII and 210 Mev* for 
ElV. As expected they lie between the values for O and those 
for nuclear matter. As compared to other theoretical approaches 
[13-181 our monopole excitations enemies are generally larger 



by 4 to 10 MôV due to the rather larger incompressibility associa­
ted with the Skyrme interaction. That the Skyrme interaction and not 
the G.C.M. treatment is responsible for this difference is demons­
trated by the evaluation of the same quantity by the R.P.A. method. 
Indeed using the sane Skyrme forces the authors of Refs. 4,n fi4. 
obtain very similar results. We should also mention that recent 
experiments 119j suggest that an important fraction of the isoscalar 
monopole strength may be located near 20 Hev in calcium-40, which 
is considerably lower than our predictions. 

The calculation of K.W.S.R. shows that the first 
monopole state of o and Ca exhausts more than 90% of the sum 
rule. This seems to be a typical feature of the generator coordinate 
method (131 . In the case of He the first excited state exhaust only 
45%, The rest is presumably associated with transitions to the 
continuum, such transitions are not included in our variational space. 
Furthermore they cannot be confuted accurately with our discretization method. 

In fig«l. *{e h^aate^Blotted.-as a function of«the 
parameter Y tto diagonal part of the energy Kernel of O. When Y-0 
the nucleus has an infinite radius and the corresponding energy 
is zero. Due to the kinetic repulsion the energy first becomes 
positive. When the nuclear forces become important they overcome 
the kinetic energy increase. After the equilibrium point the short 
distance nuclear repulsion starts predominating and the energy tends 
to infinity as the nuclear radius decreases. 

In the same figure we have reported the functions 
g of the three first G.C.H. states of O. The ground state function 
has the usual bell-shape and the g corresponding to the first and 
second states are very close to the first and second derivatives 
respectively of the ground state g function. This result is remi­
niscent of the well known scaling method which describes the monopole 

*o{>r1 . ,,-yr l| where *<j is the ground state wave JY=1 
In figure 2 we have presented the functions g 0 of 

the three magic nuclei He, O, Ca . One notices that the width 
of g 0 decreases with increasing values of ". The vertical bars indi­
cate the values of the oscillator parameter Yo which minimizes the 
energy. The maximum of g 0 occurs for Ca and 0 at about Yo- on 

3Y 
function [ 20] . 
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4 

the contrary that of the He curve is noticeably shifted from Y D . 

This leads to a 0.2 fin decrease of the root mean square radius 

associated with the inclusion of the G.C.M. correlations. 

This can also be seen in fig.3 where we have 

4 

plotted the charge density of He and its form factors. The form fac­

tor of the oscillator density (Y=y0)is a straight line while that 

of the G.C.M. ground state exhibits adip (in agreement with experi­

mental data). However the second maximum of the G.C.M. form factor 

is not high enough as compared to experiment, in the same figure 

we have plotted the results obtained by a complete Hartree-Pock 

(H.F.) calculation. At low momentum transfer the'H.F. form factor 

is very close to the oscillator form factor. The dip appearing in 

the H.F, curve occurs at a too small momentum transfer . 

The G.C.M. and oscillator densities of 0 and 
40 

Ca have been found to be very close and the small differences bet­

ween them do not lead to any significant effect on electron-scattering 

dlffuiuitlul' cross sections. •*" "*" 

3) ÈEËBsiation^dipole^jttgde 

Let |R> be the state deduced from the oscillator 

ground state |0> by a translation 5. within ::he pushing model the 

energy E £ of the nucleus moving with a velocity 

/ e i k * <R|5|0> d 3r 

/ e 1** <R [Q> d'r 

t.42) 

The evaluation of <R|H|0> and <R|0> is trivially obtained from 

Equations 28 and 30 by replacing (z-z*) 2 by H 2. 

*It Is not clear that one can draw definite conclusions in the case 
4 

of He since an exact treatment of center of mass motion would presu 

mably affect noticeably the G.C.M. results for the form factor [2ll. 
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Notice that equation (42) involves the hanlltonien H and not 
H-PV2m». 
Using equations (1), (28) and (30) one immediately obtains 

E,?=E <Y,Y> - — 3 * + 5 — k 1 (43) 
K 2m 2 2mA 

The first tern on the right-hand side of (43) is just the oscillator 
energy. The second tern is the center of mass energy of the oscilla-
tor state <o|-—|o> . The third term which is the only one depending 

+ 2mA 
on K is the kinetic energy. One sees that the translational mass is 
correct. This result is due to the fact that ve use a harmonic oscilla­
tor Slater determinant to describe the nucleus. 

yî Quadrugolejnode 

In the figure 4 we present the ground state wave func­
tion g„ of the three magic nuclei 4He, 1 6 0 , 4 0 C a plotted as 
a function of the diiaensionlesa quantity q=rYj,/YZ' r t *-a seen that the 
width of g D decreases with the mass of the nucleus. 

In Table 3 we give the resultB of a calculation 
with SIII for coupled monopole and quadrupole modes. The comparison 
with the results of the G.C.H. calculation of monopole mode alone 
shows that the ground state correlation energy of O and Ca is not 
much increased by the inclusion of the quadrupole degree of freedom. 
For these two nuclei the energy of the second excited state of the 
coupled Hill-Wheeler problem is close to that of the breathing mode 
(Table 2 ) . One is then led to identify the second excited state with 
the giant monopole resonance. This is confirmed by the consideration 
of its quadrupole moment which is nearly zero and by the contributions 
to the E.W.S.R. reported in the columns EMS and EGS. This state nearly 
exhausts the monopole sum rule ( 913S MeV fm 4 for 1 6 0 and 38267 MeV 

4 40 
fm for Ca) and does not contribute to the quadrupole sum rule. 
(18288 MeV fm 4 for 1 6 0 and 76S76 for 4 0 C a ) . The first excited state 
which exhausts more than 90% of this latter E.W.S.R. can thus be 
identified as the quadrupole mode. 
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In figure 5 we Bbow a contour plot of the three 

first functions g solutions of the coupled calculation for Ca. 

The ground state function g B loods like a hell shaped surface cente-

red around the optimal values (Yo*.258fm ,q-l). From the two lower 

graphs the quadrupole and monopole character of the first and second 

excited state la evident. 

The results of Table 3 Indicate that In Be there 

exists some mixing of the monopole and qua£rupole vibrations. The 

guadrupole degree of freedom has Induced a decrease of 1.6 MeV of 

the energy of the ground state obtained with the Inclusion of mono-

pole correlations only (Table 2). On the other hand the first 

excited state, although It exhausts an Important fraction of the 

quadrupole sum rule (2470 MeV tari, contributes also in a non negli­

gible way to the monopole sum rule (1234 MeV fm ). Therefore the 

two excited states whose energies are rather close do not have a 

definite monopole or quadrupole character. It would then be Interes­

ting to" see ff a treatment including projection of total angular 

momentum would not change these results. 

In Table 4 we give the energies of the giant 

guadrupole resonance calculated with SIII and Siv and the curvatures 

KQ-1/A d 2 E (ï.q" 2 / 3,Tiq 1 / 3)/dq'| r The lower energies obtained 

with SIII are seen to be associated with lower values of the curva­

ture. 

It is now very likely that the set of observed 

resonances 122,23] with energies following the empirical law 

E=60 A ' have an isoscalar quadrupole character. It should be noted 

that this law Is very close to the estimate •• .ohr and Mottelson 

I 24] for the same resonances. Before comparing our results to experi­

mental data one must not forget that our calculated quadrupole 

resonances exhaust almost completely the E.W.S.R.. Therefore it should 

be more suitable to compare the 6.CM. energies to the center of 

gravity of the experimental E.W.SAJ25] . However the available data 

do not allow yet a precise determination of this center of gravity. 

if one assumes as a first approximation that it corresponds to the 

energy of the resonance, the experimental data agree better with the 

results obtained with SIII. 
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B) Isovector modes 

a) !?2DO£ole_mode 

The results of a G.C.M. calculation with Interac­
tion SIII of coupled monopole Isoscalar and isovector modes are given 
in Table 5 and figure 6. The contributions to the Isoscalar (EMS) 
and iaovector (EMV) sum rule shov clearly that the excited state 
have a pure T=0 or T-»l character. The isoscalar mode is as expected 
the lowest. This is also visible on the drawings of figure 6 which 
display the contour plots of the three first solutions of the Hill-
Wheeler problem. The comparison with results of Table 2 also shows 
that the monopole isovector degree of freedom does not affect much 
the ground state. Because of the proton-neutron exchange part of 
the interaction the T«l E.K.S.R. is larger than the T-0 E.W.S.R.. 
The enhancement factor can be written as (1+x) with x equal to -12 
i» He ,.21 in 0 and .25 in Co. finally we compare in Table g 
the resonance energies of the T»l nodes calculated with SIXI and SIV. 

In the lower part of figure 7 we have reported as 
a function of the half-distance between the centers of gravity of 
neutron and proton densities the diagonal part of the energy kernel. 
It lookB like a parabola. However for larger distances ±z an inflexion 
point appears and when z goes to plus or minus infinity the energy 
reaches a constant value which is the total energy of the nucleus 
minus the proton-neutron interaction energy. 

The upper part of the figure 7 shows the functions 
go of the three first solutions of the G.C.H. problem in Ca. The 
ground state function g gls an even function of z while gi is odd. 
He find that the first excited state exhausts nearly all the dlpole 

2 sum rule in the three magic nuclei. This sum rule (105 HeV fro in 
4He, 441 HeV fm 2 in 1 6 0 and 1133 AeV fra2 in 4 0Ca) is larger than the 
Thomas-Reiche-Kuhn value 1261 . The enhancement factor is 1.24 in He, 
1.33 in 1 6 o and 1.37 in 4 0 C a . For interaction SIII thee* results 
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compare reasonably well with those obtained by summing all the 

experimencal contributions to the E.W.S.R. up to 30 or 40 MeV. For 

interaction SIV the enhancement factors are 1.8 for He, for 0, 

and for 4 0 C a . 

In figure 8 we show the ground state functions go 

of the three magic nuclei. Here also the width decreases with increa­

sing values of A. 

Finally in Table 7 we give the energies of the two 

first solutions of the Hill-Wheeler equation. The comparison with 

the oscillator energies (Table 2) shows that the dipole correlations 

do not affect much the ground state energy. Since our calculated 

resonances exhaust completely the sum rules the discussion already 

made concerning the comparison with experimental data in the T»0 

guadrupole case also applies here. The measurement of the contribu­

tion to E.W.S.R. up to 30 MeV seems to show that the center of gravity 

fie differences (E]-Eo) obtained with SITI agree with 

these numbers. 

In table 7 we also give the dipole curvature 

1 'ê2y j; =_ — 2 _ £ — calculated for the two interactions SIII and SIV. As 
z
 A iu-O' 

n p 

it was expected this quantity decreases with 1/A. Indeed in nuclear 

matter it should vanish. It is also seen that the different results 

obtained with sill and SIV for the giant dipole resonance energies 

are not compatible with the simple irrotationalformula 2WFL/mA. 
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VIII - SUMMARY AMr CONCLUSIONS 

The structure of the Hill-Wheeler equation has 
been Investigated in the case of the Skyrme force. Me have shown 
In particular that a simple formula involving one-body densities 
only can be derived for the Handltonian kernel. From this formula 
analytic expressions have been obtained in the case of monopole, 
dipole and quadrupole modes calculated with oscillator wave func­
tions . 

Numerical results hava been presented in helium-4, 
oxygen-16 and calcium-40 using two different Skyrme interactions 
Sill and SIV. Except for the case of helium, it has been found that 
the coupling to collective modeB does not affect the properties of 
the nuclear ground state, namely its density distribution ar.d its 
binding energy. We have also found that the Hill-Wheeler weight-
functions become narrower with increasing mass number, in heavy 
nuclei. 

it has been shown that the Skyrme interaction 
SIII provides a good agreement with available experimental data 
concerning isovector dipole and isoscalar quadrupole resonances. 
For isoacalar monopole modes our predictions are somewhat higher that 
those of other theoretical approaches. This difference has been 
attributed to the rather high nuclear incompressibility obtained 
with the Skyrme force. 

One systematic feature of our calculations is that 
the collective strenytn is always nearly exhausted by one single 
stare. This means that in our model, giant resonances are well 
described by a multipole operator acting on the ground state wave 
function. 
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Appendix A 

Hamlltonlan kernel for coupled iaoscalar and iaovector nonopole modes 

We denote by 2p(y,r) the mass distribution 

obtained by filling oscillator state3 with a parameter y « mu/ti 

and by 2T(Y,r) the corresponding kinetic energy density. With these 

notations we define the following quantities 

Ci» y /p(-r,r')r
1d!r »• i -;,,*iJ'i. , i-.u,ï ) - /p(r,ii^r,rid Jr 

BI(Y,Y') = y p(Y.r)p(T',r)rid3r , BI(Y.Y') - / P2<Y,r)p(Y" ,r)d3r 

(Al) 

BJ(Y,Y') =/?p(Y,r).Vp(Y',r)d3r, B, (Y,Y'> = /{p(Y.r)T(Y',r)+p(Y\r)T(Y,r))d3r 

M 
The functions B are algebraic functions of y and Y ' namely ' 

Bo<Y.Y') = y \ / 2 (d 0+d,x+d 2x
2) 

B J(Y,Y')=
i- ( T ' T ' \ <fo+f,u2+f2uv+fiv

2+f..u2v+2f,u2v2+f5u'
,+fsu''v

2> 
n 3 \2Y+Y' ' 

B | ( Y / Y M » y*/2 <e«+eix+ejx2)/2(Y+Y') 

^ S V 2 

V.2Y+Y ' 

B 3 ( Y , Y ' ) = 21 y \ n <g« + gix + g*x 2) 

B, (Y,Y") = (Y+Y'J Y ^ 2 (h,+h,x+h 2x
2+h3X 3)/2 (A2) 

where YO= 2 Y Y ' / , T ( Y + Y M . X=(Y-Y') V ( Y + Y ' ) 2 » U»Y/(2Y+Y') and v=y'/(2Y+Y'i• 

The coefficients c r d, e, f, g and h are given in Table 8 for helium-4, 

oxygen-16 and calcium-40. 

In the case of coupled isoscalar and lsovector 

monopole nodes the two generator coordinates are the oscillator 

parameters Y n and y of the neutron and proton distributions. Denoting 

by lYpYp» the corresponding Slater determinant we have from equations 

2, 10, 15 and Al 
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< V p |H |TiV/«Y 1 | T p |Ti ïJ> - B<Yn-7pl- g O, <«*/Y>«p/Yp> 

• - T ^ ' V V 2 B><vV - '• - . ( A 3 ) 

whereJ n^r n-Y n, « p-Y p-Y p, 2ïn-Yn+Y;_and 2Y>Y p+Y£. The function 
E(Y"n»Yp) 1» the expectation value

 <Y n»Y p|HlY njY p>' From the defini­
tions Al this function is 

B(Y»Y*> - — Cl(Y+Y')+ ^{(l-XoHBo^Yj+BttY'Y'ÎHÎISMt^BDfY/Y')} 
2m 4 

+ ii(Ba(Y,Y'>+B2(Y\Y>> + £ii2*l<B» (Y,Y)+B. (Y' ,Y'> !+ ^&- B»(Y.Y'l 
4 16 4 

+ 3(t»~t'>(BI(Y,Y><-Bi(Y',Y')H-
 3&'" t i t B,'Y,Y') CA4) 

32 8 

The expression of the overlap kernel is given by equation 27. I 
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Appendix.B 

Harolltonlan kernel for dipole modes 

Let us denote by 2p(z,r) and 2T(z,r) the total 

mass and kinetic energy densities obtained by filling oscillator 

states with a parameter y-mu/fl centered at (0,0,2). He define 

Do(z) - / ptz.rjpt-z.rld'r Di(z) - p,(z,r)p(-z,r)d,r 

(Bl) 

Di(z> »/vp(z.r).7p(-z,r)d>r D s (z)^lp(z,r)t(-z,r)+p(-z,r)T(z,r))d
1r 

For dipole modes the generator coordinate is taken to be the distance 

2z between the centres of the neutron and proton distributions. 

Denoting by |z> the corresponding Slater determinant we obtain from 

equations 2, lb, 18 and Bl 

<z|H|z'>/<z/z'> - E(z) - - — y'6 2 - t l + t 8 y*S2 Do(Z) (B2) 
4 2m 4 

where 2ï=z+z', S".-z-z', E(ï)»<z"|H| â?> and where A is the mass of the 

nucleus. From equations 15 and Bl the function E is found to be 

E(z)- 2 — c, Y + ii(l-x„)D, (0)+ i2-(2+x«)D, <s) + ^ D, (z)+ t ' t 3 t i i Dj (0) 
2m 2 2 2 8 

+ tll^LClz) + 3(t,-t;) D i ( 0 ) „, 3t,-t, D | ( l ) ( B 3 ) 

2 16 8 

where Ci is given in Table 9. Simple analytic expressions for the 

functions B, which can be derived in a straightforward but tedious 

way, are given In reference 30. 
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Appendix C 

Energy weighted sum rules and the generator coordinate method 

Let us first prove a preliminary statement. 

Let S be a Hilbert subspace and (jm>) a Bet of eigenvectors (with 

eigenvalues B m) of the projection of the hamlltonian H, on S, 10> 

being the ground state in S. Let 5 be an operator such that 6|0> 

belongs to S then one has the relation 

- <0|[Ô,(H,Ô]]|0> - Ï (EK-Ea) |<m|6|0>|
2 (Dl) 

2 m 

In other words the E.w.S.R. corresponding to Ô is exhausted in the 

subspace S. Indeed 

- <0|[Ô,[H.Ô)]|0> = <0|Ô H Ô|0> - - <0|6 Ô H|0> - - <0|H Ô Ô|0> 
2 2 2 

By definition the states i|ra>) verify 

<m|8|n> = E„ S . (D2) 
1 in mn 

Using this property and the fact that O|0> belongs to 5 one obtains 

<0|Ô H ô|0> = ï Ej, |<m|ô|0>|2 

m 

and 

i ( < 0 | Ô Ô H | 0 > v <0|H 6 Ô|0>) = l Eo|<m|Ô|0>|2 Q.E.O. 
2 m 

When S is the G.CM. space spanned by a set of 

wave functions (|o>) the G.C.H. ground state |0> is a linear combi­

nation of states |a>. Therefore proving that 6|u> belongs to S will 

prove that Ô|0> also belongs to S. 
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When f|a>) is the set of Slater determinants 

t(7 z,Y i) containing the lowest oscillator wave functions ^(Y^Yj^r) 

(1 < i < A) and Ô the one-body operator ( î z£) one has 

A
 H i 

( S ZÎ) *(Y,rY,) = - — »(Yi.Y|) (D3) i=l l Z dYi Z ilYi-Y I 

A similar property implying derivatives with respect to Y^ holds for 
A 

the operator £ (xj+y?) • This proves that within the space spanned 
i=l * x 

by the functions *(Y_/YjJ the monopole and quadrupole isoscalar sum 

rule are exhausted. Mutatis mutandis a similar proof holds for the 

isovector monopole and quadrupole sum rules. 

When |a> is the Bet of Slater determinant »li.) 

containing the lowest oscillator wave functions v1(YiY>'~
z<i't) 

tejCY.Yfr+zoiJ)) for neutrons (protons) and Ô the one-body operator. 
A 

{ E 2iT.)(T.Bl for neutrons, -1 for protons) one has 
i=l x 1 1 

I ! E { T < ) » ( Z ( ) - — — *<zj)j +A», «(z,) <D4> 
i=l * x

 2Y dzj 

This relation proves that in the space spanned by $(Zo) the dipole 

isoveetor sum rule is exhausted. 
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Table Captions 

Table 1 Parameters of the SKyrme Interactions SIII and SIV. 
Notations and units are thoBe of Paf.5 

Energies of the three first solutions of the 
Hill-Wheeler equation for Isoscalar monopole modeB. 
The minimum E v of the energy calculated with oscil­
lator w.f. is also shown 

Table 3 Results of a G.CM. treatment of coupled isoscalar 
monopole and quadrupole modes (SIII) 

Energies E- of the giant ieoscalar quadrupole 
resonance. The values of the isoscalar quadrupole 
incompressibility K~ (see text) are also shown 

Results of a G.C.M. treatment of coupled isoscalar 
a:'<d isovector monopole modes (SIII) 

Energies in HeV of the giant isovector monopole 
resonance 

Energies in MeV of the two first solutions of the 
Hill-Wheeler equation for Isovector dipole modes. 
The values of the isovector dipole incompressibility 
K in HeV fm (see text) are also shown. 

Numerical values of the coefficients e, d, e, f, 
h and j occuring in Eqs. A2, A3 and 23. 
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Table 1 

t o t i t 2 t , x. H 

S i n -1128.75 39S.0 -95 .0 14000.0 0.45 120.0 

SIV -1205.6 76S.0 35.0 5000.0 0.05 150.0 

Table 2 

4 H e 
1 6 o 4 0 C a 

S H I 

E v -26.40 -139.16 -402.5 

S H I 

So -32.93 -140.32 -403.26 

S H I Ei - S ".5 -108.65 -374.86 S H I 

E* - - 81.75 -346.97 

S H I 

&E, 27,58 31.67 28.4 

E V -26.72 -138.82 -403.88 

SIV 

Bo -32.04 -139.66 -404.42 

SIV El - 5.69 -109.42 -377.2 

Bj - - 83.67 -350.64 

AEj 26.35 30.24 27.22 

; 



3 1 . 

T a b l e 3 

E 
Mav 

^MeV r 
fm 

0 
fm 2 

EMS 
MBVfm4 

EQS 
Mevfm 4 

4 « e 

0 - 3 5 . 5 8 - 1 .69 - . 4 - -
4 « e 

1 - 8 . 0 6 2 7 . 5 2 2 . 3 9 1 8 . 5 1 0 8 . 7 9 1 6 . 8 4 « e 

2 - 6 . 3 » 2 9 . 1 9 2 . 6 7 - 9 . 4 3 1 2 . 1 3 4 3 . 7 

1 6 0 

o • - 1 4 C . 4 1 - 2 . 6 2 0 . 2 - -
1 6 0 1 - 1 1 8 . 3 8 2 2 . 0 3 2 . 7 3 1 3 . 1 4 . 2 1 7 0 1 2 . 2 1 6 0 

2 - 1 C 7 . 5 8 3 2 . 8 3 2 . 9 0 0 . 1 7 4 6 7 . 1 1 7 . 0 

4 0 c a 

0 - 4 0 3 . 4 1 - 3 . 4 0 0 . 6 - i 
4 0 c a 1 - 3 8 6 . 0 1 1 7 . 4 3 . 4 3 1 4 . 6 0 . 1 

i 
7 3 3 0 0 . 8 | 4 0 c a 

2 - 3 7 5 . 5 0 2 7 . 9 3 . 4 7 2 . 6 3 6 2 4 9 . 1 2 . 3 

T a b l e 4 

"e 4 0 C . 

E °«eV K°MeV E ° « e v u MeV 

S I I I 2 2 . 0 3 4 . 6 7 1 7 . 4 0 4 . 6 0 

SIV 2 5 . 5 9 6 . 6 8 2 2 . 0 6 6 . 6 9 

» 



s u r ; 40.65 35.HU 

, L 

1 

i E 

! MeV 

AE r 
fm 

EMS . 
MeVfm 

EMV . 
MeVfm 

1 1" 1 
| ; 0 | -33.03 

1.78 - -

"iHe j l : - 5.02 28.6 3.00 220.7 0.0 

. ! j -
• 2 ' - 4 . 1 8 ' 2 9 . 6 5 | 2 . 9 8 0.0 347.3 

0 - 1 4 1 . 0 3 

l 6 0 i -109.IS 31.84 2.81 8239.8 ; 0.0 

2 -100.38 
1 

40.65 2.73 0.0 ! 10352.3 

o :-!u4.oa 
- • - - -

_ 3.40 -
T 

40.^. • 1 )-37r. ."ii 20.5Ù 3.48 37G41.1 0.0 

; 2 
i 

O. 1) 3.44 0.0 47642.3 

i I 

s r v i 4 ' i .4» 



«He "o 4 0 C « 

SIII 

E„ -27.64 -139.89 -402.99 

SIII B, - 0.63 -115.59 -382.99 SIII 

K z 3 . 8 2.64 1.74 

SIV 

Eg -26.86 -138.86 -403.88 

SIV E l - 0.24 -112.57 -382.71 SIV 

K z 3.03 2.04 1.32 

-,L 
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Table B 

Ol d . à, da e t « 1 e s f . c> fa i t . 

«He 3 4 0 0 12 0 0 8 0 0 0 

1 6 0 18 31 - 1 5 0 177 -105 0 32 120 240 0 

4 0 c a 60 1945 945 15797 9135 
16 

10395 125 750 0 575 4 0 c a 60 1945 
16 ' 16" 

9135 
16 

10395 125 750 0 575 

f» f 5 f« g« . 9 J 9 i h . h i h i h , 3. 
4 B e 0 0 0 12 0 0 6 6 0 , 0 1 

1 6 0 840 0 0 57 -105 0 249 

T 
0 105 0 116 

9 

<°ca 0 4725 L3S135 2595 4095 10395 23715 7035 7875 L039S ST 20SO <°ca 0 4725 L3S135 2595 

~s~ "'16 32 
7035 7875 L039S ST 20SO 

.J_ 



Figure Captions 

Figure l Weight-functions g for the first three G.CM. 
states of oxygen-16 in the case of monopole vibra­
tions. The diagonal part of the energy kernel is 
also indicated by the dot- dot- dashed line (SIII). 

Figure 2 Ground-state weight-functions g 0 for monopole vibra­
tions in helium-4, oxygen-16 and calcium-40 (SHI) -

{•'injure 3 Density and form factor of helium-4 calculated with 
harmonic oscillator wave-functions (B.O.), with the 
flartree-Fock method (H.F.) and with the generator 
coordinate method (G.C.). Experimental data are 
taken from reference 27 (SIII). 

Figuré 4 Ground state weight-functions go for quadrupole 
i&oscalar vibrations in helium-40, oxygen-16 and 
calcium-40 (SIII,1 . 

Fiqure 5 Contour plot of the first three weight-functions 
g for coupled isoscalar monopole and quadrupole 
vibrations in calcium-40 (SIII) . 

Figure 6 Contour plot of the first three weight-functions g 
for coupled isoscalar and isovector monopole vibra­
tions in oxygen-16 (SIII). 

Figure 7 Weight-functions g for the first three G.C.K. 
Ftates of calcium-40' in the case of dipole v ibrat ions 
The diagonal part of the energy kernel i s a l so 
indicated by the dot- dot- dashed curve (SIII ) . 

Fiynre 8 Ground s t a t e weight functions g p for dipole vibra-" 
t ions in helium-4, oxygen-16 and calcium-40 (SIII)-
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