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DIFFUSION DUE TO A SINGLE WAVE IN A MAGNETIZED Pr .SMA

Gary R. Smith and Allan N. Kaufman
Department of Physics and Lawrence Berkele; laboratory

University of Californie, Berkeley, Califor-ia Q720

The nature of charged~particle motion in the presence of a
spectrum of waves usually depends on the width of the spectrunm.
In a narrow spectrum (modeled as a single wave), particles may
be trapped in the potential wells of the wave and thereby have
a8 limited acceleration. In a broad spectrum, resonant particles
diffuse in velocity space, and thereby undergo a more extensive
{stochastic) scceleration. In contrast to these well-known re-
sults we findl that a single wave in & magnetized plasma may ceuse
particle diffusion.

In a magnetized plasma, a wave propagating at an oblique
angle 6 = tan™t (k, /kz) to a uniform megnetostatic field BOE
has a set of resonant parallel velocities

VE = (w+ 29)/kz > £ =0,51,22,~,

where the gyrofrequency @ = eBOlf’mc . Near each V, there is

2
a trapping layer (VE E3 wz) , with a half-width

1
W, =2 | ed  J,(k p)/m =,

for an electrostatic wave of amplitude Qo . For small OD the
oscillations of e particle’s varallel vzlocity are limited to the

trapping width Zw, . For '!'O large encugn that the trapping
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layers overlap, i.e., roughly when

oy 2 vy, -Vl =k, , : (1)

a particle can move from one rescnance region to anotber, changing
its parallel velocity much more than 2Hz . In the latter case
we call the particle motion stochastic.

We use Hamiltonian methods to study the motion of a particle
in the field 1302 and a single electrostatic wave. We work in
the wave frame, which moves with velocity (w/kz)2 with respect
to the plasma. (We consider only weves with w << ko .) The
Hamiltonian is then

H=(p + mmrﬁ)a/Zm *eo, sin(kz + Kky) .

Instead of the Cartesian variasbles (x,y,px,py) we use a more
convenient set of canonical variables. The gyrophase, ¢ =
tan™t (vx/v ) » is conjugate to the angular momentum p, =
%m.np2 =my 2/20 = {mc/e)u , where p is the gyroradius and p
1s the magnetic moment. The y-component of the guiding center,
Y=y + psin® , 1s conjugate to miX = mo(x - p cos¢) . In
terms of these variables

H= p22/2m + Py + eﬂ’o sin(kzz +KY - kpsine) .

We redefine the origin of 2z by performing a canonical
transformation to the new variables

z =z+k.LY/kz’Pz=Pz

Y =Y,X =X- k_Lpz/kzmQ .
Since Y' and X' do not appear in the transformed Hamiltonian,
they are each constants of the motion. Dropping the primes on
Pé and z' , we write

H= p22/2m + Dol + &0 sin(kzz - k; p sin?®) . (2)

If tbe wave amplitude is small, perturbation methods can be
used to study the particle motion. There exists an additional

constant of the motion I ; Taylor and Le.:’mg2 have found the
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Fig. 1. rarticle trajectories, calculated from Hamiltonian (2) ,
represented by dots at the values of 2z and vz wheaever

¢ = (2N +1)x , N=1,2,... . The three initial conditions,
indicated by crosses, were chosen near the separatrices. The
parameters are ?he same for all three trajectories:

ko = k, (2E/m)?/2 = 1.48 , (G/n)z e kzzleeol/mﬂz = 0.025,

0 =1s° .

expression

2 .
k_V ed kv sin(k z - £9)
Z z I 2z 2
I=cosH-"<(_951n< Z J, »
2 mQ2 2 g (kzv ) - £
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Fig. 2. Similar to Fig. 1 but for a larger wave amplitude,
(3/2)° = 0.1 . The plane is divided into adiabatic regions
(like A) and stochastic regions (like S) . A chain of five
islands is indicated by the numbers 1-5.

accurate to first order in 00 . The existence of the constant
I dis verified by the nature of the particle trajectories shown
in Fig. 1. The dots representing a trajectory lie on a smooth
curve only if a constant I exists.

We study the particle motion by numerically integrating the
equations of motion derivable from (2) . A transition to
stochastic motion occurs when the wave amplitude satisfies the
threshold condition (1) . Near the threshold, the motion has
the interesting character illustrated in Fig. 2. This type of
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Fig. %. Particle trajectories represented by v, and p = VJ_/Q

vhenever 2Nz = ¢ - ¢ = 0t ., The numbers 0,1,2,5,6,7 are the
values of N for a trajectory initiated with a particular

z(t = 0) . The wave amplitude is given by the parameter

(:3/':1)2 ; &=4" and RZV/Q = bh.phk , where v is the initial

speed in the wave frame.

motion has beer. cbhserved for several other problems.}'7

Fig. 5 shows the particle motion in velocity space. 1In the
small wave amplitude case [(G/Q)g = 0.25] , particles with ini-
tial conditions at the point marked O are accelerated from the
initial parallel and perpendicular velocities by only small
amounts. 1In the large wave amplitude case [(?5/9)2 = 0.751,

the particle acceleration is substantial. The particle remains

\\n
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Fig. 4. Particle trajectories represented by v, Vs. time .
(G/n)2 =075, 6=1Uu°, kzv/ﬂ =5 and v (t=0)=0.

near a curve of constant speed in the wave frame (the dashed
semicircles in Fig. 3), because the Hemiltonian (2) is a constant
of the motion. In the plasma frame the particle's parallel and
perpendicular energies can increase substantially.

The stochastic particle motion has the nature of a diffusion
process. We establish this fact by numerically calculating a set
of 50 to 200 trajectories. The initial velocity components
(v,
phases are distributed througkout O < kzz , ¢ <2x . A subset

and ‘i) are the same for the whole set, but the initial
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Fig. 5. Mean square deviation in parallel velocity vs. time
for the same parameters as in Fig. k.

of the trajectories is shown in Fig. L. From the set of trajec-
tories we calculate the mean square deviation in parallel veloc-
1ty, ([sz(t)]z) , and find that it increases linearly with
time, as shown in Fig. 5.

To explain anelytically the observed difiusion rates we use
methods developed for the general theory of stochastic instability
of nonlinear oscillations.8 Using (2) and & Bessel function
identity, we write the potentiel due to the wave as



o(z,%,0) = ¥ ‘Z 3,(k,0) sin(k,z ~ £0) .

We replece .]'[ by an average, JZ , over £ , with resonant
values of £ (those near kzvz/n) weighted most heavily. We

then use enother identity to write
o(t) > ¢ J, sinlk,z(t))T % 8(t - nT + ¢ /0) , (3)

where T = 2x/0 is the gyroperiod. The paraliel velocity un-
dergoes a sudden jump once each gyroperiod in this approximation.
(some trajectories in Fig. 4 show rapid changes in v, each

gyroperiod.) The jump in v, is
T
e 30
& = - EL at 5 - )
The diffusivity D is defined by

D= (lar, () P2t , ©)

where the average is over the initial phases z and ¢ . Com-
bining (3) - (5) and choosing the typical value 0.2 for 5’1 B
we find

D~ (o.1)(xzeoo/m)2/o .
The particle motion has a diffusive nature only when (1) is
satisfied, which implies roughly

kLD > 1
2

leoof > m(Q/kz) .

A more sophisticated theory is necescary to explain the
dependence of the diffusivity D on vz and p . A rigorous
theory for problems involving stochastic instability does not

yet ex.‘I.s.t.8 As a model to describe our observations we take
1 2 2 . L,
D ~ 3(k e /n) )Z: 3,20 PR (kv - 49) . ()

A quasilinear theory would yield a resonance function
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Fig. 6. Agreement between model (6) for the diffusivity D and
the numerically otserved diffusicn, for several values of

vt =0) . ¢= 45° |
(e) kv/2=5, (W)
®  kya=6, (V=015 .

The measurement of the observed points and the error baers is
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somewhat subjective.

@
Re(u) =L dr cos wt = ¢ B(w) .

Instead we allow the resonance to be broadened:

®
R,(w) £ dt cos exp(-ve'r)

2)'1

v(u2+v
£ £
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The mmount of broadening is determined by the trapping half-width:
vl = kzwg N

{Conventional resonance broadening theories9

do not adequately
explain our observations.) Shown in Fig. 6 is the agreement
between this model and the numerically observed diffusivity.

A specific wave which would lead to heating of an ion *"s-

tribution is an lon-acoustic wave with frequency w = kcs > Qi

end oblique propagation angle 8 (e.g., 45°). The cross-hatched
region in Fig. 3 shows the extent of the thermal lons for
w=3.6 9, and T, = 16 T, - TIons in the tail of an initially
Maxwellian distribution would be stochastically accelerated by
a wave with 5n/n 2> 0.1 . A Langmuir wave with analogous prop-
erties would lead to heating of the tall of the electron dis-
tribution.

This work was supported by the U. S. .nergy Research and
Development Administration.
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