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ABSTRACT. 

We consider the transport in Tokamaks due to colli
sions between lmpu.icy ions in the Pfirsch-Schluter regime 
and light ions. The diffusion coefficients for the particles 
have a Pfirsch-Schluter like structure for all the regimes 
of light ions. They experience however a transition from a 

set of values (A) to a different set of values (B), when th» 
2 _2 

«iuantity \Y "c
Di"S»n{Q R) varies through a value of the 

order ur>ity.( It, and ^ _ t / T , are the thermal velocity 
and the relaxation times for deflection and Maxwell'nation of 
light ions). The values (A)(applicable in particular when the 
light ions are in the Banana and Plateau regimes) allow in 
principle plasma purification by the ion temperature gradient. 

INTRODUCTION 

The interest given to the behaviour of impurities in 
Tokamaks has led to study again £i, 2, 37 the Pfirsch-Schluter 
(P.S.) regime of diffusion. //4_7. This is due to the fact that 
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in practical conditions the impurities are in the P.S. re

gime rather than in the Plateau or Banana regime. The papers 

/1_7 and fi, 27 have given different results concerning the 

particle transport coefficients when both impurities and 

light ions are in the P.S. regime. In particular the sign of 

the temperature gradient in the expression of the particle 

flux is different, leading to different oonolusions concer

ning the possibility of preventing the aooumulatlon of impu

rities by this gradient. In this paper, we first show 

that the two results correspond to two different regimes in

side the P.S. regime for both light species (ions 1 ) and 

impurity species (ions I). In the two regimes we have 

^(jjt^/î)^^,where U " t h w and T D 0 ( are respectively the 

thermal velocity and the relaxation time for orthogonal de

flection of ions o( = 1 , 1 . The time T D - for light ions 

is due to ( 1 - 1 ) collisions as well as to ( I - I) collisions. 

We will assume that 

m 1 

» * , 

where n , m and Z are the density, the mass 

charge of ions at = 1, I. In these conditions the distribution 

function of light ions approaches a Maxwellian in a time T..-T 

for which f\ - IJoollisions are much less effective than 

U - l) collisions. We have : T p ; ^ "k^U + 0(z)). For z ^ l , 

it is possible that, while having t/fn TC-i-fcR) \!,we have 

Êtfl ̂ T ^i ï) ' ̂ " ^ e "ill show thi.t the particle transport 
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coefficients reported in /I 7 and /2 J, /3 7 correspond to 
the assumptions u,. T t (£| RJ < l and > 1, 
respectively, and are in fact the asymptotio forms of a 
general expression which will be calculated inside the P.S. 
regime for light ions by an appropriate kinetic treatment. 
We will show also that the values of these coefficients ob
tained for \T, . Z-.Z (Q%) ̂ ^ apply when the light ions are 
in the Plateau and the Banana regimes. 

II. BASIS OP THE KINETIC CALCULATION IN THE P.3. REGIME FOR 
BOTH SPECIES. 

The starting point is, as usual, thfc Fokker Planck 
equation for species oC written in the drift approximation J' 5 ] 

<j P(*, V, *) . - S in 8 J*(i+p*\ ~?> Po(r> a> ^ 

>p^ 1 E, (r, e, o-, t>t *) 

£ <J « . ft 3 p 

L C fffr?,*) , f(5?,^«')] 
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where Q , a>, r , R (r « R) and R are defined in fig. 1, 

O' =|VI , p = * ( \/ is the component of the velocity 

V along the field B ) , q = r û R~ 6.( <1 » l)> and 

.1 f ° a 
U) -ireâ/*LC^ Is the cyclotron frequency on the magnetic 

axis. We assume that the cross sections of the magnetic sur

faces are circles oentered on the magnetic axis. He use the 

fiame of reference rotating around the major axis where the 

electrostatic field is zero. The distribution funotion 

f(x,V,t<) for speoieso< has been written 

where f ( r, U~. ot ) is Maxwellian on the magnetic surface f 

at a temperature T(r,rf) (we assume T( r , \ ) se T(f, I)J 

n,*,4 - (-^ ) y < f c M w > - ^ ' (3) 
In the P.S. regime for both species, the collisions reduces 

quickly strong anisotropics in velocity space and we can 

assume that the perturbation K has the form 

It is easy to show that X (which represents the isotropic 

part of f 1) varies along (9 as sin Q, and that X,, apart 

from a terra which represents a rotation of the whole plasma 

along the flux lines at an angular frequency _Q. around the 

major axis, varies along Q as cos Q . We write accordingly, 

on the .nagnetic surface P 
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I/" 
tK»/ 

Ths transport coefficients may be obtained by two equivalent 

expressions ^~b_7 which involve either the even or the odd 

part in p of the perturbation f, . If R and 

I E ^ are the averaged radial partiole flux and the energy 

flux for species e< , we have, when f- has the form (4) 

M* ~ Tartar* J °* °*{ *- ï 

, (6) 

(ro. - ?al
r^>«)>- ) 



As stated above, the régimes we have in view corres

pond to various values of the relaxation times ^ D T and 

ï „ . . If T „. is small enough, the isotropic part of the 

distribution function f( x, v,e() must be Maxwellian at each 

point of any magnetic surface, and /Al£ Z ) Is then of the form 

corresponding to looal values of the density and the tempe

rature for the speoies \ 

K (t, 9) = Yi(r, IJ (i + (*+ J ^ si« 0 ) 

T(r,(9j = Tfr, l) (i + fl 

In that case one may use the BRAGINSKI1 coefficients /5_7 

to calculate the fluxes of particle and energy for ions I 

in terms of the parallel gradients of n(f; 6) and T(r,$) i.e. 

in terms of thé constants Oi and & . By expressing that 

the divergence of these fluxes cancells out the divergence 

of the corresponding transverse fluxes associated with the 

field curvature, one may calculate o( and 0 . The radial 

fluxes r. and r . are then obtained from (5) and are those 

reported in /I 7. On the other hand if the time t . is long 

enough, / ( t/~, ] ) may depart from representing a Maxwellian 

perturbation. In that case the terms of *£- C N F <| 

which are even in 10 are of the order of Fj ¥hj Î)X~ • B y 

considering the terms of (l) for species I which are odd 
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in p we obtain C ^ . VfUjJj/OtfJ rO Y(fy ifcT, a n d therefore 

* ' l ' - J 0 l * « I - 1 ^ ; t M I V t U 

I t i s then r ead i ly ve r i f i ed tha t i f \f . T . r , , ("Q ft) )fc-3 

cancel l ing the even terms of (1) provides the equation 

y(„.« . * + f c - ^ -
obviously incompatible with (7). Again the constants a and 

b may be determined by expressing the continuity of the 

local fluxes of particle and energy for species 1 

(these constants will be given by (2Î)). The fluxes r and 

p E -I may then be calculated using (6) and are those repor

ted in /_\7 and l \ 7 • 

We will study in the next section the P.S. regime 

for species 1 , I, for arbitrary values of T M7,by a varia

tional method, taking for y ( if, "I ) and/^dT, ]) the 

following trial functions, (which are hoped to be general 

enough) 

^ 
\>-

</? W ^ 

<4ÏÎ VÏS 

(8a) 

where oi > •••> a, ... and V are adjustable constants. On 

the other hand we will admit that the impurity population 

remains Maxwellian at the temperature T(r, I). Me take 



accordingly 

It may be shown that, with m- >> m l » this is equivalent to 

neglect "àr(r;l)/'^f .^m f a c t the gradient ^T^r, j)r 'is in

volved in the expression of the fluxes F. and 

(* E j through quantities of the form 

and. If Z, » Z. , plays a minor role when calculating these 

fluxes. The energy floe F __ associated with ions I Is small 

compared to F £ , except if ia_/h.^[(n.-/ttu) .'*• In that case 

F gr is mainly due to (ju: ) collisions and may be calculated 

by standard P.S. formula involving ions I only.^ Replacing 

the functions /A. W, n/) by their expressions (8) in (5), we 

obtain 

r 
> 
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III. VARIATIONAL CALCULATION OF THE TRANSPORT COEFFICIENTS 

IN THE P.S. REGIME FOR BOTH SPECIES. 

An extremum principle equivalent to tie Fokker Planck 

equation is necessarily based on the well known symmetry pro

perties of the oollision operator and therefore is neoessa-

rily olosely related to the prinoiple of minimum entropy pro

duction whioh has been used, e.g. by ROSENBLOTH et al. /5_7 

However this prinoiple does not Involve the operator, 

and does not allow the determination of the funotion f (?,?,«) 

without imposing other constraints to this funotion . To 

obtain a variational principle equivalent to the Fokker-

Planck equation, we put first 

(10) 

where A and T are constants. 

The set of f unctions \l( x ,v , <x ) represents the departure of 

the plasma from thermodynamical equilibrium. We may write the 

collision operator (in the Landau form fSj ) as 

Z C IÇ.ÏT,-),!(?, ̂ f l a ôfvp.v,^] 
oc 

where 00 A . 7 is a linear operator acting on the func

tions U(x, "v, o( ) of the variables x*, ~v and indice •/ , which 

is specified for each function V(x, v, «O by 
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GO 

W , V _v' ; r, s a -j, 2 ( â . 

The operator od f Is symmetric in the sense that 

Because of this symmetry, if we define the two i'unctionals 
of the three functions U(x*Y,</\ . ** M*'V-»<> and f (*>,v',t<), 

considered as independent 

igf ,10 - J J . / - ^ l^v.-)-,.-^ (12) 
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the Fokker Planck equation is obviously equi-va^ent to the 
principle that the functional of d t , f, W. 

is extremum for all variations of the functiontt. Actually 
the value of S ^ U ) , when f and U desoribe effectively 
populations of partioles (and in particular verify (10)), 
is the entropy oroduetion in the plasma. It is easily dedu
ced from (11) that we have (for any f and *U) 

C'a) 
If the plasma is not far from thermodynamical equilibrium, 
the function\((^,v,o<) is small and may be calculated at 
first order with rscpect to the external constraints repla
cing f by A Py.kZ.KiiT A T ) in 5(f,H), which is a quadratic 
form in \i. In tne emotional Z- ( -rz, Wl).which is a linear 
form in \jL fthe function -TT must be replaced by its expres-
sion at first order in t/ (i.e. by A e x p ( - ^ V/iLTj —p?3F" / 
If one substitutes for U. a trial function'U( x , v , <*, P) 
depending on a set of adjustable parameters P^ these para
meters must be varied, when calculating the variation of 

http://Py.kZ.KiiT
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2/â£ ,1i) + s(f/U), only if they appear through the func

tion 11 in the explicit form of the fiuictional 

X(g£»10 + S(f, \l). It is conveni nt to under—line the 

parameters P when they appear in r;iis way, i.e. to write 

/ 5 (F^v,-,^,!^-^)) 

The parameters P - _P may then be determined by expressing 
• # 

that X + s is extremum for all the variations of P. 

For the present problem, we may restrict the inte

gration in space which appears in the expressions (\t\ and 

(iî) of the functionals Z(g|, U ) and S(f, tti to the domain 

between the magnetic surfaces r and T" + o r . We may take 

T= r(r.ll = T(r,rl -- ^ ^ 

^ ft-fr, u) _ Tu., 

By comparing (2) (3) (4) with (\Q) we obtain 
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dff* 7u\ 
The function - V* ' ' ' may be calculated from (1), (3) 

de 
and (4) 

df$s?>> r ïKw + iT(r,<),yz 7 

Substituting the expressions of -£̂ £- and tZ in (12) gives 

the functional Zlç4r-> U) as a functional of Xk^ei), ^^7 °0 
Vi ((/, od, %JLÇc() and a function of ft and _J1 • It ap--

pears in fact that _É/îj(£ V.) is independent of Jl and SI. 
Replacing the functions Yfad), Yf & o() by their trial ex
pressions specified by (8), we obtain 
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«mere we have underlined the adjustable parameters Y,o/> 

y , a, b, o,e/ T, O T according to the convention stated 

above, and we have put 

o _ l ? **u y ^ , /° - m!&s l^kiiL (15) 

The entropy production S(P ,u) i S independent of the angular 

velocity and of the parameters 0(, C< T which simply reflects 

a change of density of species 1, I. It ooes not depend also 

o n » which reflects a change of temperature of the species T, 

because we neglect the energy exchange between particles 1 and 

I. Also it depends on the parameters a and a T, which reflects a 

shift of the Haxwellian for light ions and impurity ions proportional 

to <Z_i£AT j . l ana «Vis*/* 
through the difference 

<rfhi x 

Actually we have 

i[p,u.) - é(f0,u)= %,<)+ % X J 

with 

^ - * & > ~ 

T ' ^ vjii* i V r u»L 
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We then obtain from the explicit expression (13) of S, 

after some algebra 

&£ », v„. a'' r îr 
3 n # »• Hi 9 

(16) 

where 

4». , i/ 

s 
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Expressing tha t Q i i L ^ 4, S — < 1 ^ 0 f o r a v a r i a t i o n a ctj and 

for va r i a t ions S Q and f&, suoh that_£_£L__ï_à4 _ £ j \f ]<£.. s O, 

we obtain 

In view of (9), eq.(19) implies the ambipolarity of the 

particles fluxes : Zi J\ + Z. F_ -Î O • Taking also into 

account (18), ^ P * m a v D e rewritten so that 
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Minimisation o f i _ f g + O p s (for a given V ) , with respect to 

a.', b, e_ and •<, £ , J' r e s u l t s i n a system of l i n e a r equations 

from which the value of these parameters I s r ead i ly obtained. 

In p a r t i c u l a r the combinations»/ r ( 5 ) + Ê r(i.) +VT( ^ + * ) 

and CH! T ( i ) +&r(£) + ï T ( V + J-) whioh appear in the expres

sion (9) of the fluxes ¥~ and L . are given by 

n¥*. ~<r? 1 I ft/ 5 K M a J 

< P raf t* A .s.) - ^ ' J? _ A J? fl'] 

where 

5 s 
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Choosing the value of ^ , we obtain from (9) and (20) (17) 

(15) the flux p . of light particles I and the flux of 

energy f in terms of the relative density and tempera

ture gradients 7»t(r,*)Ai. V «ma ~oT(r[i)/Tïrx,"ÙTlblî)/r~ïr 

ir the form 

0 - / 2 T \ ^ _^_ _ tf (an)"'* Wr 2j ̂  e ̂  o<£? /\ 

wnere the coefficients JC (J Ke.Msare functions of 

The table I gives the computed values of these coefficients 

for V = .In principle we may fit the value of the 

adjustable parameter V by expressing that £~„ + Sp S 14 an 

extremum with respect to r • It is easily shown thai this 

condition is equivalent to the condition that the function 
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is extremum with respect to V . Numerical calculation 
(cf. fig.2) of JCV) gives V1 -5.1. but the minimum of 
f(V) is poorly marked. Actually choosing Y= 5 or V* = 3 
gives approximatlvely the same values of the transport coef
ficients. K j H ) K- ; tig 

The values of the coefficients )c W k .Hgiven by 
the table (l) are valid only if the light ions are in the 
P.S. regime, i.e. if vĴ-jTjjj (flR) .< 1. As the deflection time 
*C D j is given by T ~ *j T.~ n+ O^z'^ltbis condition implies 
that a k + oft)) > i . The coefficients k, h, k £ h £ expe
rience a transition from the values quoted(A)(of. /3, 27) 
in the table (I) to the values quoted (B)(cf. approximative-
ly C\J)> when the quantity n fz. 4. 0(i)J increases through 
unity . As the Maxwellisation time "C„, is given by 
r^.. ^J f T T o/z y , the transition takes place for 

IV. PARTICLE TRANSPORT IN THE CASE WHEN LIGHT IONS ARE IN 
THE BANANA OR PLATEAU REGIME, AND IMPURITY IONS IN THE 
P.S. REGIME. 

We will see now that if the light ions are in the 
banana regime (T̂ ., fJfcKlH ̂ ) >(^A") ) o r i n t h e Plateau regime 



20 

the particle flux K = -X^/ZJ F is given by the P.S. like 

formula(213), taking for the coefficients kf H the values 

(A)of the table (I). This may be proved without detailed 

calculations. We note that, in the Banana or the Plateau 

regime for ions 1 , the expression^}) for the perturba

tion f ( r> Q > \J"> b > I ) whioh appears in (2) must be 

replaced by an expansion in the complete set of the Legendre 

Polynomials P n( f> ) 

f , ( r .e ,^M)= P0(r,^(l) 

However, as the impurity ions are kept in the P.S. regime, 

we retain the expression (4) for f-^ !" 6^^ p J I). 

In view of a variational calculation to determine f, 

we will use the trial expressions (8) for y (U", U ) and 

Y-,(& o£ ). (In fact the conclusions reached below are 

independent of this choice).. 'Jsing the expression £2) of 

f,(r>9 ,l7,b;D we obtain from (1) and (10) the expressions 

of ctfljX . V f 1) andîi(?,V, l ). Then the expression of 

l ( ^ £ S ^ ^ | ^ ) ) + . S ( ^ y ; ^ , W Ê ^ ) ) i s obtained from 

(12) and (13) as .a functional of yo(\f,oi) > YJO-,*0 
VJ & ^ • Vl (W> . *Jr, fl) , *u (y, ® " and as 
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* P S 

a function of n.si. It is readily verified, using the 
orthogonality of the Legendre Polynomials , that the func-
tional 2. + S has the form 

r(£,u)*i(*uj = 

where ̂: p s and S p s are given by (14) and (l6). » » By minimizing 2. + S. with respect to the coefficients «/,P, 
y, which do not appear in 0", we obtain thfi set of linear 
equations 

which results in 

£ l tOcl Tir 

J 
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if 

n~*&. < sg^'Œ?)! 
(24) 

To obtain an upper limit of the quantity Jf , we note that 

the averaged flux yT of a quantity of the form / — —, , vt 
T Wl,l/ ' ^ 

transported by the light partioles aoross the magnetic sur

face f is given by 

f Ml A «el <?« A IW '̂  *D 

In view of the expression (22),(8) of ', and of the 

orthogonality of the Legendre Polynomials we obtain 

On the other hand an upper limit of \JT is obtained from 

the diffusion process experienced by individual particles 

\ in the Banana or Plateau regime. This means that y" has 

at most the neoclassical order of magnitude, namely 

and 

in the banana and in the Plateau iv-.gime* respectively • 

Comparing (25) and (26) for any value of U» gives 
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From these estimations and from the faot that T Q I ~ "^tA\> 

it results that the condition (24) is fulfilled in both the 

Banana and the Plateau regime. The equation (25) therefore 
» • 

applies in these regimes. Expressing that i + S is extremum with 
Si « 

respect toflLand a,-. whic'j again do not appear in (T .and 

using (25), we obtain the value of 0̂  -. The value of the flux 

Fj of ions I then results from (9). The flux Fj 

happens i.o verify (213) taking for |< and (-1 the values/A) 

of the table (1). It must be noticed that the condition (24) 

is verified in the whole Plateau regime, including the frontier 

l/,,il . /QR\"^4with the P.S. regime, if we have 

£•„ •, » T M I - I n that case the particle transport coefficients 

K And H experience a transition from the values (A) to the 

Z -i 

values. (B) inside the P.S. regime, for W.i, t . î f<?l?̂  rJ •i. 

If T,.wT this transition appears for W . M X..h(t)~ ^"i • i.e. at 

the same time as the transition Plateau- P.S. The coefficients 

(C and H at the transition could be calculated in that case by 

the variational method which has been used above, by adding 

the term proportional to Pp(p) to the truncated expansion(4) of 
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r ( f d 0" k^-' i n ^Sendre Polynomials p
n(?) 

V. CONCLUSION. 

Our conclusion is that, in a configuration where 
Impurities are in the P.3. regime and the light ions are in 
the Banana, Plateau or P.S. regime, the neoclassical par
ticle flux F.:.?rFis given by the P.S. like formula (21), 

1 ^ y 
with the coefficients t\ anu H experiencing a trant.xt,ion 
from the %'alues (A) to the values (B) of the table (]) when 
the quantity \T_,. fr f /<3 K.) decreases through a value 
» ^ 1. It should be noticed that the values (A) of k and 
f-j allow in principle the purification of the plasma by the 
temperature gradient of the light ions. If the Maxwellian 
time "C" is of the same order as the deflection time ~^r\\ > 

the transition coincides with the transition Plateau-P.S. for 
the light ions. If the time "CV.1is significantly larger 
than the time "CI., the transition takes place inside the 
P.S. regime for the light ions. The values of the coefficients 
Y, H (and the coefficients (t., H E giving the energy flux £-jE) 
at the transition have been computed in that case and are 
given by the table (1). 
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FIGURE CAPTIONS 

(1) Tokamak Geometry. 
(2) Values of the function F(\>) versus >> 
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