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ABSTRACT.

We consider the transport in Tokamaks due to collil-
sions between impu.dlcy lons in the Pfirsch-Schliiter regime
and light ions. The diffusion coefficients [or the pa-ticles
have a Pfirsch-Schluter like structure for all the regimes
of light ions. They experience however a transition from a
set of values (A) to a different set of values (B), when the

t 2 T ~2vartes th
guantity (-~ T, LMTG R) varles through a value of the

thl
order unity. ( t{il and T T are the thermal velocity

DL’ "Ml

and the relaxation times for deflection and Maxwell’sation of
light ions). The values(A)(applicable in particular when the
light ions are in the Banana and Plateau regimes) allow in

principle plasmz purification by the ion temperature gradient.
INTRODUCTION
The interest given to the behaviour of impurities in

Tokamaks has led to study again /I, 2, 3/ the Pfirsch-Schliiter

(P.S.) regime of diffusion. /%4 7. This is due to the fact that



in practical conditlons the lmpurities are in the P.S. re-
gime rather than in the Plateau or Banana regime. The papers
/17 and /2, 37 have given different results cocncerning the
particle transport coefficients when both impurities and
light ions are in the P.S. regime. In partioular the sign of
the temperature gradient in the expression of the particle
flux is different, leading to different conclusions concer-
ning the possibility of preventing the accumulation of impu-~
rities by cthis gradlent. In this paper, we flrat show

that the two results correspond to two different regimes in-
side the P.S. regime for both light species (ions 1 ) and
impurity species (ions 1I). In the two regimes we have
%‘ho(zoo( (? R)-<1 ,where U—thu and T, sre respectively the
thermal velocity and the relaxation time for orthogonal de-
flection of ions o = 1 s I. The time IDZ for light ions
is due to ( 1-1) collisions as well as to ( 1- I) collisions.

We will assume that

2
my ny Z m
>1 , z = _I_’.L I
where n » m‘ and Z“ are the density, the mass and the

charge of ions of =1, I. In these conditlons the distribution
function of light lons approaches a Maxwellian in a time er
for which (l - I)CO.Llisions are much less effective than

G- l) collisions. We have : TpL™v T 1(1 + 0(z)). For =31,
1t is possible that, while having (%, ( R) yj’we have

0

e -DI @]R) )1 We will show thut the particle transport



coeffielents reported in /17 and /27, /37 correspond to
the assumptions \{M Tm (q R < 1 and > 1,
respectively, and are in !‘act the asymptotlc forms of a
general expression which will be calculated inside the P.S.
regime for light lons by an appropriate kinetic treatment.
We will show also that the values of these cvefficlents ob-
tained for

uztm m
in the Plateau and the Banana regimes,

qﬂ)>7app1y when the light lons are

IT. BASIS OF THE KINETTC CALCULATION IN THE P.S. REGIME FOR

BOTH SPECIES.

The starting point is, as usual, the¢ Fokker Planck

equation for species o written in the drift approximation ~ 5_]

dFE,V, ) | —sin8 ( ijp(rud
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where 8, @, ", R (r «R) and R, are defined in fig. 1,
UV, p. e
- v,
\/ ealong the field B), q rB R, B ( Qs 1), and

ZeB(ILc) 1s the cyclotron frequency on the magnetic

( \{ is the component of the velocity

W'

axis. We aussume that the cross sections of the magnetic sur-
faces are circles centered on the magnetlc axls. We use the
frame of reference rotating around the major axis where the
electrostatic fleld is 2zero, The distribution function

f‘(;. \7; o) for speoieso{ has been written

o)z £, v, o) F,(f,a,u, b, o) @

where !‘o( r,J.o) is Maxwellian on the magnetic surface [
at a temperature T(F,«) (we assume T(r, 1) = T(r, I))
3 e
fhoo) = (.M____) & new ap e (I
2w T(F, ) 2 TEN
In the P.S. regime for both species, the collislons reauces
quickly strong anisotroples in velocity space and we can

assume that the perturbation F1 hes the form

F—x Q.l 9: Pl "’ld) = [xo(rf 9, v, °‘) + F xq(r' 9' U’,ﬂ)] Fo(r' v ")
It is easy to show that Xo (which represenvs the isotropic
part of fl) varies along 9 as sin @, and that Xl, apart
from & term which represents a rotation of the whele plasma
along the flux lines at an angular frequencyﬂ around the
major axis, varies along 9 as cos B . We write accordingly,

on the .nagnetic surface I

——



Lo v, bz E(v, o) [ Yo sin
' 2
p v Y'(t)"o()('o.se.pZU'p -‘?:R J )

thoo “ /
V.= (2T(",-1)) 2
tho e

The trensport coefflolents may be obtained by two equivalent
expressions /57 which involve either the even or the odd
part in p of the perturbation 1‘1 . If E( and
F' are the averaged radial partiocle flux and the energy

EX
flux for species & , we have, when f, has the form (4)

n «° B 2, e
F;E}of s - _:Rawcﬁl ,J"du );“ P“‘{m"- U} [b) l [
F -2ng —2ng m, ¢ fu. du ‘F"/P {mdvz}
[er<~ Ze B, = 2

P
T;(C[F‘" }i \4“’ o' ] + C [“’ Ui R Fo«’.})
(6)
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As stated above, the regimes we have in view corres-
pond to various values of the relaxation tilmes ‘tDI and
IM! LI T M1 is small enough, the isotropic part of the
distribution function f( 3:’, 7, o) must be Maxwellian at each

point of any magnetic Surface, and K(UZ 1) 1s then of the form

2
v r e o J
'o\'v *PTH: (7)

corresponding to local values of the density and the tempe-

rature for the species 1

n(, 8 = n(E D @M@ 2R 8 )
TE6) = TF 1) (44 8 sin o)

In that case one may use the BRAGINSKII coefficlents /B_7

to calculate the fluxes of particle and energy for ions 2

in terms of the parallel gradients of n(f8) and T(R6) i.e.

in terms of thé constants & and /B . By expressing that
the divergence of these fluxes cancells out the divergence

of the corresponding transverse fluxes assoclated with the
field curvature, one may calculate o and IB . The radial
fluxes Fl and FEY are then obtained from (5) and are those
reported in /1 7. On the other hand if the time tMlis long
enough, yo( v, ]) may depart from representing a Maxwellian
perturbation. In that case the terms of % C[Fl s F«']
which are even in '0 are of the order of ‘;1 ):(IJ, I)t;:],' By

consldering the terms of (1) for species 1 which are odd
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in p we obtain (.)b'u X(U; ])@&)JN ‘/1(151 ;]‘land therefore

Bren terms of 2 CJ7 0] o f, ¥EY ¢ YET R
n ferms o {I d] ol Tl ol Tl Ty Vin 1

2 ~2
It 1s then readily verified that if U;“ fm er QR >
cancelling the even terms of (1) provides the equation

Y(U',I) =z A+ b U-a
' Vi

obviously incompatible with (7). Again the constants & and
b may be determined by expressing the ocontinulty of the
local fluxes of partlecle and energy for specles 1

(these constants will be gilven by (22)). The fluxes Fl and
FE'Z may then ve calculated using (6) and are those repor-
ted in /2.7 and /3 7.

We wlll study in the next sectlon the P.S. regime
for specles 1 ’ I’ for arbitrary values of ‘CM-Uby a varia-
tionnal method. taking for ‘/0( U, 1) and yl(l)', 1) the

following trial functions, (which are hoped to be general

enough) \)
¢ 2
Y (U‘ U = o 4 4 Jg
v i =¥ -+
£ Vi Ll

V) -asbl .oV

where ol , +o., 2, ... and \) are adjustable constants. On
the other hand we will admit that the impurity population

remains Maxwellian at the temperature T(1r, I). We lake




accordingly
yo ("r» I) °£I L
(8b)
vq (l)', I ) I J

It may be shown that, with M X5 My this 1s equivalent to
negleot 'BT(F, I)/}r . (In fact the gradient hT(r, I)‘/‘ 5 in-
volved in the expression of the fluxes F and

1
FEI through quantities of the form )r(l‘,l)/T(f.l)]f—aé/txpT(f.I)/f(f,I)al‘

and, 1if ZI >N Z-[ » plays a minor role when calculating these

M

fluxes. The energy fluvx FEI assoclated wigm ions I is small
compared to FE 1 exXeept if nl/n_t)@lt/m:) !, In that case

FEI is mainly due to (I..I ) collisions and may be calculated ' }
by standard P.S. fcrmula involving ions I only.) Replacing

the functlans >’°< V, &) by their expressions (8) in (5), we

obtain
2 ~
- n Ui b
Fl - lz;:"ele‘j Rt:l 3P-n 7 -lro( F(Es-) 4-{3 .]TC—)* 3!'(\).,25.)]
2
- ny; m UVt 13
- Pomedll 255 % Q) s
[
- .y A b
R v sl R M R R e ]

(nl : n(r, 1) @



ITI. VARTATIONAL CALCULATION OF THE TRANSPORT COEFFICIENTS

IN THE P.S. REGIME FOR BOTH SPECIES.

An extremmum principle equivalent to ti.e Fokker Planck
equation is necessarily based on the well known Symmetry pro-
pertlies of the collisicn operator and therefore is neocessa-
rily olosely related to the prineiple of minimum entropy pro-
duction which has been used, e.g. by ROSENBLUTH et al. /57
However this principle dees not Ilnvolve the operator.a-#m
and does not allow the determination of the function f'(i',V;.()
without imposing other constraints to this funotion . To
obtain a varlational principle equivalent to the Fokker-

Planck eguation, we put first

2 -
(RN M‘VU’ _Ux’,v.
.V, o) = A, exp - _{Z AL (10)

where A“ and T are constants.
The set of functlons 'Ll(’.‘,,\—/) , &) represents the departure of
the plasma from thermodynamical equilibrium. We may write the

collision operator (in the Landau form [6/ ) as

; ClRv.0, a9 I [UFT, )]
where &F[ . ] 1s a linear operator acting on the fune-

tions UE:?, 3, o) of the variables X, Y and indice « , which

is specified for each function (X, ¥, &) by

e



- 10

Bz er V a() : //fom vl rs )7\? \71.(,,,1’)
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a1
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"
5\
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w

The operator Qf is symmetric In the sense that
Z,:,’;//// %V o [UR V. W (7.7, %)
/////dxo_s U'Zi"—)n() 02 xv,{T

Because of this symmetry, if we define the two iunctionals
of the three functions 1 x:;(:d) , Ciix ¥o) and f(;),\—/:nl),

considered as independent

slru) - .2 5_}... Jﬁfu(;;v,ﬂj U7, 2) dax dv.

T
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trhe Fokker Planck equation is obvionsly equivalent to the

principle that the functional of gg , I u

z(.%f’“) + SEwW

is extremum for all variations of the functionU. Actually
the value of E(F, W), when f and W deseribe effectively
penulations of particles {(and in particular verify (10)),

is the entropy vroduction in the plesma. It 1s easily dedu-~

ced from (11) that we have (for any f and W)

é(F,’U.): 4 = / Ars(x VN e )

2T o A!

F(,(’ \2,{) flx \7!’ d/) ( }'Ll("" .b'u.(x, v)’.(l) ) l !

m, Ve my' VY
Fodie - TP 0 — -a
/'bu.;*.v, <) QUEF V) ) o, ¥ oy Vay W/
A my ’}Vg M.‘I }\G

(13)

If the plasma 1s not far from thermodynamical equilibrium,
the f‘unctionll(;,v,ol) is small and may be calculated at
first order with rezpect to the external constraints repla-
cing f byA_a,‘},(‘m 0/11’)1:1 Ar, W), which is a quadratic
form in ‘Y, In tne :“mnctional Z ( dt,u-),which is a linear
form in ‘u the function % must be replaced by its expres-
sion at first order in U (i.e. by A exp( m, LT/Z j d'llfi'\'d\])‘
If one substitutes for (U. a trial functionU(x, v,o, P)
depending on a set of adjustable parameters P/ these para-

meters must be varied, when calculating the variation nf


http://Py.kZ.KiiT
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L]
2 g{; ,'U) + S(£,10), only if they appear through the tunc-
tion U in the explicit form of the functional

Z(dt‘ u) + S(f ). It is conveni nt to under_line the

parameters P when they appear in tais way, l.e¢. to write

S, u)« $(R W= 2 (4EID) UET 0.1))

+ 5 (F()(’Vlo(‘f)”u(x,\l, ‘—))

The parameters P = _13 may then be determined by expressing
. 3
that 3 + S 1s extremum for all the varilations of Pp.

For the present problem, we may restrict the inte-
gration in space which appears in the expressions (12\ and
(13) of the functionals Z(dt’u) and S\F U) to the domain

between the magnetic surfaces [ and I© +OF . We may take
I
T(rl = T(r 1 = _“'_‘12&4_

A n{r, ) _ L.
o 3 - 3, 3
n¥a Vide nho gyl

By comparing (2) (3) (4) with (i10) we obtain

M v g (B 1 im0t - L)

T T 'f(‘f',o(}
ERA <@“) + V(v ) sme
Tw RZ
+ V,(Vw” Gﬁ 8 + Ro

the
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The function %@wmay be calculated from (1), (3)
and (4)

dfE, 0,0 - (- LLGED) - 37’(";#)(_0_2 _3) ]
dt 'i(l',l}:el) h, mr T v lf‘* 2

veii .. p?) JESW'9
TR Sm 8 &+ [Yé’ o) 0RO . V(U'A’) ?:_?-

P S T o /R YR B
72‘ R, 4 ( #“ “9

Subst .tuting the t_xpreasions of %—E and U in (12) gives
the functional Z( u,) as a functional of Y{rel), V@f o)

A (U' o, (()' o) and a function of J2 and _f) . It ap--
pears in fact that Z{d‘; W) is independent of J) and JS).

Replacing the functions \/@'g()) ‘/1@'0() by their trial ex-
pressions specified by (8), we obtain

of ;L’-): Zn.( A RN AT )

)’ " i q“ -5

3 % ,
{ -3 LZ (_r(?uff(iplfW ) (f/zwr/e) y é’f)
1

_a(((\l-',i} + b ‘f?\. s C _T’/Ag}) ﬁ(a 77(:‘1“ b1

_a’/'lr[?.,. Y é).l-i J‘CF@-L_
k(@ T2+ £12)0 ) 45 a T b7 v 1))
_,.X/aﬂ(w_;.;u V‘{J+CI’(V-L_)

+((o:r_5" ‘i‘._ra:"wsfé) I‘?.g' U-M_} é“l

—




1

wnere we have underlined the adjustable parameters \), ods fg/

YJ

above, and we have put

a, b, ¢, ’(I’ ﬂI according to the convention stated

o-- 2qtfeu1h(;0 . qd‘g WMWY s
Y W

(X

The entropy production E(p sU) 1s independent of the angular
velocity 52 ana of tha parameters ©f, O(I which simply reflects
a change of density of species 1, I. It c¢oes not depend also
nﬂ which reflects a change of temperature of the species 1, l }
because we neglect the energy exchange between particles 1 and

I. Also 1t depends on the narameters a and ar, which reflectsa

shift of the Maxwellian for light ions ard impurity ions proportional

to (l_b,en /2. and quu./z through the difference
al = o - LAz a,

Actually we have

§fow = $f,w- SRu). SE.w)

with
s~ ¥

WETD (o)
LN = — o8

. 4 l’mz>

Vg 2 z cn O
u4("""1):(a,'+ LUt L. J‘) U bln

T Vie2? Ui 1 UkL

‘lL: £V, I) = y;(x,v, N=o
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We then obtain from the explieit expression {13) of S,

after some algebra

Skow - éﬂ (o , % i)

- _@n
e n, U‘m q

(B Rols Ba* 4 8ef 2 Al

Y

+ 2B b e 4 2 Clg,'_c_,) (16)
where
Oéb)) = 3’ ILDPZ) +1 ( g
.T()) —’z az.z\) T’<_g\)_‘9\ \(dh;’ o8

(- ) ead Sw"oﬁ"b ez o™

/ 4
.A:JQ = E: ﬂ».ﬂzf_
¥a
\5% 3:123(__/_“2-2 %z)
(jzgn‘/‘sf'ﬂ 3

lex2°7

S

et
3"1 3(—-7-46)(2 + TZ
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and 4 3 2 2
g R o ontath, =izt el s
37 2T 0, Tir 3 md vy

Expressing that 8_@” -+ Srs);gror a variationgo( and
for variations SG and Sax such that_&a_l.sa éo
we obtain
6 - Ug =0 (18)
«TE AT - YTQ )+, TE) gm0 09

1
In view of (9), eq.{19) implies the ambipolarity of the

th /uz

particles fluxes : Z.L ]“ +2Zy ['r 20 . Taking also into
»

account (18), Z.ps may be rewritten so that
» N 3
3 = &n -1
Zfs + Ps 3% ”Z(};",lq rér

{wr%ezw,ﬂf-ﬂg%h@@%%ﬁo

o B2 Gl o8 1 760 2)
‘C(O(J(zs‘ ﬁ ( ) iJ(V+_J}
+d(a’f’& shoffuel (i)+/s (2T L0 g+ )
y (206 5 bOped)s clfe 2))

+
+£(V Y% ﬁ{ugc +2ﬂa’A+z3sc+f—7gac}

f\r
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Minimisation o.(‘ZPS +'SPS (for a given)’), with respect to
a's b, ¢ anded, f, J resuits in a system of linear equations
from which the value of these parameters is readily obtailned.
In perticular the combinations « I'(J) + Fr( Y vyrt v -5)
and of l‘(’) +!8T'(.-) ¥ PV« 1—) which appear in the expres-
sion (9) of the I‘lu.xesr and F are given by

o 1(5. .,./31‘(_ +Xl’<\9+ | =

wlid s 6 B )AG-§)e 44242 ]
n-% c?fﬁ( "—)*"‘f’?—&?fg.]

“r 1(9 +r1/»>+ = /
Tra/a(ﬁ m-z-,i:;‘)f e gl AR LED

EUICICR S S R L S

where

?:bfﬂ‘ 1A, g') L

"’(9-4-5- 6)2.- V)

(e o) 3¢

T+ £ P~ ¥)

L=
3%’:: 6&__4_—1{'— .P\)J-—J

2.

28 L f 1y B
L,(;f‘Aﬁ‘?fe + LB 1AL I8,

T @3\);
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Choosing the value of ¥ , we obtain from (9) and (20) {17)

(15) the flux FZ' of light partilcles 1 and the flux of

cnergy F. in terms of the relative denslty and %empera-

ture gradients bh(r,d)/n_d ¥ and \a‘r(rl 7_)/1’31‘ x F)T(ﬁ I)/ T

ir the form

2
Ny G 2 Gl z; ong I
Fl:-ﬂ;f:-—‘_-cl—:l‘] [K(D"‘pr ?_:. f\:’ar)
’ -D'l'(r, 1.) Zl
H i (4+ o(.z_;)}] ZE
2
F ._ " Cont 1-,-[( ( n(rH Zy RASGE
€l ar—q n, z, "3or
}T (r, 1 21
H T or (4 (—Z?))} (9-’”5)
Y _ 21‘ 4 - (2.!1)’4”:2 Z'LE Q&gl\
tm’(—q)m ? Tr 3Im 7 TV

wnere the coefficlents K_' H_' KE Hgare functions of

4 9@/1 faiTppend 7 = z,/n-,_ z,_

The table I gives the computed values of these coefficients
for ¥ = . In principle we may fit the value of the
adjustable paraméter ‘) by expressing that é,s + §PS i5 an
extremum with respect to \_) . It is easily shown tha: this

condition is equivalent to the condition that the function
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F'(y): lI(\)) ,] % "

otv) e De 5 274

1s extremum with respect to \> . Numerieal calculation

%%

(of. £1g.2) of J(V) gives ¥ = 5.1, but the minimum of

?

(V) is poorly marked. Actually choosing Y- 50r ¥ =3
gives approximatively the same values of the transport aocef-

ficients K) H N KE ) HE

The values of the coerficients K, H_’ kE,HEgiven by
the table (I) are valid only if the light ions are in the
P.S. regime, i.e. if Vi Ty (qR\-L 1. As the deflection time
'EDZ is given by T_:Li,u Tl;',é"' ofz"))’this condition implies
that g (Z+ o[’ﬂ) 7 1. The coefficients k, k, k hy expe-
rience a transition from the values quoted(a)(er. /3, 37)
in the table (I) to the values quoted (B)(ef. approximative-
1y /17), when the quantity 33(2 + O(:()) increases through

unity . AS the Maxwellisation time T 1s given by

Mt
tM‘L ~~ rl!' O(Z )}, the transition takes place for

-2
2
Ul Twr Ty QR) ~ 2.

IV. PARTICLE TRANSPORT IN THE CASE WHEN LIGHT IONS ARE IN

THE BANANA OR PLATEAU REGIME, AND IMPURITY IONS IN THE

P.3. REGIME.

We will see now that if the light lons are in the

banans regime (T.b‘l dl:h‘l.é R)-I>(R/r)%)or in the Plateau regime
A < T, Vn QRrRY <&/ )
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the particle flux F 4%/21) is given by the P.S. like
formula(21&) taking for the coefficients k H the values
(A)of the table (I). This may be proved without detailled
calculations. We note that, in the Banana or the Plateau
regime for ions 1 s the expression(4) for the perturba-
tion ft( r O U P 1 ) which appears in (2) must be
replaced by an expansion in the complete set of the Legendre

Polynomials Pn(P )

L(ro,v,p )= B, v,

[}’ v 1) sme 4 PV Y@l Y
U.f-ho(

QR
+QUF R + ‘n>z G; x (JB)] | l

(22)

However, as the impurity ions are kept in the P.S. regime,
we retain the expression (%) for f'l( Y 9)0': p, I).

In view of a variational calculation to determine f'l

we will use the trial expressions (8) for YO(U‘, o ) and
Yl(lf » ol ). (In fact the conclusions reached below are
independent of this choice).VUsing the expression @f’.) of
£y (r 7] Jfl) we obtain from (1) and (10} the expressions
of -d?-g&'—\-_b;L and ‘U(X 3,1 ). Then the expression of
Z(ﬁ_&gﬂ’@i _5.!‘,_\(,&) &4& ,n(), g;v!d” is obtained from
(12) a.tnd (13) as .a functional of ¥ U‘ g) (U‘ o)
Yid Y X (u' 8) , X, 8 and as
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a function on » S_l. It 1s readily verified, using the

orthogonality of the Legendre Polynomials, that the func-
. > o

tional 2 + S has the form

=4, u) « SEW
Z (%G, Blw, i qew)
+ S5 (% 60 Y (0 0)

ey, v, 0L, x @9 ,)c_.\(t_f',_B))

> .
whereZPS and Spq are given by (14) ana (16).
d 3
By minimizing & + S'swith respect to the coefficients o,B,
rs

3_', which do not appear in €, we obtain the set of linear
eguations

@ -2 €. -a)I8) 4(e, -0 T(Z)-c T =0
- & -9 TR (6 TR - T
[t -2 -9 [(g) + (fl_g)y@+ 2] ey =

{
Uy 2 _ _2)’06(‘)) -2Y73 I(\’)

which results in

a:(,l_%(?f_mdih(hnn -1 TwL) 1

Wel {m ar 2 ,
bep - 24Vl Tin 1) >(23)
£l Wel T oF

c-o J
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ifm VR L S qmr(o@g’rﬂ (" i)

Uikl Tml Wel (24)

To obtain an upper limit of the quantity x , we note that

[P
the averaged flux "r ol a quantity of the form UTU-‘: —I—;—Fy
4+

transported by the light particles across the magnetic sur-

face T" 1is given by

¢=.ﬂMlﬁ (r AN )[um)q‘.}_ d@%aﬁwcfe

1 W1 Reo 1+p

In view of the expression (22),(8) of Pl and of the

orthogonality of the Legendre Polynomials we obtain
- 4 Vi g ( ?] \)+
-M Vikl (el +i + + X+
’L}) T R, WelRo 2 n '/" -G. /S (P— (25

On the other hand an upper 1limit of '\P' is obtained from
the diffusion process experienced by individual particles
']_ in the Banana or Plateau regime. This means that w- has

at most the neoclassical order of magnitude, namely

3 !
M n (’m (R)A[o T, 1)) %Fz))}esa)
W/} U PH\ [ @T.{::' )4— O(%%) ] (26b)

in the banana and in the Plateau r.-.glme, respectively +

Comparing (25) and (26) for any value of lh gives
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-

w4 < Ty G @R < (R
Frem these estimations and from the fact that tDl < TM‘L'
it results that the condition (24) is fulfilled in both the
Banana and the Plateau regime. The equation (23) therefore
applies in these regimes. Expressing that }:;3+ 5!! is extremum with
respect tou:and ar, whici; again do not appear inG')and
using (23), we obtain the value of MI' The value of the flux
FI of ions T then results from (9). The flux F:
happens lo verify (213) taking for K and M the values(A)
of tha table (1). It must be noticed that the condition (24)
is verified in the whole Plateau regime, ineluding the £rontier
thl t-bl q R)-Lflwith the P.S. regime, 1f we have
rDI» tml' In that case the particle transport coefficlents
W and H experience a transition from the values (A) to the
values (B) inside the P.S. regime, for u;h?l tD‘l tMl @Q)-ZN 4
ir r.bl"' TMUthis transition appears for Vthlf,naﬂ-l“"i; i.e. at
the same time as the transition Plateau~ P.S. The eoefficients
K and H at the transition could be calculated in that case by
the variationel method which has been used above, hy adding

the term proportional to P,(p) to the truncated expansion(4) of
2
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Ft(rfl 0‘ U" P.l) in Legendre Polynomials Pn(p) .
V. CONCLUSION.

Our conclusion i1s that, in a configuration where
impurities are in the P.9. regime and the ilght ions are in
the Banana, Plateau or F.S, regime, the neoclassical par-
ticle flux F1=-§Lr§_15 given by the P,S. like formula (21.),
with the coefriclents K and ;i  sxpellencluy a transcolol
from the values (A) to the values (B) of the table (1) when
the quantity l‘&:lt;b T (q R‘. decreases through a value

1 m

+»» 1. It should be noticed that the values (A) of K ana
H allow in principle the purification of the plasma by the ]
temperature gradisnt of the light ions. If the Maxwelllan '
time 'leis of the same order as the deflection time rD'L ,
the transition coincides with the transition Plateau«P.S. for
the light lons. If the time 'C-M.Lis significantly larger
than the time TDI’ the transition takes place inside the
P.S. regime for i:he light ions. The values of the coefficients
¥, H {and the coerficients &, HE giving the energy flux F‘[E)
gt the transition have been computed in that case and are

given by the table (1).
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FIGURE CAPTIONS

(1) Tokamak Geometry,

I/
(2) values of the function F(\P) versus ¥V .



TABLE I
-3
8 = 10
K H K Hy
<—— A
1 |-o.5 1 0.5 + 1.41/2
g =0. = 0.3
z K z X
H KE Hp H KE HE
10 J0.99 | - 0.49 1 Jo0.564 3 fo0.98 | -0.46 | 1.00 { 0.97
S 10.96 | -0.44 J21.00] 0.79
10 Jo.93 | -0.4 0.99 ]| 0.65
3=0.5 3, 1
z K H KE HE 2z I H KE HE
2 fJo.96 | -0.43 ] 1.01 J1.20 1 Jo.93}-0.36 ] .03 }1.85
5 §0.%0 | -0.36 | 0.99 § 0.9 3 Jo.83]-0.24 §1.00)0.97
10 Jo0.84 | -0.28 J 0.98 |o0.67 5 fo0.77]-0.16 | 0.98 Jo.81
10 §0.47 f-0.06 | 0.96 Jo0.70
g - 3 -
z | & H Kg Hg z K H g g
1 Jo.83 | ~0.17 ] 1.08 | 1.76 1 0.74 J 0.01 ] 1.12 | 1.68
3 fo.69 | -0.04 ! 1.01 § 0.96 3 0.61 | 0.09f 1.01 fo.96
s Jo.63 | 0.024 ] 0.98 | 0.82 5 0.57 f 0.12 ] 0.97 ] o.83
10 f0.57 § 0.09 0.94 §0.72 10 § 0.53 §0.15 § 0.94 {0.73
3, =10
z
K H KE HE
1 0.71 J 0.06 | 1.13 | 1.66
3 0.59 | 1.2 1.01 | 0.96 <8
5 0.55 | 0.14 | 0.97 | 0.83
10 4 0,52 } 0.17 § 0.94 ] 0.73
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