

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИИ ДУБНА

P6 - 8929

ASI

А.Зелински, К.Зубер, Я.Зубер, В.В.Кузнецов, А.Колачковски, А.Лятушински, Ю.В.Норсеев, Х.-Г.Ортлепп, И.Пенев, А.В.Потемпа

ИССЛЕДОВАНИЕ БЕТА-РАСПАДА НЕЙТРОНОДЕФИЦИТНЫХ ИЗОТОПОВ РАДОНА $207 \operatorname{Rn} (\operatorname{T}_{1/2} 10 \text{ МИН}), \frac{206 \operatorname{Rn} (\operatorname{T}_{1/2} 5,7 \text{ МИН})}{1/2}$ И $^{205} \operatorname{Rn} (\operatorname{T}_{1/2} 2,8 \text{ МИН})$

Ранг публикаций Объединенного института ядерных исследований

Препринты и сообщения Объедьненного института ядерных исследований /ОИЯИ/ являются самостоятельными публикациями. Они издаются в соответствии со ст. 4 Устава ОИЯИ. Отличие препринтов от сообщений заключается в том, что текст препринта будет впоследствии воспроизведен в каком-либо научном журнале или апериодическом сборнике.

Индексация

Препринты, сообщения и депонированные публикации ОИЯИ имеют единую нарастающую порядковую нумерацию, составляющую последние 4 цифры индекса.

Первый знак индекса - буквенный - может быть представлен в 3 вариантах:

"Р" - издание на русском языке;

"Е" - издачие на английском языке;

"Д" - работа публикуется на русском и английском языках. Препринты и сообщения, которые рассылаются только в страныучастницы ОИЯИ, буквеиных индексов не имеют.

Цифра, следующая за јуквенным обозначеннем, определяет тематическую категорию данной публикации. Перечень тематических категорий изданий ОИЯИ периодически рассылается их получателям.

Индексы, описанные выше, проставляются в правом верхнем углу на обложке и титульном листе каждого издания.

Ссылки

В библиографических ссылках на препринты и сообщения ОИЯИ мы рекомендуем указывать: инициалы и фамилию автора, далее сокращенное наименование института-издателя, индекс, место и год издания.

Пример библиографической ссылки: И.И.Иванов, ОИЯИ, Р2-4985, Дубиа, 1971.

🕲 1975 Объединенный институт ядерных исследований Дубна

P6 - 8929

А.Зелински, К.Зубер, Я.Зубер, В.В.Кузнецов, А.Колачковски, А.Лятушински, Ю.В.Норсеев, Х.-Г.Ортлепп, И.Пенев, А.В.Потемпа

ИССЛЕДОВАНИЕ БЕТА-РАСПАДА НЕЙТРОНОДЕФИЦИТНЫХ ИЗОТОПОВ РАДОНА $207 \operatorname{Rn} (T_{1/2} = 10 \text{ МИН}), \frac{206 \operatorname{Rn} (T_{1/2} = 5,7 \text{ МИН})}{1/2}$ И $205 \operatorname{Rn} (T_{1/2} = 2,8 \text{ МИН})$

Введение

Псследование возбужденных состояний чейтронодефицитных изотопов астата, проявляющихся в бета-распаде радиоактивных ядер радона, позволяет изучить основные свойства многочастичных состояний ядер вблизи оболочек Z = 32, N = 126. В частности, в ядрах²⁰⁵ At и ²⁰⁷At , кроме одночастичных состояний 85-го протона и состояний, связанных с его взаимодействием с фононом, должны возбуждаться уровни, принадлежавшие мультиплету (h 9/2)³.

В работах /1-3 при исследовании возбужденных 201, 203 . 207, Bi 211At обнаружесостояний ядер н 83 25 ны низколежашие состояния (1,0 ~ 1,5 МэВ) с положительной четностью, которые можно интерпретировать как дырочные состояния, обусловленные переходом протонов из состояний s1, d3, d5, заполненной оболочки Z = 82. Некоторые данные о существовании этого типа состояний в ядрах ²⁰⁷ At и ²⁰⁹At содержатся в работах^{, 4,5}

Изучение распада 204,206,208 Rn интересно с точки зрения исследования свойств мультиплета $p(h_{9,2})^3 n(f_{5,2})^{1,3,-3}$, члены котерого должны про-являться при бета-распаде. Недавно в работе $^{/6/}$ при

исследовании миллисскундных изомеров лечетно-нечетных ядер ²⁰⁴ Ві и ²⁰⁶Ві в реакции ²⁰³Tl(σ , 3n) ²⁰⁴Ві а ²⁰⁵Tl(σ , 3n) ²⁰⁵Ві наблюдались только самые нижше состояния этого мультиплета. Бета-распадные свойства ^{204,206,208} Rn до сих пор изучены очень мало. Первые данные о гамма-лучах, возникающих при распаде ²⁰⁸ Rn и возбужденных состояниях ²⁰⁸At, представлены в рабогах ^{7,8}.

В настоящей работе наиболее полно проведене исследование распада 207 Rn , предлагается схема распада 207 Rn - 207 At , получены дополчительные данные о схеме распада 205 Rn - 205 At , впервые исследовался спектр гамма-лучей, возникающих при распаде 206 Rn и обсужденся вариант схемы распада 206 Rn - 206 At Вхедварательные результаты этой работы сообщались с работых $^{9}-12$

Праготовление источников

Рельовканьные изотопы 205,206, 207 Rn — велучатись в релякии расценления тория протонами с мертиси — Е р. 7.660. М.в. на синхроциклотроне Дабераторай адера 38 проблем ОНЯН.

Мильень из окиси тория весом 0,5кг, помелениея в кварделят колбу, облучалась на внешнем лучке протонов сисурециклотрона.

Газообразные пролукты реакции, в том числе атомы радона, диффундировали из окиси тория и откачивались в специальной вакуумной системе через омлаждаемую жидким атомом довушку с активированным углем. Ловушки с радиоактивными продуктами реакции переносились к масс-сепаратору, подключались к понному источнику масс-с паратора и педогревалист, Поступающие в источник ионов атомы радона ионизировалсь и переносились на коллектор масс-сепаратора. Вся процедура длилась приблизительно 7-8 мин. от конца облучения мишени.

Метод получения масс-сепарированных источников благородных газов подробно описан в работе ¹³.

Все измерения проводились с помошью спектрометров с полупроводниковыми Ge(Li) - и Si(Li) летекторами. Для измерений гамма-спектров и сцектров гамма-гамма-совпадений применялись детекторы с чувствительными объемами 3 см³ (разрешение 1,1 кэВ при энергии 120 кэВ), 40 см³ (разрешение 2,5 кэВ при энергии 1332 кэВ), 27 см³ (разрешение 2,7 кэВ при энергии 1332 кэВ) и 38 см³ (разрешение 3,1 кэВ при энергии 1332 кэВ). Для измерений спектров электронов внутренней конверсии применялся Si(Li) -детектор с разрешение 2,0 кэВ при энергии 120 кэВ, а для измерения спектра позитронов ²⁰⁷ Rn -Si(Li) -детектор толшиной 14 мм с разрешение ~8кэВ.

В спектре гамма-лучей, возникающих при распаде ²⁰⁷Rn , наблюдалось 109 гамма-переходов. Энергии и интенсивности этих переходов сведены в табл.1. Десять переходов наблюдались раньше в работе ⁷⁴⁷. В спектре электронов внутренней конверсии наблюдались конверсионные электроны толькс интенсивных переходов, и для этих переходов рассчитаны значения коэффициентов внутренней кснверсии и определены мультипольности: 329,4 (М1); 344,5 (Е2+20% М1); 402,7 (М1); 674,0 (Е2) и 747,2 кэВ (М1+Е2).

Результаты анализа спектров электронов внутренней конверсии хорошо согласуются с данными, полученными в работе $^{/4/}$. В спектрах y - y -совпадений при распаде 207 Rn наблюдались совпадения перехода 344,5 кэВ с гамма-лучами с энергией 329,5; 402,6; 553,2; 628,6; 631,5; 674,0; 697,5; 775,3 и 853,4 кэВ; перехода 402,7 кэВ - с 344,5; 367,6; 477,8 кэВ; перелода 674 кэВ - с 344,5 кэВ; перехода 747,2 кэВ - с 367,6 и 477,8 кэВ.

Анализ совпадений перехода 344,5 кэВ с КХ-рентгеновскими лучами и с аннигиляционным излучением позволил установить, что урсвень с энергией 344,5 кэВ читенсивно заселяется позитронами, для этого состояния также определили соотношение $K/\beta^+ = 2.5 \pm 0.3$.

Габлица I Энергии и питенсивности гамма-лучей, возникающих при распаде ²⁰⁷ Rn

εχ±ΔΕχ[κэΒ]	ΙδτΟΙδ	Εχ±Δ[χ[κ3Β]	Istals
168, 01± 0,3	5,6 <u>+</u> 1,1	511,00 <u>+</u> 0,06	178 <u>+</u> 18
233,8 <u>+</u> 0,2	15 <u>+</u> 3	520,2 <u>+</u> 0,3	3 <u>+</u> 1,5
242,9 <u>+</u> 0,4	3,4 <u>+</u> 1,0	524,2 <u>+</u> 0,3	5 <u>+</u> 2,5
245,7 ± 0,4	3,4 ± 0,8	535,2 <u>+</u> 0,5	7,8 <u>+</u> 2,0
295,5 ± 0,3	8,8 <u>+</u> 1,5	537,6 ± 0,5	6,2 <u>+</u> 1,8
308,0 <u>+</u> 0,4	3,7 <u>+</u> 0,8	547,0 <u>+</u> 0,2	7,2 <u>+</u> 2,0
329,4 <u>5+</u> 0,05	66 <u>+</u> 7	553,2 <u>+</u> 0,1	26 <u>+</u> 5
337,6 <u>+</u> 0,4	2,8 <u>+</u> 2,0	559,2 ± 0,4	4,6 <u>+</u> 1,1
344,53 <u>+</u> 0,05	1000	561,1 <u>+</u> 0,2	7,8 <u>+</u> 1,6
350,1 ± 0,3	12 <u>+</u> 3	566,3 <u>+</u> 0,2	6,4 <u>+</u> 2,0
361,0 <u>+</u> 0,4	2,2 <u>+</u> 1,0	573,4 <u>+</u> 0,4	3,8 <u>+</u> 1,2
367 ,6 <u>+</u> 0,0 5	55 <u>+</u> 6	580,1 <u>+</u> 0,3	7,8 <u>+</u> 2,0
377,9 <u>+</u> 0,2	15 <u>+</u> 3	599,0 <u>+</u> 0,4	5,2 <u>+</u> 1,8
380,3 <u>+</u> 0,6	5,8 <u>+</u> 2,0	604,0 <u>+</u> 0,4	4,4 ± 1,1
402,68 <u>+</u> 0,05	260 <u>+</u> 26	610,1 <u>+</u> 0,2	8,4 <u>+</u> 1,7
417,7 <u>+</u> 0,2	10 <u>+</u> 2,1	616,2 <u>+</u> 0,4	4,8 <u>+</u> 1,2
436,3 ± 0,3	6,5 <u>+</u> 1,8	620,7 <u>+</u> 0,2	1 ,0 <u>+</u> 2,0
.43,5 ± 0,4	4,2 <u>+</u> 1,3	628,6 <u>+</u> 0,1	24 <u>+</u> 5
446,1 <u>+</u> 0,1	11 <u>+</u> 2,2	631,6 <u>+</u> 0,1	64 <u>+</u> 6
471,4 <u>+</u> 0,7	4,4 <u>+</u> 1,2	636,0 <u>+</u> 0,4	3 <u>+</u> 1,5
475,6 ± 0,2	15 <u>+</u> 4	638,1 <u>+</u> 0,4	3 <u>+</u> 1,5
477,8 ± 0,5	7,8 <u>+</u> 1,7	643,4 <u>+</u> 0,2	27 <u>+</u> 5
485,0 <u>+</u> 0,6	5,2 <u>+</u> 1,6	647,2 <u>+</u> 0,1	39 <u>+</u> 8
486,9 <u>+</u> 0,5	6 ,4 <u>+</u> 1, 8	655,6 <u>+</u> 0,4	4,2 <u>+</u> 1,5

Таолица	í.	(продолжение))
---------	----	---------------	---

1	2	1	2
660,4 + 0,2	19 + 4	.853,4 + 0,1	51 + 10
672.0 + 0.3	_ 14 + 4	861,4 + 0,4	- 3.2 + 1.2
674,0 <u>+</u> 0,05	- 265 <u>+</u> 25	865,4 + 0,4	5,0 + 2,3
685.8 + 0.1	27 + 5	873,5 + 0,7	5,3 + 2,4
687.5 + 0.2	 14 + 4	879,9 + 0,7	4.0 + 1.5
691.5 + 0.5	- 2.6 + 1.0	884.5 + 0.3	6.6 + 2.5
697.5 + 0.1	52 + 8	892,7 + 0,7	22 + 4
700,5 + 0,1	- 9,7 + 2,0	908,6 + 0,1	- 30 + 15
712.8 + 0.2	13 + 4	919 .8 + 0.3	- 6.4 + 2.7
739.8 + 0.5	- 5,0 + 1,7	923.2 + 0.6	2.8 + 1.4
747,15+ 0.07	310 + 30	939.4 + 0.3	7.6 + 2.4
751.6 + 0.4	- 10 + 2	947.9 + 0.4	6.5 + 2.0
754.2 + 0.6	5.2 + 1.4	951,8 + 0,4	8.2 + 3.0
763.4 + 0.7	2.0 + 0.7	973,35+ 0,13	55 + 10
768.0 + 0.3	6.2 + 2.0	983.0 + 0.5	5.2 + 2.0
775.3 + 0.09	45 + 6	985.8 + 0.3	8 .4 - 3.0
780.9 + 0.4	 1,5	990.7 + 0.3	7.4 + 2.5
788.1 + 0.4	4.6 + 1.3	993.2 + 0.3	11 + 3
792.3 + 0.4	3.8 + 1.0	999.2 + 0.2	- 26 + 4
798.9 + 0.3	4.8 + 1.4	1083.0 + 0.7	6 + 3.0
804,3 + 0,7	4,4 + 2,0	1121.1 + 0.5	5 + 2,0
806.1 + 0.5	6,2 + 2,3	1129.7 + 0.5	4.4 + 2.0
820,7 ± 0,4	5,0 + 2,0	1172,0 + 0,4	
823,3 + 0,4	4,4 + 1,6	11.76.3 + 0.6	-
884.8 + 0.3	3,8 + 1,3	1190.4 + 0.5	5.0 + 2
847,5 ± 0,3	6,9 <u>+</u> 2,6	1224,8 ± 0,2	13 <u>+</u> 3

1	2	3	4
1254,6 <u>+</u> 0,2	7,4 ± 3	3326,6 ± 0,7	-
1474,3 <u>+</u> 0,7	· 🛥	1478,8 <u>+</u> 0,7	
1507,5 <u>+</u> 0,6	10 <u>+</u> 4	1522,8 <u>+</u> 0,4	15 <u>+</u> 4
1539,5 <u>+</u> 0,7	13 ± 5	1799,6 <u>+</u> 0,8	-
1806,1 <u>+</u> 0,8	-	2576,6 <u>+</u> 0,3	6,6 <u>+</u> 2,0

Таблица 1 (продолжение)

Исходя из измерений величины \mathbf{K}/β^+ , и предположив, что распал является разрешенным, можно получить значение $\mathbf{E}_{1p}\beta^+ = 3,0\pm 0,2$ МэВ. Соответственно, разность масс 207 Rn- 207 At равна $Q_{\beta+}=4,4\pm 0,2$ МэВ. Непосредственное измерение спектра позитронов дало величину $\mathbf{E}_{1p}\beta^+ = 3,25\pm 0,10$ МэВ и, соответственно, $Q_{\beta+}=4,61\pm 0,10$ МэВ в предположении, что наблюдаемые позитроны заселяют уровень 344,5 кэВ в 207 At.

В спектре гамма-лучей, возникающих при распаде 205 Rn, наблюдены шесть гамма-переходов (табл.2),

Таблица 2 Энергии и интенсивности г мма-лучей, возникакщих при распаде ²⁰⁵ Rn				
E.j [K3B]	٢۲	Εχ[κ эΒ]	I ک	
264,9	100	620,2	25	
354,9	3,7	675,0	20	
464,5	25	729,6	20	

Три из них наблюдались ранее в работе $^{/4/}$. В спектре электронов внутренней конверсии 205 Rn наблюдались K и L линии перехода 264,9 кэВ. Соотношение их интенсивностей I $_{\rm K}/I_{\rm L}$ = 2,1 указывает на мультипольность перехода 264,9 кэВ - Е2.

Спектр гомма-лучей, возникающих при расладс 206Rn, исследовался впервые. Результаты анализа этого спектра даны в табл. 3. Из соотношения интенсивностей КХ-рентгеновского излучения и интенсивности гаммалучей с энергией 62,0 кэВ можно сделать вывод, что мультипольность перехода с энергией 62,0 кэВ ниже М2.

Схемы распада

a) $\frac{207}{Ra}$ $\sim \frac{207}{At}$

На основе анализа спектров у - у - совнадений ири распаде²⁰⁷ Rn введены 10 возбужденных состояний ²⁰⁷Аг. Псходя из баланса эпергий л интенсивностей гамма-переходов, мы ввели еще 12 состояний. В предлагаемой схеме распада ²⁰⁷ Rn (рис.1) размещено большинство наблюдаемых гамма-переходов, Суммариая интенсивность неразмещенных гамма-переходов составля-~ 30% распадов. Пять первых возбужденных состояer ний идентичны состояниям, введенным в работе 24/ Значения снинов и четностей состояний 207 Rn и 207 At. как и в работе 🦄 , приняты, согласно оболочечной модели, 5/2 и 9/2, соответственно. Снипы и четпости возбужденных состояний 207 Аt опрелелены на сснове анализа значений lgft , мультипольностей гамма-переходов и способа разрядки этих состояний.

 $(6)^{205} Rn - 205 At$

На основе энергетического баланса и баланса интенсивностей наблюдаемых гамма-переходов в ²⁰⁵ At и сравнения с везбужденными состояниями ²⁰⁷ At и ²⁰⁹ At /5/ можно ввести возбужденные состояния с энергиями 620,0 и 939,9 кэВ дополнительно к двум состояниям с энергией 264,9 и 729,5 кэВ, ранее известным из работы ^{/4/}

Таблица З				
Энергии	И	интенсивности	гамма-лучей,	возникающих
			206.0	

при распаде 206 Rr

Ex ± DF.Y [K3B]	lr=Dlr	Εχ±Δ[χ[κэΒ]	Ix±∆Ix
Kx "	4700 ± 500	386,6 <u>+</u> 0,2	634 <u>+</u> 60
KX , e	1400 <u>+</u> 150	436,3 <u>+</u> 0,4	55 <u>+</u> 16
62,0 <u>+</u> 0,1	143 <u>+</u> 15	444,2 <u>+</u> 0,3	280 <u>+</u> 30
97,2 <u>+</u> 0,1	52 <u>+</u> 6	458,5 ± 0,5	50 <u>+</u> 10
101,2 <u>+</u> 0,2	36 <u>+</u> 4	465,8 <u>+</u> 0,5	37 <u>+</u> 6
134,2 <u>+</u> 0,2	50 <u>+</u> 6	482,8 <u>+</u> 0,3	590 <u>+</u> 66
186,5 <u>+</u> 0,3	68 <u>+</u> 8	485,6 <u>+</u> 0,3	314 <u>+</u> 35
195,5 <u>+</u> 0,2	117 <u>+</u> 15	497,7 <u>+</u> 0,2	1040 <u>+</u> 150
208,1 <u>+</u> 0,2	263 <u>+</u> 26	527,4 <u>+</u> 0,3	250 <u>+</u> 30
213,4 ± 0,4	110 <u>+</u> 17	53 ,6 <u>+</u> 0,3	165 <u>+</u> 26
215,4 <u>+</u> 0,4	40 <u>+</u> 8	632,1 <u>+</u> 0,3	150 <u>+</u> 23
290,9 <u>+</u> 0,4	75 <u>+</u> 10	643,2 <u>+</u> 0,6	67 <u>+</u> 10
302,1 <u>+</u> 0,3	530 <u>+</u> 65	716,9 <u>+</u> 0,6	68 <u>+</u> 10
324,5 ± 0,2	1000	738,5 <u>+</u> 0,5	155 <u>+</u> 20
350,7 <u>+</u> 0,3	127 <u>+</u> 20	757,1 <u>+</u> 0,5	107 <u>+</u> 15
371,1 <u>+</u> 0,3	524 <u>+</u> 55	773,1 <u>+</u> 0,4	596 <u>+</u> 65
		795,1 <u>+</u> 0,4	100 <u>+</u> 17

H

Рис.2. Схемл раснада 205 Кл - 205 At.

в) ²⁰⁶ Rn 🛥 ²⁰⁶ At

На основе баланса энергий и интенсивностей наблюдаемых гамма-переходов можно сконструировать лесколько возможных вариантов схемы распада ²⁰⁶ Rn-~²⁰⁶At. Наиболее вероятным вариантом схемы нам кажется схема, включающая возбужденные состояния ²⁰⁶ At с энергиями 61,7; 386,4; 497,8; 527,5; 869,0 и 1159,0 кэВ. Так как спин четно-четного ядра ²⁰⁶ Rn 1⁷-0⁺, а низкоэнергетической области в ядре ²⁰⁶ At долдолжны выступать состояния мультиплетов

$$(p(h_{9/2})_{0^+}^2 + (h_{9/2})_{0^+}^1, n(f_{5/2})_{0^+}^2 + (f_{5/2})_{1^+}^1 + I^{\pi} = 2^+, 3^+ \dots 7$$

$$H = \frac{1}{2} p(h_{9/2})^{2} + (h_{9/2})^{1}, n(f_{5/2})^{-2} + (p_{1/2})^{1} + I^{\pi} = 4^{+}, 5^{+}$$

с основным состоянием 7⁺, или как для соседнего ядра $^{20.4}$ Bi 6⁺, то эти состояния не булут непосредственно заселяться при бета-распаде 206 Rn . При бетараспаде 206 Rn в основном должны заселяться состояния с малым значением спина. В частности, возбужденное состояние с $\Gamma^{\pi} = 1^{+}$ является членом мультипдета

$$\left\{ p\left(h_{9-2}\right)_{0^{+}}^{2} + \left(f_{7-2}\right)_{0^{+}}^{1} - n\left(f_{5-2}\right)_{0^{+}}^{2} + \left(f_{5-2}\right)_{0^{+}}^{1} + \left(f_{5-2}\right)_{0^{+}}^{1} \right\} \right\}$$

и во энергии возбуждения должны быть выше 0,5 МэВ. Большая разность значений спинов основных состояний должна привести к выступлению развитых каскадов гамма-переходов и без достаточно полного изучения y - y и e - y - совпадений нельзя предполагаемую схому считать окончательно установленной. Небольшое энергетическое расшепление мультиплета {p(h_{9/2}), n(f_{5/2})}, наблюдаемое в соседних ядрах висмута, возможно проявится также и в ядре ²⁰⁶ At , что булет связано с появлением интенсивного, низкоэнергетического сильно конвертирузмого перехода, не наблюдавшегося нами, что, в свою очередь, приведет к сдвигу возбужденных состояний

+

Рис.4. Сравнение инжних возбужденных состояний нечетных ядер астата.

На рис.4 проведено сравнение нижних возбужденных состояний нечетных ядер Аt . Наблюдается некоторый сдвиг состояний при переходе от ²⁰⁹At к ²¹¹At. По-видимому, это следует объяснить влиянием конфигурации нейтронов. В ядрах 205,207,209At заполндется ²¹¹At нейтронами подоболочка f 5/2, а в ядре обо-N = 126уже заполнена. Обрашают на себя внилочка мание состояния 745.8: 747.2 и 729.5 кэВ в ядрах 209, 2. ., 205 At . ссответственно. Эти состояния сильно заселяются путем бета-распада, в частности в случае ядра ²⁰⁷Аt для состояния 747.2 кэВ значение lg ft = 6.0. . Эти состояния можно интерпретировать, в основном, как одночастичные состояния протона как это было сделано в работах ^{4,5}. . Аналогичным 211 AT состоянием в ядре является уровень 674.1 кэН^{.2} . Пока трудно однозначно интерпретировать первые возбужденные состояния ядер 205,207,209At $(1^{\pi} = 7/2^{-1}).$ Они могут быть состояниями муль-)3 типлета (h. , (Соответствующий уровень 7/2 в 211At имеет энергию 886 кэВ) или состояниями, ядре возникающими в результате взаимодействия фонона с нечетным протоном h_{9/2} pax 203,205, 207 Bi^{73/} . как это проявляется в ядв области энергий 800-900 кэВ. В пользу первой из этих интерпретаций служит тот факт. что в ядрах ^{207,209}At первые возбужленные состояния $I^{\pi} = 7/2^{-1}$ разряжаются преимущественно Е2-переходами, в то время как уровни, обусловленные взаимодействкем протона hg 🤈 с фононом в ядрах висмута, разряжаются переходом типа M1.

В предлагаемой нами схеме распада ²⁰⁷ Rn относительно низко (при Е ≈ 1100 кэВ) появляются состояния с положительной четностью. Их природу, по-видимому,можно объяснить так же,как и в случае ядра ²⁰⁵ Bi, разрывом пары протонов в заполненной оболочке Z =82.

Литература

- 1. M.Alpsten, G.Astner. Hucl. Phys., <u>A134</u>, 407 (1969).
- 2. G.Astner. Phys.Scripta. 5, 41 (1972).
- 3. M.Alpsten, G.Astner.Phys.Scripta,5,41(1972)
- Т.Кэмписты, А.Кормав, Т.Морек, Л.К.Пекер, Игуен Тат То, З.Харатым, С.Хойчацки. Преприит ОИЯИ, P6-7003, Дубиа, 1973.
- И.Вылов, Н.А.Головков, К.Я.Громов, И.И.Громова, А.Колачковски, М.Я.Кузнепова, Ю.В.Норсеев, В.Г.Чумин. Преприят ОИЯИ, Р6-7583, Дубна, 1973; Изв.АН СССР, сер., но., т.38, 701 (1974).
- 6. Ю.Н.Ракигненко, Е.А.Скахун, Г.И.Яценко, К.С.Генчаров, Программа и тезисы докладов XXII Совещания по ядерной спектроскопии и структуре атомного ядра, Киев, 1972, стр.162.
- И.Вылов, М.Гаспор, Н.А.Головков, И.И.Громова, А.Колачковски, В.В.Кузненов, А.Лятушински, Г.И.Лиаурей, Ю.В.Норссев, В.Г.Чумин, Б.С.Джелепов, В.И.Приходиева, Т.И.Полова, Преприят ОИЯИ, Д6-7094, Дубиа, 1973, стр.151.
- 8. В.П.Афанасьев, М.Гаснор и др. Преприит ОНЯН, Д6-7094, Дубиа, 1973, с~р.153.
- 9. А.Зелински, К.Зубер, Я.Зубер и др. Препринт ОПЯП, Д6-7094, Дубиа, 1973, стр.145.
- А.Зелински, К.Зубер, Я.Зубер в др. Препринт ОНЯН, Д6-7094, Дубиа, 1973, стр. 149.
- И.Пенев, А.Зелински, К.Зубер и др. Программа и тезисы докладов XXIV Совещания по ядерной спектроскопии и структуре атомного ядра, Харьков, 1974, стр. 159.
- И.Пенев. Автореферат диссертации ОИЯИ, 6-7911, Дубиа,1974.
- 13. А.Зелински, К.Зубср, Я.Зубер и др. Сообщение ОНЯИ, 6-6949, Дубна, 1973.

Рукопись поступила в издательский отдел 30 июня 1975 года

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теортическая физика высоких энергий
з.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния

Нет ли пробелов в Вашей библиотеке?

Вы можете получить по эчте перечисленные ниже книги. если они не были заказаны нее.

2 р. 64 к. 250 стр. 16-4888 Дозиметовя излучений и фузика зашиты ускорителей заряженных частиц. Дубна, 1969. Труды Международного симпознума 773 стр. 7 р 69 к Л1-5969 по физике высоких энергий. Дрезден. 1971 .1 6004 Бинарные реакции адронов при высо-768 стр. 7 р 60 к ких энергиях. Дубна, 1971. /110 6142 Труды Международного симпознума 564 стр. 6 р 14 к по вопросам автоматизации сбработ -КР ДАННЫХ С ПУЗЫРЬКОВЫХ НИСКРОВЫХ камер. Лубна, 1971. .113 6210 372 стр. 3 р 67 к Труды \| Международного свылознума по ядерной электроннке. Варшава, 1971. 670 стр. 6 р. 95 к Л1-6349 Труды ! \ Международной конференция по физике высоких энергий структуре ядра. Дубна, 1971. Л 6465 525 стр. 5 р. 85 к Труды Международной школы по структуре ядра. Алушта, 1972. 111 стр. 1 р 10 K P2-6762 Р.М.Мурадян. Автомодельность в янклюзавных реакциях. Лекция, прочитанная на Школе молодых ученых по физике высоких энергий. Сухуми, 1972. Л-6840 Матервалы II Международного свм-398 стр 3 р. 96 к. познума по физике высоких энергий и элементарных частиц. Штрбске Плесо, ЧССР, 1972. 13 7154 173 стр. 2 p. 20 K Пропоршеональные камеры. Лубна, 1973. Д2 7161 280 стр. 2 p. 75 k Нелокальные, нелинейные и неренормвруемые теорни поля. Алушта, 1973

Д1.2-7411	Глубоконсупругве ныможественчые процессы. Дубна, 1973.	597 стр	5 р 63 к
,113 7616	Труды VII Международного симпо- зиума по ядерной электронике, Буда- пешт, 1973.	372 стр	3 р 65 к
P1 2 7642	Труды. Международной школы моло- дых ученых по физике высоких энер- гий. Гомель, 1973.	623 etp	7 р 15 к
,110-7707	Совещание по программированию и математическим метолам решения физических задач. Дубна, 1973.	564 стр	5 р 57 к
,11.2 7781	Труды III Международного снмло- звума по физяке высоких энергий и элементарных частиц. Синая, 1973.	4 78 стр	4 р. 78 к.
,13-7991	Тр ды II Международной шхолы по нейтронной физике. Алушта, 1974.	552 стр	2 р. 50 к.
.11.2 8405	Труды 11. Международного сныпо- зяума по физике высоких энергий и элеме тарных частиц. Варна,1974.	376 стр.	2 р. 05 к.
Д10.11 8450	Труды Международной школы по во- просам использования ЭВМ в ядер- ных исследованиях. Ташкент, 1974.	46 5 стр.	2р. 46 к.
P1,2-8529	Труды Международной школы-се- минара мололых ученых. Актуаль- име проблемы физики элементарных частиц. Сочи, 1974.	582 стр. 2	2р.60к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79,

издательский отдел Объединенного института ядерных исследований

Условия обмена

Препринты и сообщения ОИЯИ рассылаются бесплатно, на основе взаимного обмена, университетем, институтам, лабораториям, околнотекам, научным группам и отдельным ученым более 50 стран.

Мы ожидаем, что получатели изданий ОИЯИ будут сами проявлять инициативу в бесплатной посылке публикаций в Дубиу. В порядке обмена пранимаются научные книги, журналы, препринты и иного вида публикации по тематике ОИЯИ.

Единственный вид публикаций, который нам присылать не следует,-это репринты /оттиски статей, уже опубликованных в научных журналах/.

В ряде случаев мы сами обращаемся к получателям наших изданий с просьбой бесплатно прислать нам какие-либо книги или выписать для нашей библиотеки научные журиалы, издающиеся в их странах.

Отдельные запросы

Издательский отдел ежегодно выполняет около 3000 отдельных запросов на высылку препринтов и сообщений ОИЯИ. В таких запросах следует обязательно указывать индекс запрашиваемого издания.

Адреса

Письма по всем вопросам обмена публикациями, а также запросы на отдельные издания следует направлять по адресу:

> 101000 Москва, Главный почтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований.

Адрес для посылки всех публикаций в порядке обмена, а также для бесплатной подписки на научные журналы:

> 101000 Москва, Главный почтамт, п/я 79. Научно-техническая библиотека Обьединенного института ядерных исследований.

Издательский отдел Объединенного института ядерных исследований. Заказ 19940. Тираж 454. Уч.-изд. листов 0,90. Редактор О.С.Виноградова Подписано к печати 8.7.75 г. Корректор Т.Е.Жильцова