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Abstract 

Blume's formula for the time differential attenuation coefficients for 

the hyperfine perturbation of ions recoiling in gas is rewritten in a forn 

convenient for numerical solution when the number of precession frequencies 

is large. Asymptotic expressions for the behaviour of the solutions for very 

short, and very long correlation time are given. Approximate condition 

for the existence of a minimum in the pressure dependence of the time 

differential coefficients, as well as the position and depth of such 

a minimum, arc also derived, and compared with the results of calcul­

ations for various physical systems. 
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1. Introduction 

Measurements of the hyperfine perturbation experienced by excited 

nuclei recoiling into gas are used extensively for the determination of 

magnetic moments of short-lived nucleai- levels. In several cases (e.g. 

when the hard-core attenuation coefficient is nearly equal to unity) 

the attenuation due to the static perturbation in vacuum is very small, 

while in a recoil-into-gas experiment it may be possible to obtain 

appreciable attenuations which can be readily observed. 

Given the static perturbation, and within certain limiting assump­

tions, the attenuation coefficients for a certain correlation time T 

c 
' " 1 21 

aTv given by the Scherer-Blume theory. ' 

The actual calculation of the coefficients involves the solution 

of a polynomial equation whose degree is determined by the number of the 

hyperfine frequencies. In simple cases, such as hydrogen-like and 

helium-like ions, the number of frequencies is small and the solution 

of the equation does not pose any particular problem. In other physical 
3-7") circumstances, the observed attenuation has been shown ' to be 

well accounted for by a model which considers statistical population of 

a large number of electronic configurations. The number of frequencies 

resulting from the model, which is sometimes referred to as the Inter­

mediate Ionization Model, is large and the degree of the corresponding 

polynomial may be well over a hundred. The ordinary methods for solving 

polynomials are no longer useful in these cases. 

In the following, we present equivalent forms of Blume's formula, 

which can be easily solved numerically, along with first approximations 

to the solutions which ensure rapid convergence to all the different 



roots over the whole range of correlation times. Results of such 

calculations for various physical systems are also presented. 

A well-known feature of the solutions of Blume's formula is the 

minimum in the pressure dependence of the attenuation coefficients. 

Approximate expressions, concerning the position of the minimum, the 

value of the attenuation coefficient at that pressure and the values 

of the time at which such a minimum can be obtai iod are derived. 

2. Results and Discussion 

The attenuation coefficients for the angular distribution of gamma-

rays emitted by excited nuclei recoiling into vacuum and experiencing 

static hyperfine perturbation is given by 

N iw.t 
G?Ct) = £ C.e x (1) 

i=-N 

The frequencies w. are given by ai. = <i)pP,
 s CEp

-Epi)/fi, where 

Ep and E„, are the eigenvalues of the hyperfine interaction Hamiltonian 

UJ . = -a. ; w = 0. 
- 1 1 0 

The coefficients C. are products of a geometrical term, depending 

on F,F't k and on the nuclear and electronic spins, and a statistical 

term, specifying the charge state distribution and the probability of 

occupying a certain configuration within this charge state. ' They are 

real numbers, satisfying C . = C, , and the normalization condition 

I C. - 1. Considering a stochastic model for the perturbation in gas, 
1 2) 
Bluw obtained the following expression for the Laplace transform of 



the attenuation coefficient 

k i -<a+p) 

where: 

X = 1/T and t is the correlation time, and 

C. 

is the laplaco transform of l\Ct)-

Using (3), eq. (2) can be written in the following form: 

i 

/ I c. TTc^p-i u.,) 
"» / i i^i ' 
G.(/,p) = / - i " (4) 

K TT^+P-i",) - * J[ C. TT C*+P-i <0 
i X i 1 j;<i ~ 

As we shall see, the denominator of (4), which is a polynomial of 

degree 2N+1 in p, has only simple roots, and therefore the inverse 

transform of C4) is 
N a.t 

G.(X,t;> = I A e 1 tS) 
* i=-N * 

where a. are the roots of the polynomial, and A. are given by: 

X+ct.-ioi. A+a.-i w. 
A = T l- T T [ -5-^ 1 ] (the residue of (4) at (6) 

j^i i J 
p=u.) 

The problem reduces, therefore, to the solution of the equation 

TJ(X»ci.i w ) - \ I c, T T (A+a-i u ) = 0. (7) 

i ' i 1 j/i } 

When the r.jnibei of frequencies is large, we have to deal with a 

polynomial of high degree, and therefore it Is inconvenient to solve 

the problem in its polynomial form. Equiition (7) can, however, be 



r ewr i t t en 

N 

I 
i=-N 

as 

XC. 

X+a-i " i 
" l • (8) 

and this equation (or trivial transformations of it), can be easily 

solved numerically. 

Eq. (8) has 2N+1 roots, and we must find all of them, Therefore, 

we need good first approximations to the numerical solutions in order 

to ensure convergence for all the different roots. It is expedient 

in this context to study the properties of the solutions in the limitiiig 

cases X •* 0 and X •* <*>. 

For X •*• 0 we obtain 

C. C. C. 
a.=iu>.-(l-C.)x + iC I — X2+[-C.(J> —)2+C? j -, i-Trl^+OfX4) 
J J J Jl?<3 1 3 J iii3 1 3 J ^ 3 1 3 

an = "0-Cn)X * C; J ^f- X
3 + 0{X5) CIO) 

For the real solution a , eq. (9) reduces to: 

C. 
1 

i/0 1/. 
1 

For X -*• ro the behaviour of the real solution is no longer similar 

to that of the complex solutions: 

a , * - — P • 1/X3 [Ic.u? - 2^C^l)2] * 0(l/.vS) (11) 

The first term is the Abragam-Pound expression for the attenuation 

coefficient at high gas pressures. 

The complex solutions1, have the form 
Y A 

c y 0 . -X • i 0. - -JL-* 0(1/X2) (12) 

where 6. are the solutions of \ 



I ; 2 = 0 . H3) 
i=-N at - g 

and therefore satisfy liu-.jl < |6*| < |iu| 

and y . are given by 

v Ci -1 

y , = t " Z — — j i ci4) 
J iCBj-^r 

The following relations, which turn out to be useful in obtaining 

approximate expression for A can be derived 

l C i " 2 i " I C»J-#/*-I Yj OS) 

i i i 

Having obtained expressions for the frequencies a. , we can now 

use (6) to calculate the coefficients A. . 

For A_ we have 
o -. 

A oT- ' C ° ( 1 + X 2 {-In ^~ li2Co- V 2 > --"! Z — 7 ] } + °Hl» 
(16} 

and 

A — 1 • 1 A 2 {Z Yi - Z c , ^ + ZC^-82)/2\ • 0(1A 
A-» °° l i i x i J 

which reduces , by (IS) t o 

7C.U2 

A = 1 • _ ^ i • „ ( ] ) . (17) 
0 A-~> A* A 4 

In the same manner we obtain 

A. — • C. ; A. — • 0 and A. also satisfy J A. a 1 and 
J.X-o > J A - ' ' i ' 

A.. • At . 

We can now return to the problem of the numerical solution. In 

the intermediate Ionization regime, the coefficients C, are small numbers 

for all i/0, usually of the order H or less. Therefore, in both liaits 
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we see from (9) and (12) that the real part of the complex solutions 

«{ ~ 3i 
is very nearly equal to -\. From (IS) we see that g is of the 

w'i 
order of C , and therefore we find again from (S) and (12) that the 

imaginary part of a. is approximately „ 

a % -A + iu, for all A . (18) 

With (18) as a first approximation, and rewriting (S) as 

\*a- in). 
I x C. T-„ • } * x (C-ll - a + ioj. = 0 , Jj I Aia-i^ j "j 

one obtains rap id convergence with the Newton-Raphson method. Fox small A, 

the real solution a can also be found in this method, however, when o 

A becomes larger, it is better to write (8) as 

a(A+a) * a. Ida. 
I C. ^ j— = 0, and use an = - — j — - as a first approx-
i 

1 C^«)2 

imation. 

Some typical results are presented in Figs. 1-2. We consider two 

gamma transitions in nuclei recoiling into gas with velocity v/c ~ 0-011 

which is appropriate for the intermediate ionization regime. Fig. 1 

represents attenuation coefficients of the decay of the 6.13 MeV 3 state 

of 0 while Fig. 2 represents those of the 197 keV 5/2* -* 1/2* 

19 transition in F. The various G. are given in each case for t=30 ps, 

60 ps, 150 ps in the whole range of A. 

The different pressure dependence at the same value of t for the 

two levels is due mainly to differences in the values of the hyperfine 

frequencies. Inc'eed, it can be seen From (J! and (7) that any change 

in the frequency si-jile (.<-•£• 1/ changing the value of the g factor), 

-hould bo followed by achange in both \ and 1/t by the same factor if 

we ite to leave the form of the aiferuM ion cur\«» G, (A,;'' -..."iriant. 



The dominant feature of these curves is the minimum, which becomes 

shallower if either t or the value of the hyperfine fields becomes smaller. 

In order to understand this behf.viour, and to have estimates of the 

position and depth of the mininum,we use again the approxjnate relation 
3G,. 

(IS) to solve the equation -^r- = 0. 

3G. 3A. a-t 3ct< cx.t 

From (18) -^~ ifc -1 for all i / 0. 

Thus we can write: 

t3X % 3X % . £ / \ t 3X , e ^ .i ^ T 8T)e 

(20) 

For large encvugh t, the different precession angles u.t get out of 

phase, and the r.'ghc-hand side of (20), which is even further reduced 

by the damping exponential, can be neglected. The approximation is 

expected to held for tut > TT, where Jj is an average frequency, to be 

defined in Vie following. 

Eq. (2.)) can be written now as 

3 c ^ _ l 3 C l n A 0 ) ( 2 1 ) 

3X = " t" 5J 

We n'ltc thit as t » " , the position of Mie minimum becomes independent 

jf tiiro rnd is determined by Ihe condition 

£V • • 
r>. . 
mm 

Taking the leading terms in (10) and (11) we have: 

\-*Q \-***> 



We may connect the two l imi t ing expressions by wr i t ing 

(1 " O X 

1+A /OJ 
(23) 

with i2 - i i i - - f - g . (24) 
l " C o &> i 

Bq. (23) has the correc t asymptotic behaviour a t both l i m i t s , and 

i t has been ve r i f i ed numerically t h a t i t provides a good approximation 

for o , a l so for in te rmedia te values of \. o 

The so lu t ion of (22) i s t he r e fo r e : 

A . = t J ) , o r CJT . = 1 . (25) 
mm c mm 

As t decreases, X . decreases too, the minimum becomes shallower min 

until it disappears completely. 

The condition for the existence of a minimum is tot > TT , which has 

been mentioned above as the criterion for the validity of (21). Under 

"o 1 

these conditions G, (A . ,t) ̂  A e , and to a good approximation x mi n o 

A % 1, so from [23) and 125) we have 

- '"c° :t 
V W t J * » 2 " • (26) 

We may compire these results with the calculated curves of Figs. 1 

and 2. In Fig. 1 we see that tho 60 JJS curve of G exhibits a minimum, 

which disappears in the corresponding curves for G, and G,, since the 

•condition ut > it is no longer satisfied. There are largo differences 

in the depth of the minima for different k. This behaviour can be 

understood as follows. It can be shown' that J C:W. '>k(k*l). 
i*-N ' 

Therefore, the k dependence of the exponent of ecj. (20) is given by 

(i-C ) u, * J{ l-C jk(k*l) and the In*u expression increases with k since 

'' ( , . ) !''.(/ i n c r e a s e * w i t h k. 
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Figure Captions 

Fig. 1. .Attenuation coe f f i c i en t s G. (X,t) ca lcu la ted for the 6.1.5 MeV 

3" -> 0 decay in 0, uitl i X = 1/T . The mean frequencies 

u are given for every V.. The t ' i ree curves for each k 

correspond to t = 30 ps (broken lin'O t = 60 ps (dotted l ine) 

and t - 150 ps ( so l id l i n o ) . 

Pig. 2. Attenuat ion coe f f i c i en t s G.( . \ , t ) ca l cu la t ed for the 197 keV 

5/2 •> 1/2 decay in V, with X = 1/T . The mean frequencies 

u are given for every k. The three curves for each k 

correspond to t = 30 ps (broken l ine) t = 60 ps (dotted l ine) 

and t - 150 ps ( so l id l i n e ) . 
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Figure 2 


