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Abstract

Blume's formula for the time differential attenuation coefficients for
the hyperfine perturbation of ions recoiling in gas is rewritten in a form
convenient for numerical solution when the number of precession frequencies
is large. Asymptotic expressions for the behaviour of the solutions for very

short, and very long correlation time are given. Approximate condition
for the existence of a minimum in the pressure dependence of the time
differential cocfficients, as well as the position and depth of such
a minimum, are also derived, and compared with the results of calcul-

ations for various physical systems.
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1. Introduction

Measurements of the hyperfine perturbation experienced by excited
nuclei recoiling into gas are used extensively for the determination of
magnetic moments of short-lived nucleaw levels. 1n several cases (e.g.
when the hard-core attennation coefficient is nearly equal to unity)}
the attenuation due to the static perturbation in vacuum is very small,
while in a recoil-intu-gas experiment it may be possible to obtain
appreciable attenuations which can be readily observed.

Given the static perturbation, and within certain limiting assump-
tions, the attenuation coefficients for a certain correlation time Te

s 1,2)
ary given by the Scherer-Blume theory.

The actual calculation of the coefficients involves the solution
of a polynomial equation whose degree is determined by the number of the
hyperfine frequencies. In simple cases, such as hydrogen-like and
helium-like ions, the number of frequencies is small and the solution
of the equation does not pose any particular problem. In other physical
3-7)

circumstances, the observed attenuation has been shown to be

well accounted for by a model which considers statistical population of
a large number of electronic configurations. The number of frequencies
resulting from the model, which is sometimes referred to as the Inter-
mediate lonization Model, is large and the degree of the corresponding
polynomial may be well over a hundred. The ordinary methods for solving
polynomials are no longer useful in these cases.
In the following, we present equivalent forms of Blume's formula,

witich can be easily solved numerically, along with first approximations

to the solutions which ensure rapid convergence tc al: the different



roots over the whole range of correlation times. Results of such
calculations for various physical systems are also presented.

A well-known feature of the solutions of Blume's formula is the
minimum in the pressure dependence of the attenuation coefficients.
Approximate expressions, concerning the position of the minimum, the
value of the z2ttenuation coefficient at that pressure and the values

of the time at which such a minimum can be obtai.2d are derived.

2. Results and Discussion

The attenuation coefficients for the angular distribution of gamma-
rays cemitted by excited nuclei recoiling into vacuum and experiencing

static hyperfine perturbation is given by

N
(]
G, (t) = c.e (1
k() iE-Nl )

The frequencies w, are given by @y 2 wgpy = (EF—EF,)/ﬁ, where

EF and EF‘ are the eigenvalues of the hyperfine interaction Hamiltonian

The coetficients C.1 are products of a geometrical term, depending
on F,F', k and on the nuclear and electronic spins, and a statistical

term, specifying the charge state distribution and the probability of

occupying a certain configuration within this charge state.s) They are

real numbers, satisfying C_; = C; , and the normalization condition

Z C.l = }. Considering a stochastic model for the perturbation in gas,

i
Blumcz) obtained the following expression for the Laplace transform of



the attenuation cocfficient

— ()

where:
A= 1/1c and T, is the correlation time, and

c.
‘o - i
o) = L pTa (3

is the Laplace transform of G:(t).

Using (3), eq. (2) can be written in the following form:

Doy TTowp-iwy)
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(4)

As we shall see, the denominator of (4}, which is a polynomial of
degree 2N+l in p, has only simple roots, and therefore the inverse
transform of (4} is

N Git
G (At)= ] A e (5)
k . i
i=-N
where qi are the roots of the polynomial, and Ai are given by:

A+t miw, Ava -1 w,
. L1 ] (the residue of (4} at  (6)

i ) { X.-00
P=“1)

The problem reduces, therefore, to the solution of the equation
(en-i 0) - 2 : ¢, (A+a-1 w) = 0. 7}
i i A J
When the number of frequencies is large, we have to deal with a
polynomial of high degree, and therefore it is inconvenient to sulve

the problem in its prlynomial form. Equation (7) can, however, be



rewritten as

N AC,

1
i, 8
RN Co ®

and this equation (or trivial transformations of it), can be easily
solved numerically.
Eq. (8) has 2N+l roots, and we must find all of them, Ther=fore,
we need good first approximations to the numerical solutions in order
to ensure convergence for all the different roots. Tt is expedlent
in this context to study the properties of the solutions in the 11m1t1ng-\\\s
cases A + 0 and A + =,

For A ~ 0 we obtain

C.
2 2
oy == (1-Co)ReiC, Z A+ [-C. ( — Z————-—-]A ot
j 3id; Pigg vireyT gy tegmey)?
(9}
For the real solution ao , eq. (9) reduces to:
C 3 5
= -(1-C A+ c 7 'z" + 0(2) (10}
1

[}
i#0
For A + = the behaviour of the real solution is no longer similar

to that of the complex solutions:

ZC.mz
a = - —71\—-‘- v 13 [Zcim‘.l’ - z(Zcim‘i?)z] + 001733 an

\

The first term is ‘the Abragam-Pound expression for the attenuation
coefficient at high gas pressures.

The complex solutions)have the form
. Y5\
djfo = A+ 1 Bj . -% 0(1/}\2) 12)

where Sj are the solutions of \



N Ci
LyZT a2 (13)
i=-N w, - B
i
and therefore satisfy ,“5-1f < {le < 'uﬁl
and Yj are given by
' R
vy = ] (14)
1(Bj-wi)
The following relations, which turn out to be useful in obtaining
approximate expression for Ao can be derived

g c; of - g (mf-sf)/z:g v as)

Having obtained expressions for the frequencies L we can now

use 26) to calculate the coefficients A; .

For A, we have

A ='=’C(1+J\2{Z Ci—[(zc-C/z Y -w, s ]}+o(13))
©3e0 ° if0 mf o AT T gy wytay

(16)

and

2 2 2 2
Ay == 1+ 1/ (g Y Z C'mi + g(mi-ai)/z} . 0(1“4)

A+ i1

which reduces, by (15} to

2
A = 1 imi+o(]) ) an
0 3w AZ ;I

In the same manner we obtain

Aj — Cj ; Aj — 0, and A, also satisfy Z A = 1 and
LAO pEr - 1
A, = A, .
-1 i

We can now return to the problem of the numericdl solution. In
the intermediate ionization regime, the coefficients €y aze small numbers

for all 140, usually of the order )% or less. Therefore, in both limits



we see from (9) and (12) that the real part of the cogplexzsolutions
wi - B3

is very nearly equal to -). From (15) we see that ———— is of the

H
order of Ci, and therefore we find again from (8) and (12) that the
imaginary part of aj is approximately W)
o X -X+ iw for all A . 18
jta ™ 1 * as)

With (18) as a first approximaticn, and rewriting (8) as

z A0 Lw,
AC, y—rd + A (C,-1} - *igy,= 0,
i) i X—+0--1mi ] J

one obtains rapid convergence with the Newton-Raphson method. Fox small i,
the real solution o, can also be found in this method, however, when

A becomes larger, it is better to write (8) as

alA+a) - !Jf ZCimi
5 = 0, and use %, =~ —x— asa first approx-

i g (A+a)2 L
i
imation.

Some typical results are presented in Figs. 1-2. We consider two
gamma transitions in nuclei recoiling into gas with velocity vy/c = 0.011
which is appropriate for the intermediate ionization regime. Fig. 1
represents attenuation coefficients of the decay of the 6.13 MeV 3~ state
of 160 while Fig. 2 represents those of the 197 keV 5/2‘ ad 1/2‘
transition in 19F. The various Gk are given in each case for t=30 ps,
60 ps, 150 ps in the whole range of A.

The different pressure dependence at the same value of t for the
two levels is due mainly to differences in the values of the hyperfine
freuuencies. Indeed, it can be seen from (5' and (7) that any change
in the frequency svale {v.g. Ly chunging the value of the g factor),

~hould be followed by achange in both A and I/t by the same factor if

we are to leave the form of the atteruntion cume G (3, ¢ suoariant.



The dominant feature of these curves is the minimum, which becomes
shallower if either t or the value cof the hyperfine fields becomes smaller.
In order to understand this behaviour, and to have estimates of the

position and depth of the minimum,.e use again the approx.mate relation

3G,,
(18) to solve the equation 57‘1 = 0.
3G dA. a.t Joa, .t
Koy L 1 T A, e 9
ol mooe ttiMNE e - (9
Bai
From (18) ﬁ——k -1 for al i £ 0.
Thus we can write:

A 9a A {eg-al)t S(ara )t A, iwmt
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t 9\ 0 9A s Lt 3 . it a3

ito ijo
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For large encugli t, the different precession angles wt get out of
phase, and the r’ght-hand side of (20), which is even further reduced
by the damping eronr:ntial, can be neglected. The approximation is
expected to heid for wt > m, where @ is an average frequency, to be
defined in the ro)lowing.

Eq. (24) can be written now as

day L 3alln Ay

3A Tt X

We note thit as t + o, the position of *ie minimum becomes independent

(21)

of tiwme ¢nd is determined by the condition

3
o A
33 / = 0 (22)
P
min
Taking the leading terms in {19) and {11) we have:
2
iGef
a ;\: -(1-CJ)A N bl "\: - —\——
\+0 A= .



We may connect the two limiting expressions by writing

1 - CO)A
P il (23)
o 141\2/;:2
2
2
, el LG
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with w = = T—‘——C . (24)
1-C R i
o ifo

Eq. (23) has the correct asymptotic behaviour at both limits, and
it has been verified numerically that it provides a good approximation
for L also for intermediate values of A,

The solution of (22) is therefore:

=0, or oT =1, (25)

A, ;
min c min

As t decreases, A in decreases too, the minimum becomes shallower

mi

until it disappears completely.
The condition for the existence of a minimum is wt > w, which has
been mentioned above as the criterion for the validity of (21). Under

@ .t
these conditions Gk(/\ ,t) & Aoe e , and to a good approximation

min
AO% 1, so from (23) and [’.’§)Cwe have
i-Co

- —— at

G Ay t) X 2 . (26)

We may compire these results with the calculated curves of Figs. 1
and 2. In Fig. | we see that the 60 ps curve of Gb exhibits a minimum,
which disappears in the corresponding curves for G, and Gy, since the
condition & > © is no longer satisfied. Therc are large ditferences
in the dopth of the minima for different k. This behaviour can be

N
) that § c;ul Kk,

12N
Therefore, the L Jependence of the exponent of e¢y. (20} is given by

understood as follows, It can be shown

U-CD)&N(I-CO)k(kbl) and the last cxpression increiases with k sance

"1y atau ineccases wath k,
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Tigure Captions
Attenuation coefficients Gk(x.t) calculated for the 6.13 MeV
37 > 0% decay in lb0, with X = 1/1c . The mean frequencies
@ are given for every k. The three curves for each k
correspond to t = 30 ps (broken line) t = 60 ps (dotted line)

and t = 150 ps (solid linc).

Attenuation coefficients GkL,‘..t) calculated for the 197 keV
5/‘.2‘ + 1/2+ decay in 19F, with A = ]./TC . The mean frequencies
w are given for every k. The three curves for each k
correspond to t = 30 ps (broken line) t = 60 ps (dotted line)

and t = 150 ps (solid line).
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Figure 2




