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An iterative search for the best component avai labtt to 
thfc chi-^quart: of the ntst fit to the data itatis to a 

conjugate gradient technique. f'ro&raws based on the technique 
have been successfully to obtain neutron spectra as a 
function of energy; in raw (tots fr<wn a puUe height analysis of 
proton rccoils in a proportions! counter, and where the raw data 
are time of flight spectra from a tiise dependent pulse of known 
form. It is planned to incorporate these, togetherr with working 
programs respectively for pholonuclear analysis and to explore 
the impurity concentration profile in a surface, into a single 
'work"bench1 type program. 

A suitably difficult model unfolding problem has been 
developed and used to show the strengths and weaknesses of a 
number of other methods that have been used for unfojr!ing. 

The work to be discussed is part of a larger study. 

Activation foil techniques for obtaining neutron fluxes are still 
work in progress, and progress is reported separately by Cook and 
Ferguson in this workshop. 

It is planned to attempt the dangerous process of amalgamating 
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several working programs into one 'work-bench* program with multiple 
options. Such projects should be reported on at completion, or afte.i 
two new types of unfolding problems have been processed without major 
modification. The aspects that are complete are written up; they are 
in fact, typed up and accompanied by figures and references. Printing 
takes a little longer, but an AAEC report is expected this year. 

From the material included there and referred to in my abstract, 
I am passing over three profitable topics. 

1. The working programs for analysis of data. 

2. The analysis that leads to conjugate gradient techniques for 
unfolding over the experiment of a technique for specific 
problems. 

i . The error analysis associated with the second type. 

There is room, at best, to present a model designed with malice afore-
thought to test the usefulness of a variety of unfolding techniques. 

We want our model to be simple to program and to understand, but 
beyond the capabilities of at least half of unfolding techniques. 
Accordingly, we use a resolution function R that averages the 'natural 
spectrum' over a considerable number (v)3) of channels. The chosen 
natural spectrum X has a flat background of 10^ counts per channel plus 
a spike of 4.65 x 10^ counts in channel 47. To avoid end effects we 
wrap around. The full circle is divided alternately into 186 channels 
or 187 channels. The predicted yield Y is then 1.05 x 10^ counts per 
channel in channels 1 to 93 and 1.00 x 10^ for the rest. Each method of 
unfolding was tested for the four cases given by 186 and 187 channels 
and 'measured data' M equal to predicted yield Y, or with Poisson 
statistics on the count rates, M = Y + e. The 'data' are shown in 
Fig. I and the results are summarised in Tables 1 and 2. 

A formal exact solution exists in the case of 187 channels. Even 
without statistical errors the round-off error in single precision 
floating point arithmetic on an IBM 360 prevents exact implementation, 
but those errors are negligible compared with statistics. We recover the 
given natural spectrum as the mean value of our calculated spectrum with 
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DATA 

0-0 0.3 0.6 0-9 12 1.5 
CHANNEL NUMBER (OF 187) 

Fig. 1. Noisy data used to test unfolding methods. The 
'step' down after channel 93 requires a spike up in the 
spectrum at channel 47 or downward in channels 140 and 141, 
but the data distinguish the two cases only on the basis of 
the content of channel 187. 

1.8x104 
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Table 1. Results Obtained after Ten Iterations 
by Various Unfolding Methods 

Number of channels in circumference ISO IS7 187 

Method of 
i teration 

Data with (+), 
without (-) 
statistical 
error 

+ - + -

Conjugate gradient s2 3.25 1.98 3.88 2.14 
c 3.61 3.33 3.10 2.88 

Conjugate gradient 
(positive eigenvalues) 

s2 

c 
2.97 
3.63 

1.48 
3.71 

3.34 
3.73 

1.68 
3.IS 

Series s2 

c 
390 351 387 358 

Series 
(positive eigenvalues) 

s2 

c 
17.1 
0.54 

14.6 
0.53 

17.6 
0.47 

-

1 Appropriate' s2 

c 
397 355 392 364 

'Appropriate' 
(alternating ratios) 

s2 

c 
17.1 
0.55 

16.4 
0.54 

17.6 
0.47 

16.4 
0.48 

2 7 The quantity S x 10 is the sura of the squares of the remaining 
discrepancies and has a target value of about 2.0 if all remaining 

5 
discrepancies are statistical. The quantity C x 10 is the concentration 
of variation from the mean in the recovered spectrum into channels 
around 47 and 140. The target value is 4.65. 
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Table 2. Results Obtained by the Least Structure Method 
of Unfolding for Various Values of Gamma 

Number of Channels 
In Circumference 186 1S6 187 187 

Data Statistical <+) 
Gamma Bare (-) + + 

32.0 s2 4.19 2.41 4.05 2.45 

C 2.59 2.51 2.34 2.37 

8.0 s2 3.77 2.06 3.67 2.10 

c 2.93 2.86 2.68 2.71 

2.0 s2 3.43 1.76 3.30 1.80 

C 3.32 3.24 3.07 3.10 

0.5 s2 3.15 1.47 2.94 1 52 

c 3/70 3.66 3.51 3.52 

The quantities S~ and C are as in Table 1. 



-361-

•j 

an RMS noise component of 0.4 x LO counts per channel. The chi-square 
value of the fit to data is zero, associated with the 'hairy* nature of 
the recovered spectrum. 

The zero eigenvalue of the resolution matrix R prevents an exact 
solution for 186 channels. We can, however, throw away all components 
that would be suppressed by a resolution function, leaving Information 
about the mean value of the spectrum on all channels and the difference, 
of the spectrum In opposite channels. From these we recover a formal 
spectrum which fits the data as far as they are self consistent. The 
chi-squared value is predicted to be closc to half the number of 

5 

channels. The recovered spectrum has mean value- 1.025 x 10 counts per 
channel as background, with an upward spike of 2.325 x 10 counts in 
channel 47 and a matching downward spike on channel 140. The RMS noise 5 
component, still containing large long range correlations, is 0.14 x 10 
counts per channel. 

Experimentally, we would not expect to distinguish the change in 
total channel numbers. We might have a preference for positive spikes 
over negative ones, particularly ones leading to emission of particles 
from our counters. An unfolding method that shows the positve bump 
centred at channel 47 and a negative bump (compared to background) at 
channel 140, would be adequate with less demanding data. We seek methods 
that are better. They should not introduce spurious structure into the 
spectrum. They should fit the data adequately, i.e. so that the chi-
squared value is approximately equal to the number of channels, and they 
should be simple to program. High precision arithmetic to deal with low 
precision data is suspect. Iterative methods can easily incorporate 
negative feedback of residual discrepancies and were used first. We also 
use the wrap-around nature of the problem to produce a Fourier component 
arrangement in which least structure solutions can be produced by 
inversion cf a diagonal matrix instead of its ill-conditioned equivalent. 

Two methods failed completely. With a superscript (n) to indicate 
the number of the iteration, a series solution given by 

£(n+l) _ £(ri) = j> _ ;>(n) (1) 



-2.19-

<li verges without limit. 
The 'appropriate solution', 

X<n+l) - X<n) x Mj/Vj(n) , (2) 

converges eventually to a solution that does not fit the data. The 
reason is well understood and in both cases depends on the existence of 
negative eigenvalues of the matrix R giving positive feedback in the 
Iteration process. 

Slow convergence can be obtained in both cases using essentially 
the square of the matrix. We use 

_ +(n) = RT _ fOOj ^ ( 3 ) 

T 
For the general case we would use the transpose R of the matrix as 
written, but with R a real symmetrical matrix, it makes no difference. 
The 'appropriate alternating solution' uses 

x(2n+l) = ( 2 n ) <2«> ( 4 ) 
J J J J 

and 
x(2n+2) x(2n+l) x Y<2n+1)/K < ( 5 ) 
3 J 3 j 

For the particular case of our problem, the results are barely 
distinguishable (Fig. 2). 

To improve the series method we can optimise the size of each term 
*Kn) to be added to X . Doing this by least squares leads to making sure 

that previous steps are not undone and the conjugate gradient technique. 
T 

A further refinement depends on the eigenvalues of R R being non-
negative (bunched). Ten iterations then give Fig. 3. 

Photonuclear cross sections have been associated with least struc-
ture techniques. Minimising (say) second differences leads to the 
equation, 

(RT W2R + Y UTH) X = R T oj2 M , (6) 
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i mu! upmohum sou/no* ai umrme 

01 ot u 
CHANNEL nuueEmof 1*1 

Fig. 2. Example of a method of unfolding that finds 
major trends of the spectrum. 

BUNCHEC EIGENVALUE C'JTOGATE GRADIENT 

06 0.) 
CHANNEL NUMBER I0F 1171 lt>10! 

Fig. 3. Example of a method of unfolding that uses most 
of the information from the data. 
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where is the standard deviation of the i*"*1 data value, H is an 
J 

operator evaluating second difference and y is initially an arbitrary 
parameter. The method is successful, if undesirable small eigenvalues of 

T 2 the product matrix R w R are associated with large diagonal matrix 
T elements of the product matrix H H. It works well with the Fourier 

transformed matrix and 186 channels since only non-zero eigenvalues of 
T 2 
R w R are included. For 187 channels there are small eigenvalues. The 
corresponding eigenvectors are randomly present in o)M and hence in 
(ROJ) (oM). Not all such are associated with large eigenvalues of (H H) 
and hence structure appears in the recovered spectrum without significant 
support from the data (Fig. 4). 

Our current conclusion is that the best method to use if starting a 
new unfolding program is one using conjugate gradients. 
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LEAST STRUCTURE SOLUTION 

Fig. 4. Example of a method of unfolding that gives 
features in the recovered spectrum not required by the data. 


