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A Vintad rfesoiution funcilon in o phvslnasl cwasprement
Teads to dats valuves and standard devistions al, %%, X peints,
We pote thyt the assoelated vorabution fynctions @ay reguive
that » nosbee 0 of particular linenr combinationg of e dats
values be vach ot significantly differcot from zero. We are
ledt awhih 41 st Xeon parameters o evalusie. {7 ihe resoln-
tion functions are teasonably behaved, we can ahow that one
sensihle way to desevibe the underiyving spostres Lresis 11 a8 8
tincay coubination of tlw given resoluzion funciions and
Ingludes all the significant infosmation {row ihe dsia,

An fterstdve seavch for the best component available w
mintmise the ehi-square of the next Tio o the dats leadz o g
conjupate gradient wweehnique.  Programs based on the technique
have been successfully used o obiain acutron specira as o
function of energys;  bn raw data from o pulse beighy analysis of
protonrecoils in 3 proportions] counter, and where the raw data
are thme of flight spestra from o time dopandent pulse of known
form, 1t is planned o incorporate these, wpether with working
programx respectively for photonuclear analysis and to explore
the impuriiy concentration profile in a surface, Inte a single
‘'work-bench' type program.

A suitably difficult model unfolding problem has been
developed and used to show the strengths angd weaknesses of o
number of other methods that have been used for unfoisling.

The work to be discussed is part of a larger suudy.

Activation foil techniques for obtaining neutron fluxes are still

work in progress, and progress is reported separately by Cook and
Ferguson in this workshop.

It is planned to attempt the dangerous process of amalgamating
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several working programs into on: 'work-bench' program with multiple
options. Such projects should be reported on at completion, or after
two new Ltypes of unfolding problems have been processed without major
modification. The aspects that are complete are written up; they are
in fact, typed up and accompanied by figures and references. Printing

takes a little lenger, but an AAEC report is expected this year.

From the material included there and referred to in my abstract,

! am passing over three profitable topics.
l. The working programs for analysis of data.

2. The analysis that leads to conjugate gradient techniques for
unfolding over the experiment of a technique for specific

problems.
3. The error analysis associated with the second type.

There is room, at best, to present a model designed with malice afore-

thought to test the usefuluess of a variety of unfolding techniques.

We want our model to be simple to program and to understand, but
beyond the capabilities of at least half of unfolding techniques.
Accordingly, we use a resolution function R that averages the 'matural
spectrum' over a considerable number (93) of channels. The chosen
natural spectrum X has a flat background of 105 counts per chanmel plus
a spike of 4.65 x 105 counts in channel 47. To avoid end effects we
wrap around. The full circle is divided alternately into 186 channels
or 187 channels. The predicted yield ¥ is then 1.05 x 10° counts per
channel in channels 1 to 93 and 1.00 x 10° for the rest. Each method of
unfolding was tested for the four cases given by 186 and 187 channels
and 'measured data'’ ﬁ'equal to predicted yield ?, or with Poisson
statistics on the count rates, M = ¥ + e. The 'data' are shown in

Fig. 1 and the results are summarised in Tables 1 and 2.

A formal exact solution exists in the case of 187 channels. Even
without statistical errors the round-off error in single precision
floating point arithmetic on an IBM 360 prevents exact implementation,
but those errors are negligible compared with statistics. We recover the

given natural spectrum as the mean value of cur calculated spectrum with
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Fig. 1. Noisy data used to test unfolding methods. The
'step' down after chanmel 93 requires a spike up in the
spectrum at channel 47 or downward in channels 140 and 141,
but the data distinguish the two cases only on the basis of
the content of channel 187.
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Table 1. Results Cbhiaincd after Ten Iterations
by Various Unfolding Mcthods

Number of channcls in circumference 1586 156 187 147
Data with (+),
Method of without (-) + . + .
iteration statistical
error
Conjugate gradient 52 3.25 1.98 3.88  2.14
C 3.6l 3.33 3.10 2,88
Conjugate gradient 52 2.97 1.48 3.34 1.68
(positive eigenvalues) c 3.63 3.71 3.73  3.18
Series 82 390 351 387 358
C - - - -
. 2
Series ) 17.1 14.6 17.6 -
(positive eigenvalues) c 0.54 0.53 0.47 _
'Appropriate’ g 397 355 392 364
C - - - -
'Appropriate’ s 17.1 16.4 17.6 16.4
(alternating ratios) 0.55 0.54 0.47 0.48

The quantity S2 X 107 is the sum of the squares
discrepancies and has a target value of about 2.0 if
discrepancies are statistical.
of variation from the mean in the recovered spectrum

around 47 and 140. The target value is 4.65.

The quantity C x 105

of the remaining
all remaining
is the concentration

into channels
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Table 2. Results Obtainced by the Least Structure Method
ef Unfolding for Various Values of Gamma

Number of Channels

in Circumference 186 186 187 187

Data Statistical (+)

+ - + -

Gamma Bare (-)
32.0 s 4.19  2.41  4.05  2.45
2.50 2,51  2.34  2.37
8.0 s? 3.77  2.06  3.67 2.10
. 2.93  2.86 2.68 2.7l
2.0 % 3,43 1.76  3.30 1.80
3.32  3.26  3.07  3.10
0.5 s 3.15 1.47 2.94 1 52
3,70 3.66  3.51 3.52

2
The quantities S§° and C are as in Table 1.
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an RM5 noise component of 0.4 x 107 counts per channel. The chi-square
value of the fit to data is zervo, associated with the 'hairy' nature of

the recovered spoctrum,

The zero cigenvalue of the resolution matrix R prevents an exact
solution for 186 channels. We can, however, throw away all components
that would be suppressed by a resolution function, leaving information
about the mean value of the spectrum on all channels and the difference
of the spectrum in opposite channels. From these we recover a formal
spectrum which fits the data as far as they are self consistenl. The
chi-squared value is predicted to be close to half the number of
channels. The recovered spectrum has mean value 1,025 x lO5 counts per
channel as background, with an upward spike of 2.325 x 105 counts in
channel 47 and a matching downward spike on channel 140. The RMS noise
component, still containing large long range correlations, is 0.14 x lO5

counts per channel,

Experimentally, we would not expect to distinguish the change in
total channel numbers. We might have a preference for positive spikes
over negative ones, particularly ones leading to emission of particles
from our counters. An unfolding method that shows the positve bump
centred at channel 47 and a negative bump (compared to background) at
channel 140, would be adequate with less demanding data. We secek methods
that are better. They should not introduce spurious structure into the
spectrum, They should fit the data adequately, i.e. so that the chi-
squared value is approximately equal to the number of channels, and they
should be simple to program. High precision arithmetic to deal with low
precision data is suspect. Iterative methods can easily incorporate
negative feedback of residual discrepancies and were used first, We also
use the wrap-around nature of the problem to produce a Fourier component
arrangement in which least structure solutions can be produced by

inversion cf a diagonal matrix instead of its ill-conditioned equivalent.

Two methods failed completely. With a superscript (n) to indicate

the number of the iteration, a series solution given by

-)?(n-f-l) _ ’x”(fl) = ﬁ _ ’Y*(n) (1)
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diverges without limit,

The ‘appropriste solution’',

(ntl) (n) (n)
X = X M, /Y (2)
j IR AT
converges eventually to a solution that does not fit the data. The
reason Is well understood and in both cases depends on the existence of
negative cigenvalues of the matrix R giving positive feedback in the

{teration process,

Slow convergence can be obtained in both cases using essentially

the square of the matrix. We use

gorl) o) _ T 5 3wy (3)
For the general case we would use the transpose RT of the matrix as
written, but with R a real symmetrical matrix, it makes no difference.

The 'appropriate alternating solution' uses

K2 Gn) oy jyian) (4)
J J J 1]
and
(2n+2) _ _(2n+1) _ (2n+1)
xj = xJ. x fj /Mj . (5)

For the particular case of our problem, the results are barely
distinguishable (Fig. 2).

To improve the series methcd we can optimise the size of each term
to be added to ;(n). Doing this by least squares leads to making sure
that previous steps are mot undone and the conjugate gradient technique.
A further refinement depends on the eigenvalues of RTR being non-

negative (bunched). Ten iterations then give Fig. 3.

Photonuclear cross sections have been associated with least struc-
ture techniques. Minimising (say) second differences leads to the
equation,

2
R R+ vy ) X=R WM, (6)



~-220~

APPROPRIATE' SOCUTION AL TERNATING

[N L— T  Enan et SR LSRR
J
i / \
[
o0
108 [» / \
i / \
1 ¢ / \ g
/ \
I \\

104 ! \ “
§m ) \“\ ]
g . -
1 \ 7 Jd

\ / 4
A / |
0% \ / -
. J
\ / '
n“ l/ -}
8 L ,‘ -
!
o ]
00 (3] T3 T8 8] s Thi?
CHANXEL NUMBER (OF 18
Fig. 2. Example of a method of unfolding that finds

major trends of the spectrum.
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of the information from the data.
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Example of a method of unfolding that uses most
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- A .
where wjl is the standard deviation of the j h data value, H is an

operator evaluating second difference and v is initially an arbitrary
parameter., The method is successful, if undesirable small eigenvalues of
the product matrix RT wZR are associated with large diagonal matrix
elements of the product matrix HTH. It works well with the Fourier
transformed matrix and 186 channels since only non-zero eigenvalues of
RT sz are included. For 187 channels there are small eigenvalues. The
corresponding eigenvectors are randomly present in wﬁland hence in

(Rw) (wﬁ3. Not all such are associated with large eigenvalues of (HTH)
and hence structure appears in the recovered spectrum without significant

support from the data (Fig. 4).

Our current conclusion is that the best methcd to use if starting a

new unfolding program is one using conjugate gradients.
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LEAST STRUCTURE SOLUTION

LA LA

o
~
rer

Sasalandad ¢

%
15 b \ j
s i \ ]
|
|
13 b :
12 b \ "g:
\
11 ;- ‘\\—\ - . 12
10 ¢ \\ \
L | ¥
" \ \ :
t I / \ / ;
"t \ : E
y Vo

=

14
A

e i S | 1 ) NP N { Lowa 1 ) ST D S | | EPE D UL,

“ 1 . N
0.3 0.6 0.9 1.2 15 1.8x102
CHANNEL NUMBER (OF 187)

g
=)

Fig. 4. Example of a method of unfolding that gives
features in the recovered spectrum not required by the data.



