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Abstract

Models for hadron-nucleus scattering at inter-
mediate and high energies are shown to depend sensitively on the
mutual compatibility of the basic approximations such as non-local
interactions, fixed scatterers, and estimal amplitudes.

For hadron-nucleus scattering at intermediate
and high energies most realistic models are based on a few basic
approximations which I will briefly outline in Part I, together
with some relations among them. One now understands these approxi-
mations sufficiently well (basic ideas, domains of validity, etc...)
so as to be able to study their mutual compatibility. The results
of such studies are sometimes surprising : some commonly employed
models are based on mutually incompatible approximations whereas
othiers involve several approximations which together are betterxr
than any one taken alone, as we shall see in Part II.

The consequences in practical calculations can

be rather dramatic, and provide some amusing guidelines for model .
builders who. wish to transcend the folklore of scattering theory.

Part I. APPROXIMATIONS SCHEMES

Details of the approximations very briefly
outlined here may be found throughout the scattering theory litera-
ture ; their mutual relationships are less often considered.

I. Born approximation

If one iterates the Lippmann-Schwinger (L-S)
equation

T =V + VG, T

N (1)
V+ VG V+... (VGp) 'V +...

one obtains a power series in the coupling constant V = AV. The
first term of this series is the real, non-unitary Born amplitude
TBzv. The Born series has the following well known properties (1)

i) lim T > Vv = 78
E>o

i) lim T » V
A+0

iii) T contains poles (in E) at bound states and
resonances ; at these energies the series
diverges.
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The latter difficulty may be overcome by the
the introduction of quasiparticlesbased on the Abspaltungsverfahren
(separation process) (2) whereby the kernel of the L-S equation
is approximated by a separable term

VGy = K(x,y) = P(x,y)
(2)
P(x,y) = ), 9, (x) g, (y)
n

where the g, are (optimally) chosen to be eigenfunctions of the
kernel. By such methods a "reduced" potential may be calculated
for which the Born series will be convergent.

Frequently one simply takes a single separable
term for the kernel (or potential) for the practical reason that
the L-S equation is then reduced to cne dimension and therefore is
soluble in closed form. The physical consequences of such an appro-
ximation are never negligible.

For scattering problems, a convenient §but rough)
criteria for the convergence of the Born series is given (3) 'in
terms of the potential V, the velocity v, and a, a length characte-
ristic of the range of the potential by

<
o}

|

<< 1. : (3)

=4
<

IT. Semiclassical (WKB) approximation

The "semiclassical" aspect of this approximation
comes from the fact that the wavefunction is expressed in powers
of h and thus the zeroth order term is independent of Planck's
constant. We may express the Schré&dinger wave function

¥ (x,t) = exp [i [ (§,t)] , (4)
h

—§§=-1-—[(VS)2+3‘- st] + v ' (5)

ot 2m i

Under the assumption that S is slowly varying (V2S8<<|Vs|), one
obtains the Hamilton-Jacobl equations of classical mechanics from
the expansion in h

S=So+ﬁsl+(
i .

o =
~——
wn
~
+

28 , 1
2t 2m

(h) % (VSe)?2 + V=0 (6)
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In one dimension we obtain

‘Pf\-“{ So+Sl+...}
3 (7)

¥

S, (%) t f dx'\[[2m E~V(x)]

=

(3) Va

is given by ﬁV>>l' For
example the necessary condition ka>>1 for smooth potentials is
obviously satisfied for the typical heavy ion reactions 160+160 at

50 MeV or a+28Ni at 150MeV where A=0.2 fm.

A rough criteria for the convergence

IIT. Eikonal approximation

The eikonal approximation in classical optics
consists in assuming the phase of a beam tobe modified in traversing
a medium of index n(z) along a straight-line trajectory

¥ =~ expl ikz + x ) _

X = erz[n(z)~l] .

The Glauber-Moliére approximation (3) to the

Schrédinger equation is obtained by assuming the wave function to
vary slowly relative to a plane wave

— ik.r
e

¥(T) = ¢ (r)
, (8)
(l—v2+‘5—--v>w=o
2m 2m
Under the sufficient but not necessary conditions
Va1 ka << 1 f2ka << 1 (9)
E

one obtains the familiar expressions in terms of the impact para-
meter b
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v voexp i {k.r + x}

1 o (10)
X = - = f V(b%+z%)dz
4k ) o
£(q) = ik a%b e1q.b [eZlX - 1]
2m

In this approximation the convergence parameter Va/hv is not cons-
trained. One sees that in the case of intermediate energy proton-
hadron scattering, the condition ka<<l is satisfied since Rp~Al/3fm
and A=0.2p~! fm (with p in GeV/c). For extreme values of the con-
vergence parameter, the average value of the_angle behaves as in
the case of the WKB or Born approximations { :

1

L 1
Va < <9> o</’1€5> Born : <6> n o(ﬁ)
hv
Va (V& v
= >> 1 <B> ~v 0O E WKB : <8> v~ O\E
hv

A more systematic approach for obtaining the
eikonal amplitude consists in expanding (linearizing) the free
Green's function about a preferred direction ki (usually the avera-
ge of initial and final dlrectlons)

p=pi+(p_ki)

-1 (11)
(2m) [k*+p?+i€]

("]
L=
i

=mn! [k -K,.5 + i€ + (2m) "t (B-K,)
W
~ 0

To lcwast order,the Green's function manifests stralght line pro-
pagation with constant impact parameter :

g, = 2 G )e(z-zn)e* 2, (12)
i i
k
where r = (b,z).
(4) Systematic corrections may be applied to this
approximatic n , where the perturbation parameter is V/E. One

may likewise include effects due to Fermi motion, target nucleon
overlap, and non-eikonal propagation between multiple scatterings.
Such corrections turn out to be of siginficant importance at
intermediate energies
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Relativistic Eikonal

We merely mention here that similar eikonal
methods in relativistic quantum field theory (4) give models with
analytic amplitudes representing the sum of an infinite class of

ladder diagrams, e.q. for the exchange of spin 0 particles of
mass u and coupling X,

T o= 24 sfdzb e ia.b (160 _y,

, (13)
2 el vg
§o = 1 dq e ig.b A

2s (2m) 2 q?+n?

or for the exchange of a Regge pole with the trajectory functions
a, Y

(14)

IV. DWBI : Distorted wave Born approximation

Eikonal methods provide an interesting analogy
between relativistic calculations involving radiative corrections
(or soft pions) and the DWBA familiar from nuclear physics.

The Born series, diagrammatically represented

by
—TeTTTe
: .r : R R
- 4 + ] L] +o-t+~. ; : : ' :+l ..... '
: \ ! s by
— [ ' 1 } )
T &f VeV
.T.G

may be modified to employ, instead of plane waves, interacting wave
functions in the initial or final state

4 T "
TR
; )

(4) In relativistic calculations for strong inter-

actions a "hard" interaction may be modified by "soft" meson
emission and absorption
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IV

The propagators may be linearized as in Eqg.(11)
to express the fact that their dominant contribution comes from
exchanged momenta small compared with that of the initial and final

particles. In the resulting amplitude, the hard interaction, e.q.
for scalar exchange

T(h) =—._____t/\_i_.._
k2-p?+i€

is modified for n soft exchanges

- = . \n
i+l - J/.d“x e~id-X p(h) () (1)

n!
[e o]

. Z o+l _ qux o 1EE o (h) L oiX

n=uv (15)

2 4
Y v / d'k  _ik.x
(2m)* ¥Z-p24i€

Various methods (6) have been employed to cal-
culate such amplitudes : 1) functional methods @barbanel and
Itzykson, ii) infinite momentum methods (Cheng, Ma, Chang, Wu)
and iii) Feynman propagator perturbations (Lévy and Sucher).

Relations among approximations

I. Eikonal-WKB (Semiclassical)

At high energies Are may expand the WKB and
eikonal phase functions using the parameter (

e:= N
kv

}
(k is the wave number, v the velocity, V(r)=VoU(r))
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@

WKB : x"(b) =k / dz {[1-2m Vv/k?]-1} (16)
=k v/P dz [-2 € U-€? U?+...]
0
n=0
Bikonal : x"(b) =3 x> (b) (17)
n
B ! [o] ) oo’
Xo(b) = - = jf dz v(r) = -2kEJ[ dz U(r)
v J 0

The two series may be subsequently related by
matching powers of Vs and k

E W
Xo = 2Xu
E W )
X1 = 2 (18)
W b W
X, = 2x, = —— [%x0l?
3k?2
etc.

It is seen that at very high energies the WKB
amplitude reduces to the lowest order eikonal term ; both give the
Born term in the limit E-»o., (In some relativistic models this may
not be true (6 ).

ITI. Eikonal-partial wave

An intuitive way (3) to see the passage from
the discreet sum of partial waves to the continuum integral over
the impact parameter is the following : in the scattering amplitude

id

f(q) = —— (20+1) [e *-1] P, (cos 0) (19)
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we take the limit p-e, Qmax*m’ AL/8.+0 and introduce the impact
parameter phase function :

kb = & + §, © 2x(b)

2

N |

to obtain

f(q) = -ik J[ db [e2lx -1] Prp- 1 (cos8)
2 (20)
~ ik~/‘b db [e?¥X 1] J, (2kb sin 8/2)

Such representations are frequently useful for electron scattering
where, for E>200 MeV, more than 100 partial waves may contribute
and substantial cancellations occur at diffraction minima.

More formally Wallace (4) showed that using
the Euler formula for converting the sum in Eqg.{(19) to an integral
and an asymptotic expression for Py gives the Fourier-Bessel ampli-
tudes (at high energies)

f(gq) - ik~/rb db J; (gb) [Sg(b)-1] (21)

Islam (6) has shown that this representation
is valid is dependently of any approximation at all angles and
energies.

Part II. MODEL MODELS

It is amusing to examine two models where is
the basic approximations "interact"” in one case to make the model
worse (for some purposes) than intended, in the second better than
one would expect.

Model I

A model for nadron-nucleus scattering, developed
by Foldy and Walecka (7), using separable interactions and fixed
scatterers has the advantages of i) expressing the amplitudes in
closed form ii) using only on-shell two-particle amplitudes and
iii) very conveniently leading to an optical potential limit.

Recently (8) this model was studied for its
utility in numerical calculations in the one case where an exact
reference calculation is possible, the scattering from a two-
particle bound state. A somewhat unexpected result was the obser-
vation that in general fixed scatterers and separable interactions
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are mutually incompatible and moreover the numerical consequences
may be very important. Fortunatel¥, for the three body problem,
new methods recently developed (8) for exact solutions (with
modest calculational requirements) obviate the need for either
approximation (although closure is often convenient and accurate).

Fixed scatterers

The fixed scatterer approximation (FSA) is
equivalent to the closure approximation for the Green's function
of the Faddeev equations :

¥ = $30 + Ga(V+V2) Y

(22)
i Icb3n> <d)Bnl
Gg =
E-E., ~T +i€
n

3n

Here T3 is the projectile kinetic energy, ¢3pn is the wavefunction
for the nth.excited state of the target, E3n its energy

h3l¢3n> = E3n|¢3n> *

For incident energies much greater than target excitations, we
obtain the approximate Green's function

E-E = E~E39 =~ (E3o-E

3n 31'1) = E-E3o0 (23)

, -1
(E-E;3-T3+i€) 3 ; I¢3n> <¢3nl

(E~E;0-T3+1€) "}

Gz = g3

In this approximatioir, the kernel of the L-S equation no longer
contains the relative separation of the target particles and thus
this dynamical variable becomes merely a parameter.

Separable operators (non-local)

In the usual notation (8) for three particle
systems, {(x3;=the separation of particles 1 and 2, y;=the projectile-
target c.m. separation), the (non-local) interaction between par-
ticles 2 and 3 is given by

<1y [V x]y)> = Vi (%, %)) 8 (ya-y])

(24)
or, in terms of the X3, y3 .,



? 2 (m+M) m+M

Obviously integration over the primed variables in the L-S equation
will not leave X3;=x} and the target particles cannot be fixed.
Fortunately for those who use these approximations for pion-nucleus
scattering, the FSA is recovered when the projectile becomes lighter
than the target particles : for Rzm/M, the §-~function of Eqg. (24)
becomes

lim & » S8 (x3-x})
R0

Numerical calculations for nucleon-deuteron
scattering at 100 MeV shows that imposing these two incompatible
approximations gives amplitudes far from the exact Faddeev results.

A somewhat intuitive way to understand the
difficulty is to note that the FSA (closure) treats all states as

equivalent whereas a separable operators singles cut one particular
state. -

Model II

The model of Glauber (3) for hadron-nucleus
multiple scattering contains the approximations i) eikonal ampli-
tudes for the two-particle scatterings ii) neglect of Fermi motion
and iii) two-particle kinematics neglecting binding ("sudden
passage" approximation for high-energy projectiles).

We now have methods for systematic perturbative
corrections for each of the above approximations 4) , which have
been shown to provide convenient and non-negligible improvements
to the simplest Glauber model for systems such as p—4He scattering
at internediate and high energies.

One finds that to lowest order in (kR) 1 (k is
the momentum, R a characteristic dimension), all three corrections
cancel exactly. For this model, the somewhat surprising conclusions
are the following

i) The particular ensemble of three approxima-
tions is better than any single approxima-
tion.

ii) Any effort to improve only one of the appro-
ximations will probably worsen the model !
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iii) The domain of validity (energy, angle)
for a model may be vastly different from
that of the individual approximations
employed.

Simple models are not without amusing surprises.
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