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Abstract

Finite amplitude solution of helical equilibria of current-

carrying plasmas bounded by a perfectly conducting cylinder is

obtained. The nonlinear saturation levels of the fixed boundary

MHD modes are also obtained near the marginal stable points. It

is shown that by shaping the current density profile the satura-

tion levels can be suppressed.
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A finite amplitude helical equilibrium in a toroidal device

still requires further investigations since experimentally observed

kink instabilities are norliiearly saturated.

Several authors have studied the development of this problem

1 2)by computer simulations ' and for a particular case the non-

3 4)linear theories have been presented '

In this letter we analyze the amplitude of helical equili-

bria of the plasma with a fixed boundary, i.e., the plasma is

restricted by a perfectly conducting cylinder. The knowledges

about the amplitude are necessary for the analysis of the insta-

bility itself as well as the other investigations, concerning the

enhancement of the diffusion and the fatal instability called

disruptive instability

We study the finite amplitude helical equilibrium of the

plasma using helical coordinates r, (P=m$+kz, %,= (mz-k r 0 )/(m +k r )
2 * Z Z

(r, 0, z are the ordinary cylindrical coordinates with r=0 corres-

ponding to the axis of the cylinder ) . The considered system is

helically symmetric, i.e., % independent. We define B« and

( A ; vector potential ) as

By, = kzrBe - mB z , (1)

A y = kzrAe - mAz =f (2)

The plasma equilibrium equation, J x B = Vp, can be rewritten in

the form as
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) + flt J i X

- r, (3)

p = p(t )- (4)

The z component of the current density is given as J (r)= J*e Be B

The plasma fills the interior of the conducting cylinder of

radius a. The boundary condition is that B vanishes at the

conducting wall or

= o at r = a. (5)

In the equilibrium state ty can be expressed as

y<r,f) - %(r) +«»|'l (r) cosJp +oc
2^(r) + (6)

where 0( denotes the amplitude of the helical deformation which is

used for an expansion parameter.

Let us consider the rounded current profile case where

= B. + £*- (7)
0 2 B

0

holds with k^Bj.. We expand Eg. (3) using Eqs.(6) and (7)'with
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2 2(ak ) = (a/R) 4C1 ( R is the major radius of the torus ), in thez

limit of the strong toroidal field B ((5 = 0 ) and retain the terms

up to the 2nd order of ot , that is,

h - 0.

The solution of Eqs.(8) and (9) are given as

2k_Brt

(9)

(10)

AJn(kr) ] , (11)

2k B

where J. is the i-th Bessel's function. The constants A and k

determine the longitudinal current profile and the rotational

transform. The boundary condition (5) gives

Jm(ka) = 0. (13)

Using th« safety factor q defined by IB ak/B-|, and noting that

k rB + mlJi)--- ̂ f/^r, Eq. (13) determines the particular q~value q ,z z • ©

q (a) = m/[l+2AJ1(ka)/ka], q (0) = m/(l+A), that permits the nei-

ghbouring helical equilibrium and gives the marginal points of the

helical MHD instability '. The solution of Eq.(10) is given by
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PI R o
Ijtr) a S" J0(kr) nT^NjI^'jSlMJw^*15* XcMls^tslXts)^ (14)

where NQ is the Bessel's function of the 2nd kind. An arbitrary

constant $ is determined by the conservation of the longitudinal

IrdrdflB = const., as

o '« z

where X is the minimum zero point of J , that is J m 0 0
= 0 -

From the nonlinear solution lj/ obtained above, the safety factor

q is expressed as a function of OC as

q(a) = qe(a) [ 1 + 1 +2 Af( A ) C m«
2], ffxW^xJ/x. (17)

q(0) = qe(0) [ 1 + ^ ^ C^ 2] ( F o r i = l ) .

From Eqs.(17) and (171)/ we obtain the amplitude 0( as

0(m =/Kmtq(a)-qe(a)] , Km=[l+2Af (A) ]/Craf (A)qp (a) , (18)

, ^ = 2 (1+A)/C^tO) . (18')

__ C _,



The saturation amplitude (X strongly depends on the current profile.

We define the concentration ratio'A= g{a)/g(0), which indicates

the concentration of the longitudinal current. From the defini-

tion of q,A is interpreted in terms of H. as A=(K-l)/[l+2f (A)K].

Figure 1 shows rt vs. K, and K 7 where other parameters are fixed.

It should be noted that the amplitude 0< becomes very small around

a particular value of vi at which N =0. It suggests that by shaping

the current profile we can suppress the saturation amplitude of

the instability and consequently the plasma transport across the

magnetic field can be reduced.

This analysis is performed for the fixed boundary condition

case. The similar analyses can be done for the free boundary

condition case which is more realistic model of the tokamak plasma.
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Figure Capton

Pig.l The dependence of the amplitude on the current profile.

«, and « are shown as a function of K. Other parame-

ters, Jq(a)-qe(a)| and |q(0)-qe(Q){ , are fixed. 0^ (

dashed line ) and tf, ( solid line ) .
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