ORNL/TM-5630

Banana Drift Diffusion in a Tokamak
Magnetic Field with Ripples

K. T. Tsang

pSTER

"OAK RIDGE NATIONAL LABORATORY

OPERATED BY: UNION (ARBIDE (ORPORATION FOR THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATIGN




BLANK PAGE



Printed in the United States of America. Available from
National Technical information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
Price: Printed Copy $4.00; Microfiche $2.25

This report was prepared as an account of work sponsored by the United States
Government. Neither the United States nor the Energy Research and Development
Administration/United States Nuclear Regulatory Commussion, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal hability or responsibility for
the accuracy, completeness or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not intringe privately owned rights.




ORNL/TM-5630

Contract No. W-7405-eng-26

FUSION ENERGY DIVISION

BANANA DRIFT DIFFUSION IN A TOKAMAK
MAGNETIC FIELD WITH RIPPLES

by The sopwrt 1oas porpend 4t o8 suwar =1 wach

K. T. Tsang *‘.:::t. ptem o apbed.

Date Published: November 1976

MASTER

NOTICE This document contains information of 8 preliminsry nature
ang was prepared primarily for nterns! use at the Oak Rigge Nationa!
LaborstOory. It is subject 1o revision or correction and tharefore goes
not represent a fins) repors.

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

OISTRIBUTION OF Tekis Lo URTCRSNUNNEE,

/\."7

S



Abstract . . .

Introduction

-

-

.

-

Prift Motion of Banana .

Banana Kinetic Equation

Conclusion . .

Acknowledgements

References . .
Figure Caption

Distribution

-

>

*

TABLE

o
N
[y

OF CONTENTS

14
14
15
16

17



BANANA DRIFT DIFFUSION IN A TOKAMAK
MAGNETIC FIELD WITH RIPPLES®

K. T. Tsang
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

ABSTRACT

The drift motions of trapped particles in a tokamak field with
ripples lead to a new rransport process in large tokamaks in addition
to the diffusion process due to particles trapped in the ripples. We
study this problem by solving the bounce averaged drift kinetic equation
with a model collision operator. It is shown that the "banana drift
diffusion" is proportional to the collision frequency when the poloidal
panana drift frequency is smaller than the effective collision frequency.
This result is contrary to earlier predictions. In a reactor regiuwe,

this loss mechanism {s shown to be unimportant.

1. INTRODUCTION

The discrete nature of toroidal magnetic field coils of a tokamak
introduces a smail, but fiaicte, amplitude modulation on the toroidal
magnetic field. These small field modulaticons in the toroidal direction
are usually called "ripples'; their existence destroys the axisymmetry
of an ideal tokamak and leads to large particle excursions and hence
to particle and energy losses. There are three types of particles in
such a magnetic field geometry: those trapped in the ripples which we

called "ripple-trapped" particles, those trapped in the toroidal field

*Researcli sponsored by U.S. Energy Rusearch and Development
Administration under contract with Union Carbide Corporation.



modulation which are called "bananas" becuuse of the shape of their
orbits, and those untrapped in both magnetic wells. Much of the previous
effort [1, 2] in understanding the effects of ripples has been devoted

to the particle and energy losses by ripnle-trapped particles. In a
recent report {3], Davidson raised the possibility of particle and energy
losses — which he claimed to be larger than the losses due to ripple-
trapped particles — through the effect of ripples on the banana particles.

This new loss mechanism can be better understood by looking at the
effect of ripples on the banzia particles. In an axisymmetric tokamak,
i.e., without ripples, the banana orbit closes by itself. After bouncing
once in the toroidal field, the banana particle goes back precisely to
its starting position. With the introduction of ripples, the banana
orbit is no longer closed; instead, it drifts in the radial as well as
in the poloidal directions. It is this kind of banana drift motion that
leads to the new particle and energy transports.

By assuming that the longitudinal adiabatic iwvwvariant J is con-
served while the banana is drifting, one can show that the banana drift
motion has a finite amplitude proportional to the ripple size. 1In
Section 2, we investigate the single particle drift motion by evaluation
of J. Introducing collisions, we can estimate the scaling of the dif-
fusion coefficient. We show that Davidson's calculation [3] corresponds
to the limit when the effective collision frequency of the banana particle
is larger than the frequency of drift motion of the banana in the ripple
field. In Section 3, the drift kinetic equation is averaged over the
banana bounce motion. The resulting equation is then solved by using
a model collision operator. Transport coefficients valid for all col-

lisional regimes are calculated.



2. DRIFT MOTION OF BANANA

The longitudinal adiabatic invariaat J for the banana perticle

is defined by
I=§ v, 4 , )

where v is the parallel velocity of the particle, d2 ig the line ele-
wient along the magnetic field, and the integration is performed between
the turning points. For a particle with speed v and magnetic moment |+,

u“ can be written as v = Yu? —-ZuBO. where B is the magnitude of

i
the magnetic field. For a tokamak field resulting from the use of N
toroidal field coils, the B field is chosen to be

3 - Bo € 2 1 -
BT3¢ cos ® [q 8+ [1-56(,08) cos N¢]@] +B, , 1)

where r, 8, and ¢ are the usual toroidal coordinates, 6(r,8) is the

size of the ripples, € = r/R, R is the major radius, and q is the safety
factor. The dependence of § on r and 6 varies with the shape of the
toroidal field coils, the shapes of the magnetic flux surfaces we
assumed, and the location of the flux surfaces with respect to the coil.
For a D-shaped coill with circular flux surfaces centered at the minimum

of §, we can approximate
8(r,8) ~ 6p(r/a)” exp(—aB?) |, (2)

where a is the minor radius of the plasma column. The radial component

of B is determined by V - B = 0 which gives



By = —Bp 6(r,0) K(r,0) eN sin(N¢)} ,

1
- §(xr,8)x
where 6(r,8) K(r,8) = g l+xe cos © dx -

Hence to order §, we have

B~ Bg(l— 6 cos N¢J/(1L + ¢ cos 6) ,

and df ~ Rq(1l — § cos N¢)do
% Rq(rg) [l — 6 cos N¢ + %—: Q(rg)] ,

where Q = 3 ¥m q/3 ¥,
Ar ~—tqq N {9 6(r,8°) K(r,8°) sin N(q8~ + 0g)d8~ ,
and 89 is a constant in ¢ = g0 + 6.
In obtaining d{¢, an expansion of q around the unperturbed flux surface
at r = rg has been performed.

Combining all these and defining a pitch angle variable

M= [v¥/2 — #Bg (1~¢) ]/2BBpe, we can evaluate J to the lowest order in

1/Nq,
J=Jg + Jl. s (3)
where
Jo = 8(uBoe) /2 Rq[EMD ~ 1) KMD] ,
J1 = 4Rq(nBoe) 1/2 {(cos N8g) I,
I = -NqQ ‘(l)'cde .gea(r,e‘)x(r,a') sin Nq6°d6”(M-sin %)"2 ,
€=2 sin~! M, and K and E are complete elliptic integrals of

first and second kind.
Note that M equals zero for deeply trapped particles, and M = 1 1is

the boundary between trapped and circulating particles.



At this point, we introduce the coordinates « and B which are

determined by
35 x GB = E .

For the form of magnetic field given by Eq. (1), neglecting small

corrections due to ¢ and §, we have

nge—@a"eo s

and

da = By(r/q)dr .

In the o, P coordinates, the banana drift velocity is given by [4]:

(%)

ws: |
"
}
8
min
[ =4
o
CVIOI
R
—
f\
ooy
¢
|
.

where the dots over « apd P represent the time derivatives, the bars the
average over the banana orbit, c is the velocity of light, m and e are
the mass and charge of the particle, respectively.

From Eq. (3) we have

194y _ 1/2
v 30 2RqK (M) / (1Bge)
8t L ady 1/2
38 " 3B ~4RqN (kBge) (sin NB) 1T ,

()
2
J 9 230 - 8RYT (up o) 1/202  waqet/2) [EGD) ~ (1) K(M)]
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Using the form ¢f § given by Eq. (2), I can be evaluated to the lowest
order in 1/Nq.

. 1/2
I :::;1—3—3 %g 69(M — sin? %) 6o(/a)™

(6)
= 2Q6p¢r/a)™ [EQM) — (I-M) KM}/ (n + 2) .

We can now estimate the order of magnitude of L*-. banana radial

drift velocity from Eqs. (46):

T ~ NqQ&gu?/R2
where 1 = eBp/mc.

This bounce average radial drift velocity ; is a sinusoidal function
of NB. Hence the radial drift motion due to the ripples is a kind of
oscillation whose amplitude is finite and proportional to 6. To estimate
the frequency of such oscillation, we need the amplitude of the radial
drift,

T'= [df Br/B ~ réy .

Therefore, the time needed to complete one oscillation is

7 ~ T/T ~ RO/ (NqQu2) .

The diffusion coefficient due to this banana drift motion can be
estimated in two limits. When the effective collision time ¢/y for the

banana is shorter than T, i.e.

v/e > nqQu?/xRQ



where v is the collision frequency, the diffusion coefficient is

roughly
D~ (D)2 e3/2/v ., w

This is essentially Davidson's result {3]. However, when e/v is

longer than ¥, i.e.,
v/e < NgQu2/rRC ,

the gtep size due to banana drift motion is T and hence the diffusion

coefficient is
D~ T2 w(ey/2 | (8)
The condition under which Eq. (7) is valid can be rewritten as
v, > Ng2Qu/rie!/? . (8a)
where v, = vRam!/2/€3/2T1/2 i5 the ratio of effective collision frequency
to average bounce frequency of the banana particles. For typical reactor

parameters such as N = 20, q = 2.5, Q = 1, Ty = 10 KeV, B = 45 kg,

r = 100 cm, and ¢ = 1/3, we need
Vui > 0.68 (9)

in order for Davidson's result to be valid. Thus, Eq. (8a) is a very

restrictive condition,



3. BANANA KINETIC EQUATION

In this section, analytic calculation of the transport coefficients
due to the banana drift motion is presented. Following the development
in Ref. [4], we first perform gyro average and then bounce average on
the Fokker-Planck equation, and obtain the following equation for the
particles trapped in the toroidal field:

e df3J L 3fd] _3f3l _e gdb
mc 3t Vdu + ¢ 3B 9B dv me Q U cH) (10)

where C(f) is the collision operator. For equilibrium, Eq. (10) becomes

%

B §cn , an

ad
ob i

S

oo

which is the equation we need for the distribution function of bananas.
From Eq. {5) we know 3J/0B is of the order of 6, while 3J/dx is of the
order of unity. Expanding Eq. (11) in 6, we have

37 _df13d _e ¢ dR

3/2 my?
where fp = Np ( M ) exXp\ ~ Sp is the lowest order Maxwellian
n T ‘

equilibrium in 6, Ny is the demsity, and T is the temperature.

To solve Eq. (12), we have to assume a form of collision operator.
Since it is the ions which are most susceptiblé to this loss, we need
to solve Eq. (12) for ions only. Hence, only lon-ion collisions are
included in C(f;) [51].

v

) af1
C(f1) = v "3 3 By m + vy Pfy

9



where v is the collision frequency and P is to be determined self-

consistently by conservation of momentum. The bounce average of C(f;)

leads to

[ 3cuw = e (5 i’%) & mm ~ am keo1 3, A

in which the momentum conserving term does not contribute because its
parity is odd in the parallel velocity.

Combining Eqs. (5), (12), and (13), we set
ofo @ . [E - _ol1 (§ - L1\ (E _
SZEQ (a)o(K 1 +M) sin NB ggl 6o {(q + Zr)( 1 +M)
_i(y_1 _El(z_ >32§1 _1_;&}
Zr(M 2)]"e_1< LMz * 5o ’

where d;)o:: 2Nev2Q8 oy (x/a)™ melfe (@m+2),
and (E)o ~ 2ev2q/ (xQ).

Equation (14) can be solved by separating f; to

=7, INB INB

In order that f; be real, f+ and f are complex conjugates of each other:

f_f_ = f_, so we need only an equation governing one of them,

Nlb-‘

aJ - iN . & 1V (E _
—a—-ﬂ-(oz)g (E 1+M)+r f+(5)0{(Q+2)(K l+M) s

1(y_1 v [(E _ 2%f4 , 1 3fsl _
——Z-(M 2)]+.e[(K ].'I'M)aM +23M] 0o .
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Equation (15) is a second order differential equation of f+ with com-
plicated coefficients. We cannot proceed unless we can replace
M — 1 + E/K by a tractable expression. This is possible by expanding

E and K in small argument M,

E
I l+MmM2 |

Except near M = 1, which is the boundary between circulating and trapped
particles, M/2 is a fairly good approximation of M — 1 + E/K.

Equation (15) is then further simplified to
Y (w2t 3fs) LN F _L\M 1) M afy F
%e (MiﬁéiJ'aM)‘Lr Iy o KQ z)2+4]‘4 o @o . A6)

We have to make one more assumption before we can solve Eq. (16) analyti-
cally. In the outer half of the plasma column where the effect of
ripples is most significant, Q is usually larger than 1/2. Ignoring 1/4
compared with (Q-—-%) M/2 will not introduce an artifical sign change
of the coefficient of f+. Such an approximation would change the
answer only by a factor of unity, since only when 3J/3@ = 0 can a new
physical entity appear, namely the superbanana [6].

Using the boundary conditiou that f+ = 0 at the trapped circulating
boundary, i.e., M = 1, and af+/aM is well behaved at M = 0, we can solve

Eq. (16) approximately by expanding f+ into a series of Bessel functions
o= LA, ol (17a)

where jgo is the zeroth order Bessel function and &, is the nth zero of
jo(x). The coefficients A can be obtained by substituting Eq. (17a)

in Eq. (16) and using the orthogonality condition:
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1

" = 2
Jot 3 (ee) ol t)de =6 [§(@)1%/2 .
Thus we get

An=%§ﬂ1__(_“l&.—[ ; anz +— (B)o (Q""‘)] (17b)

Going back to Eq. (10), it is easy to show that the flux surface

averaged particle and heat fluxes in « direction are

and

Since & ;s proportional to sin NB, we have

r = %%J‘ﬁ (Inf,) @¢ (%- 1+ M) ,
and > (18)

'Q‘a-_-j‘%j'd\*r (Imf,) (&)0(%—1 +M) 3 V2

where de is the integral over the trapped particles only and after

. 100 .
averaging over 6, it is approximately | %%-jdv ~2/2¢ w | vZdu Jl dM.
0 Q
Combining Eqs. (17) and (18), we have

F 1@e)? =, (/) [ (@) P @fo/ow)
@ m=l i v (v/2e)2a“ + @/2r)2(8)3 (Q — 1/2)2

- w(2e)1/2 =, (V/G)(d)%(Bfofaa)mU /2

'Q"ty - =1——————J0 vedv (V/ZG)ZQH + (ler)z(s)z (Q — '.1/2)Z *
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-
which are essentially Davidson's result if we neglect the (B)y terms in
thie denominators.

More explicitly worked out forms for T and Q are:
I'C!=—£— 1/2 an(r/a')n rsz EJ;.J.—Le‘ Ay + (A _2.)\ ‘I;N
e i1 | (m+2)(Q-1/2) ¢ Ng T 1 272 %) 7|7
and
2 1/2
g, - (>

E(x) = ;—}/—2 [( —-ZLZ)Erf(X) + e X2yl ]
X

V= (vii/Ze)/[g; (9'—-%) eq T/mrnl .

Vi = 21/2nN0e“ lnA/mllsz/z, and x =u(m/2T)1/2

Since it is the ion species that diffuses most rapidly by this process,
the neutrality condition requires
Ng© , ed”
Np

3
T)}\l'*‘()tz_

T
EAI)T =0

Hence the resulting energy flux is

o~

yre RoofEf mp wer
% (7) -

xa
1 ' v
(Q -5 (n+2)2q ml

(19)
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where all the collision frequency dependences are embodied in X =V

(A3 —-A%/ll). Numerical integration has been performed to evaluate X

as a function of V. From the definitiom, Vv is essentially the ratio
between the effective collision frequency and N times the toroidal drift
velocity of the banana. The dependence of x on v is plotted in Fig. 1.
For 3'1arge, X 1s proportion to ;;1, which is the result obtained by
Davidson [3]. However, as v decreases, the lfcidependence changes
gradually to a ;’dependence. This result agrees with our phenomenological
derivation in Section 2. 1In Fig. 1, the actual dependence of x on v is
represented by the solid curve. Davidson's result {[3] is represented

by the dash straight line. They agree with each other very well in the
large .—\; limit. However, at around v & 3, the solid curve turns away from
the dash line and approaches to a linear behavior with V as v decreases.
For the same parameters just preceeding Eq. (9), this is equivalent to
saying that Davidson's analysis no longer holds when v,y < 0.5, which is
quite close to our estimation in Eq. (9).

If we take into account the fact that trapped particles exist only
when v is larger than v, = v, !/%(2T/m)}/2 [7], the lower limit of integra-
tion in the definition of A should be replaced by v,1/*. For the parame-
ters just preceeding Eq. (9), v is related to Vi bY v = 5.88 vyi. The
effect of this is shown by the dash-dot curve in Fig. 1. For v< 10,
the solid curve and the dash-dot curve are practically the same. For
larger ;, the dash-dot curve rapidly dips below the solid curve. This
implies that by the time when Davidson's result is valid, there are not

many trapped particles left.
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4. CONCLUSION

The transport processes induced by the drift motion of bananas in
a tokamak field with ripples have been derived by solving the banana
drift kinetic equation with a bounce averaged pitch angle collision
operator. The result agrees with what one would obtain by a simple
physical argument. Previous calculation [3] of this effect is shown to
be valid only in high collision frequency limits and suggests that it
cannot be extrapolated to low collision frequency. For typical reactor
parameters, this loss mechanism is probably not very significant com-~

pared to the ripple trapping loss mechanism,
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FIGURE CAPTION

Fig. 1. Comparison of present (solid line) and Davidson's (dashed
line) results for the normalized ion heat conductivity due to banana
drift motion as function of collisionality. The.dash-dot 1line is the
ion heat conductivity after adjustment for the fraction of trapped par-
ticles that can exist for the parameters: N =20, q = 2,5, Q =1,

Ti = 10 KeV, B = 45 kg, r = 100 cm, and € = 1/3.
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