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BANANA DRIFT DIFFUSION IN A TOKAI1AK 
MAGNETIC FIELD WITH RIPPLES* 

K. T. Tsang 
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 

ABSTRACT 

The drift aotions of trapped particles in a tokamak field with 

ripples lead to a new transport process in large tokamaks in addition 

to the diffusion process due to particles trapped in the ripples. We 

study this problem by solving the bounce averaged drift kinetic equation 

with a model collision operator. It is shown that the "banana drift 

diffusion" is proportional to the collision frequency when the poloidal 

banana drift frequency is smaller than the effective collision frequency. 

This result is contrary to earlier predictions. In a reactor regime, 

this loss mechanism is shown to be unimportant. 

1. INTRODUCTION 

The discrete nature of toroidal magnetic field coils of a tokamak 

introduces a snail, but finite, amplitude modulation on the toroidal 

magnetic field. These small field modulations in the toroidal direction 

are usually called "ripples"; their existence destroys the axisymaetry 

of an ideal tokamak and leads to large particle excursions and hence 

to particle and energy losses. There are three types of particles in 

such a magnetic field geometry: those trapped in the ripples which we 

called "ripple-trapped" particles, those trapped in the toroidal field 

^Research sponsored by U.S. Energy Research and Development 
Administration under contract with Union Carbide Corporation. 
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modulation which are called "bananas" because of the shape of their 

orbits, and those untrapped in both magnetic wells. Much of the previous 

effort [1, 2] in understanding the effects of ripples has been devoted 

to the particle and energy losses by ripple-trapped particles. In a 

recent report [3], Davidson raised the possibility of particle and energy 

losses — which he claimed to be larger than the losses due to ripple-

trapped particles — through the effect of ripples on the banana particles. 

This new loss mechanism can be better understood by looking at the 

effect of ripples on the banana particles. In an axisymmetric tokamak, 

i.e., without ripples, the banana orbit closes by itself. After bouncing 

once in the toroidal field, the banana particle goes back precisely to 

its starting position. With the introduction of ripples, the banana 

orbit is no longer closed; instead, it drifts in the radial as well as 

in the poloidal directions. It is this kind of banana drift motion that 

leads to the new particle and energy transports. 

By assuming that the longitudinal adiabatic invariant J is con-

served while the banana is drifting, one can show that the banana drift 

motion has a finite amplitude proportional to the ripple size. In 

Section 2, we investigate the single particle drift motion by evaluation 

of J. Introducing collisions, we can estimate the scaling of the dif-

fusion coefficient. We show that Davidson's calculation [3] corresponds 

to the limit when the effective collision frequency of the banana particle 

is larger than the frequency of drift motion of the banana in the ripple 

field. In Section 3, the drift kinetic equation is averaged over the 

banana bounce motion. The resulting equation is then solved by using 

a model collision operator. Transport coefficients valid for all col-

lisional regimes are calculated. 
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2. DRIFT MOTION OF BANANA 

The longitudinal adiabatic invariant J for the banana particle 

is defined by 

J = § u|( dZ , 

where u^ is the parallel velocity of the particle, d£ is the line ele-. » 
went along the magnetic field, and the integration is performed between 

the turning points. For a particle with speed u and magnetic moment J*, 

u.. can be written as u,, = /u2 — 2nB , where B is the magnitude of u ii o 
the magnetic field. For a tokamak field resulting from the use of N 

toroidal field coils, the B field is chooen to be 

B " i + e°cos 8 [i § + 1 1 ~ 6 ( r ' S ) c o s + ** ' ( 1 ) 

where r, 6, and <j> are the usual toroidal coordinates, 6(r,8) is the 

size of the ripples, e - r/R, R is the major radius, and q is the safety 

factor. The dependence of 6 on r and 8 varies with the shape of the 

toroidal field coils, the shapes of the magnetic flux surfaces we 

assumed, and the location of the flux surfaces with respect to the coil. 

For a D-shaped coil with circular flux surfaces centered at the minimum 

of 6, we can approximate 

6(r,8) ~ 60(r/a)n exp(-ae2) , (2) 

where a is the minor radius of the plasma column. The radial component 

of B is determined by V * B = 0 which gives 
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B r « -B 0 6(r,9) K(r,8) eN sin(N<» , 

where 6(r,0) K(r,0) -z / ffgffi & dj( . 

Hence to order 6, we have 

B ~ B0(l - 6 cos N$)/(1 + e cos 0) , 

and dl ~ Rq(l - 6 cos N<f>)d0 

« Rq(r0) [ 1 - 6 cos N<|> + ^ Q(r0)] , r 0 
where Q » a Mi q/<j r, 

Ar ~-r 0q N 6(r , e ' ) K(r,0') sin N(q8' + 00)d8* , 

and 9o is a constant in $ * q0 + 8Q. 

In obtaining dA, an expansion of q around the unperturbed flux surface 

at r » rj has been performed. 

Combining all these and defining a pitch angle variable 

M = [U2/2 — JABO(1—e)]/2nB0e, we can evaluate J to the lowest order in 

1/Nq, 

J » J 0 + Ji , (3) 

where 

JO = 8(p.B0e)l/2 Rq[E(M) - (Mi) K(M) ] , 

Jl = ARq(n3oe)l/2 (cos N0o) I , 

I = -NqQ J ' £ d 0 r 0 6 ( r , 8 ' ) K ( r f 3 ' ) Sin Nq0'd0'(M-sin |) 1 / z , w o 
C = 2 sin"1 M, and K and E are complete elliptic integrals of 

first and second kind. 

Note that M equals zero for deeply trapped particles, and M = 1 is 

the boundary between trapped and circulating particles. 
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AC chis point, we introduce the coordinates a and P which are 

determined by 

Vor x VP » B . 

For the form of magnetic field given by Eq. (1), neglecting small 

corrections due to e and 6, we have 

0 = q 0 - 0 - e 0 , 

and 

dor = B0(r/q)dr . 

In the a, 0 coordinates, the banana drift velocity is given by [4]: 

T mcu a = e m m 1 

I = _ ( p e 

(4) 

where the dots over a and $ represent the time derivatives, the bars the 

average over the banana orbit, c is the velocity of light, m and e are 

the mass and charge of the particle, respectively. 

From Eq. (3) we have 

i g * - - 2 R q K O . ) / < W l o « ) , / 2 > 

H " - !j^- = -4RqN(nB0e)l/2 (sin NB) I , 

( ( 5 ) ^ = ^ = » » ~ ( H O K(M)] 

K(H) 
2r H ) } • 
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Using the form cf 6 given by Eq. (2), I can be evaluated to the lowest 

order in 1/Nq. 

I J'C d 9 ( M ~ s i t l 2 | ) 1 / 2 6o(t/a) n 

° (6) 
= 2Q60(r/a)n [E(M) - (1-M) K<M)]/(n + 2) . 

He can now estimate the order of magnitude of t; . banana radial 

drift velocity from Eqs. (4-6): 

i ~ NqQ60u2/R" , 

where £3 = eBo/mc. 

This bounce average radial drift velocity r is a sinusoidal function 

of N3. Hence the radial drift motion due to the ripples is a kind of 

oscillation whose amplitude is finite and proportional to 6. To estimate 

the frequency of such oscillation, we need the amplitude of the radial 

drift, 

r = J'dfc Br/B ~ rfio . 

Therefore, the time needed to complete one oscillation is 

7~r/?~rSP./(NqQu 2) . 

The diffusion coefficient due to this banana drift motion can be 

estimated in two limits. When the effective collision time e/v for the 

banana is shorter than T, i.e. 

v/e > nqQu2/rR£J , 
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where v is the collision frequency, the diffusion coefficient is 

roughly 

D ~ tt)2 e 3 / 2 / v . ( 7 ) 

This is essentially Davidson's result [3]. However, when e/v is 

longer than T, i.e., 

v/e < NqQu2 /rRfi , 

the step size due to banana drift motion is ~ and hence the diffusion 

coefficient is 

D ~ r2 v(e)-1'2 . (8) 

The condition under which Eq. (7) is valid can be rewritten as 

> Nq2Qu/rtle1/2 , (8a) 

where v# • vRqml^2/e3^2T1>/2 is the ratio of effective collision frequency 

to average bounce frequency of the banana particles. For typical reactor 

parameters such as N - 20, q - 2.5, Q = 1, TA = 10 KeV, B = 45 kg, 

r = 100 cm, and e « 1/3, we need 

v A l > 0.68 , (9) 

in order for Davidson's result to be valid. Thus, Eq. (8a) is a very 

restrictive condition. 



8 

3. BANANA KINETIC EQUATION 

In this section, analytic calculation of the transport coefficients 

due to the banana drift motion is presented. Following the development 

in Ref. [4], we first perform gyro average and then bounce average on 

the Fokker-Planck equation, and obtain the following equation for the 

particles trapped in the toroidal field: 

mc 3t u3u dor 3P aP 3« mc y ^ ' ^ 

where C(/) is the collision operator. For equilibrium, Eq. (10) becomes 

aa as aP a<* mc y u„ » u ± ; ii 

which is the equation we. need for the distribution function of bananas. 

From Eq. (5) we know 3J/3P is of the order of 6, while aJ/3® is of the 

order of unity. Expanding Eq. (11) in 6, we have 

hla. M _ M i M = £ c ( f ) Q 2 ) 
b<* 3P ap a« mc Uii ' u ; 

where /„ = N0 ^ exp^-

aar ap 3P a« mc * U|, 

is the lowest order Maxwellian 

equilibrium in 6, NQ is the density, and T is the temperature. 

To solve Eq. (12), we have to assume a form of collision operator. 

Since it is the ions which are most susceptible to this loss, we need 

to solve Eq. (12) for ions only. Hence, only ion-ion collisions are 

included in C(/i) [5]. 

c(/ a) = v - r l r ^ i i i 1 + v u « P / ° • 
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where v is the collision frequency and P is to be determined self-

consistently by conservation of momentum. The bounce average of C(/j) 

leads to 

J ^ c " ' > " 3 W ( S t u ) I f " « « > ^ • < " > 

in which the momentum conserving term does not contribute because its 

parity is odd in the parallel velocity. 

Combining Eqs. (5), (12), and (13), we set 

(14) 
g»0>„(| + J). Kf + f ^ i - i ' M ) 

where (cr)o ~ 
2Neu2Q60(r/a)n mc/e (n+2), 

and (P)0 ~ 2ev2q/(rG). 

Equation (14) can be solved by separating fi to 
/I - / + + /. ̂  • 

In order that fi be real, / + and / are complex conjugates of each other: 
/* = / , so we need only an equation governing one of them, 

T 

I r & *>> (I -"«)+ f > +<?>o [(q + 1) ( f - 1 * » ) (15) 
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Equation (15) is a second order differential equation of /, with com-

plicated coefficients. We cannot proceed unless we can replace 

M — 1 + E/K by a tractable expression. This is possible by expanding 

E and K in small argument M, 

^ - 1 + M « M/2 . 

Except near M = 1, which is the boundary between circulating and trapped 

particles, M/2 is a fairly good approximation of M — 1 + E/K. 

Equation (15) is then further simplified to 

We have to make one more assumption before we can solve Eq. (16) analyti-

cally. In the outer half of the plasma column where the effect of 

ripples is most significant, Q is usually larger than 1/2. Ignoring 1/4 

compared with (Q — M/2 will not introduce an artifical sign change 

of the coefficient of / +. Such an approximation would change the 

answer only by a factor of unity, since only when dJ/dar = 0 can a new 

physical entity appear, namely the superbanana [6]. 

Using the boundary condition that / + = 0 at the trapped circulating 

boundary, i.e., M = 1, and d/+/dM is well behaved at M = 0, we can solve 

Eq. (16) approximately by expanding / into a series of Bessel functions 

= n Jo(«n M) > < 1 7 a> 

where jo I s the zeroth order Bessel function and » n is the nth zero of 

j o(x). The coefficients A n can be obtained by substituting Eq. (17a) 

in Eq. (16) and using the orthogonality condition: 
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( t w > y v ) d t - ̂  i ( v 1 2 / 2 

Thus we get 

Going back to Eq. (10), it is easy to show that the flux surface 

averaged particle and heat fluxes in or direction are 

and 

Since ot is proportional to sin Np, we have 

and , (18) 

^ = J* § J"dV (im/+) ( S ) 0 ( | - 1 + M ) | v 2 

where JdV is the integral over the trapped particles only and after 
d0_ 
2TT averaging over 0, it is approximately J' JdV 2/2s TT J u2du J 1 dM. 

Combining Eqs. (17) and (18), we have 

_ J Tr(2e)1/2 ,» 2J ( v / e H P O n P c a / n / a o Q r £ TTv^c/ ' - ,2J,, " ' , 
Fot ' m=l 4 J U d U ( V / 2 6 ) + (N/2r)2(0)§ (Q - 1/2)2 o n 

(v/e)(tf)S(d/0/ag)mu2/2 
( v / 2 e ) 2 « £ + ( N / 2 r ) 2 ( f ) 2 ( Q - 1 / 2 ) 2 » 
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which are essentially Davidson's result if we neglect the (0)g terms in 

the denominators. More explicitly worked out forms for r and Q are: 

- • 1/2 + * M f l -

and 

- ( - f \ne / 
v. .T xi (n+2) 

/No e<f>' V / j V -
— + ) + (A.3 X2 — 
\N0 T / \ 2 / T 

where 

I , ? r dy xlts,()<)e~x2x2n 

5(x)" [l1 + e"x2/nl/2 * ] • 

v = (v^/26)/ (Q - F) eq T/mru] , 

Vii = 2l/2TlN0eJt AnA/m1/2!3/2, and x =u (m/2T)1/2 . 

Since it is the ion species that diffuses most rapidly by this process, 

the neutrality condition requires 

Hence the resulting energy flux is 

[2 X1/2 P 6ofe) r B f Ne 3 / 2T_ . 
V " (n 7 l f ~ , V fa ~ "~)N°T (19) 
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where all the collision frequency dependences are embodied in X = V 
2 

(A3 — A.2M1) • Numerical integration has been performed to evaluate x 

as a function of v. From the definition, v is essentially the ratio 

between the effective collision frequency and N times the toroidal drift 

velocity of the banana. The dependence of x o n v is plotted in Fig. 1. 

For v large, x is proportion to v-1, which is the result obtained by 

Davidson [3]. However, as v decreases, the 1/v dependence changes 

gradually to a v dependence. This result agrees with our phenomenological 

derivation in Section 2. In Fig. 1, the actual dependence of x on v is 

represented by the solid curve. Davidson's result [3] is represented 

by the dash straight line. They agree with each other very well in the 

large v limit. However, at around v s 3 , the solid curve turns away from 

the dash line and approaches to a linear behavior with v as v decreases. 

For the same parameters just preceeding Eq. (9), this is equivalent to 

saying that Davidson's analysis no longer holds when ^ 0.5, which is 

quite close to our estimation in Eq. (9). 

If we take into account the fact that trapped particles exist only 

when u is larger than u^ = v#1/'*(2T/m) [7], the lower limit of integra-

tion in the definition of X should be replaced by v.1/*4. For the parame-n * 

ters just preceeding Eq. (9), v is related to v ^ by V ® 5.88 The 

effect of this is shown by the dash-dot curve in Fig. 1. For v < 10, 

the solid curve and the dash-dot curve are practically the same. For 

larger v, the dash-dot curve rapidly dips below the solid curve. This 

implies that by the time when Davidson's result is valid, there are not 

many trapped particles left. 
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4. CONCLUSION 

The transport processes induced by the drift motion of bananas in 

a tokamak field with ripples have been derived by solving the banana 

drift kinetic equation with a bounce averaged pitch angle collision 

operator. The result agrees with what one would obtain by a simple 

physical argument. Previous calculation [3] of this effect is shown to 

be valid only in high collision frequency limits and suggests that it 

cannot be extrapolated to low collision frequency. For typical reactor 

parameters, this loss mechanism is probably not very significant com-

pared to the ripple trapping loss mechanism, 
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FIGURE CAPTION 

Fig. 1. Comparison of present (solid line) and Davidson's (dashed 

line) results for the normalized ion heat conductivity due to banana 

drift motion as function of collisionality. The dash-dot line is the 

ion heat conductivity after adjustment for the fraction of trapped par-

ticles that can exist for the parameters: N = 20, q = 2.5, Q = 1, 

Ti = 10 KeV, B = 45 kg, r = 100 cm, and e = 1/3. 
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