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ABSTRACT

This paper deals with the elastic solutions having a six parameter
symmetry. We show that our previous results obtained by means of Rayner’s
Hookean formalism, remain valid for certain values of the parameters in
Carter and Quintana’s more general theory, as non-Hookean special cases. On
the other hand, although Carter and Quintana’s Hookean approximation is not
identical with Rayner’s theory, the behaviour of the new solutions does not
essentially differ from that of the solutions in Rayner’s formalism.

AHHOTAILMA

B HacTOAWEeR CTaThe OMHCHBAOTCA YNpPYyIrHe peweHusa 6-I1apaMeTpPOBOA CHM-
MeTpHH. [loka3aHO, YTO noaydYeHHHe paHec MeTONOM PafHepa pe3ynbTaTtTh OeACTBH-—
TEeAbHH IUVIA HEKOTOPHX 3HAUEHHR MNnapaMeTpoB Taxxe H B Oonee obimeM dopManu3iMe
KapTepa ¥ KBHHTaHa HO He OINHCHBawNT ynpyroe noseneHHe TtHna Xyxa mareprana. C
HOPpyIroR CTOPOHH, NONyYeHHKEe HOBHM MeTONOM pemeHHMA THna Xyka B He3HAYHTeJsIbHOR
CTerleHd OTJIHYAWTCA OT paHee MNOJIYYEeHHHX peuweHHuft,

KIVONAT

E cikkben a 6 paraméteres szimmetriiju rugalmas megoldasokkal fog-
lalkozunk. Megmutatjuk, hogy kor&bbi,a Rayner-féle médszerrel kapott eredmé-
nyeink a paraméterek bizonyos értékeire az &ltaldnosabb, Carter és Quintana
alkotta formalizmusban is érvényesek maradnak, de nem Hooke-féle rugalmas
vigelkedést irnak le. Masrészt az uj mddszer szerinti Hooke-tipusu megoldasok
nem térnek el lényegesen a koribban kapottaktél,
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1. INTRODUCTION

In 1972, Carter and Quintana modified Rayner’s formalism for relati-
vistic elasticity {1], [2]. The most important point of this modification is
the density-dependence of the elastic coefficients. In addition to this, the
new formalism is more general, it car describe the ncn-Hookean cases /which
are out of Rayner’s formalism/, and contains the case of perfect fluid as a
limit of zero shear. Of w~ourse, Rayner’s formalism, which is good from the

rheological point of view, remains wvalid for a special type of elastic matter.

In Ref. 3 we dealt with the solutions describing Rayner-type elastic
matter in gravitatioral field having a six parameter symmetry. Here we repeat
the calculation by means of the more general theory. We shall show that pre-
vious results remain valid if we choose the equation of state specially.

The Hookean limit. of the two theories differ from one another but there is no
essential difference between the behaviours of the solutions.

We do not want to deal again with the physical meaning of elastic
solutions having a six parameter symmetry [3], but note that in the very dense
stage of the Universe some type of elasticity may be imagined /though it is
not probable/.

2. THE SYMMETRIES

The Robertson-Walker metrics have a six parameter symmetry, namely
50/4/ for k=1, E/3/ for k=0 and $0/3,1/ for k=-1, and we will require these
symnetries to hold for the characteristic components of the energy-momentum
tensor too, i.e.

. 2 2 2 2
ds?= a‘/xol[fdxo +dx? +f2/x1/ (dx2 +e1nxlax’ ﬂ
/2 -la/
sin x for k=+1
f/x] =9x k= O
sh x k=-1
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ard s=s/x°/ if s is a scalar,
N . i /2.1b/
v =v/x°/6; if vo is a vector,
tik=q/x°lgik+wlx016;6§ if tik is a symmetric tensor.

This choice of Iik has fixed the coordinates except a trivial

translation in x°.

coordinate x° has no immediate physical meaning. The time "t°”

measured by a comoving observer can be obtained as
t = Ja/x®/ax° . /2.2/

Requiring the particle number conservation (nur).r=0 we get

n N2 a‘-3 ’ /2-3/
2n

where N is the total number of particles for k=il but it is a constant of
integration simply for the other cases.

3. THE FIELD EQUATIONS

We will deal with the isotropic case only. Then there exist an
equaticn ol state of the form

p=nm/n, 8% ,w/ A1/
where 32 and w are the second- and third-order shear invariants.

m/n,sz,wl may have arbitrary form except the positivity conditions:

pin/ = nm/nlololl o,
8/n/ = nam,nn/n,o,o/+2n2m,n/n,o,o/_>_o, /3.2/
¥/n/ = nm, 2/n,0,0/>0.

The deformations can Ye written as
eix = 3 (b
ik = 91k*iYk /3.3/
‘,{,uhf_‘k a h‘i’ku" = o.
Q

ik
rank 3. The shears can be obtained similarly but h

is connected to the unstrained state and has
o
ik
tensor having a determinant egual to that of 94y and connected to the unsheared

where u1 is the velocity and h
is to be replaced by a

state.




In our case the oniy possible form for h?k of the mentioned symmetry

is
2
o _ A . = . 0,0
Pk T 2 hik # Py = 94k "Food18k - /3.4/

where A is a constant. Thus the shear vanishes, and the energy-momentum tensor

is identical with that of a perfect fluid of the following pressuret

p=n2m.n/n/.

/3.5/
m/n/=m/n,0,0/.
Thus the field equations are:
.2
—rnm/nl=3a—2(k+21)+x ,
a
2 InJ a _ al
enm,n' M =(k+22 - 2 )4 2, /3.6/
a 62
n=N_ 1_
2H2 a3 .

It is easy to see that second equatiun 1s a consequence of the first when
a$0. The solution can be explicitly written as
a
t=t + da /3.1/
o 3 3 +
ag (;3k-la -xa“nm/n/

For the static case there are two algebraic equations:

-2
-kn_m/n_| = 3ka + X,
e e ° ho= N1 /3.8/
© ZH: ao3

2 Ingl _ -2
kng m, = kao + A,
1f the form of the function m/a/ is given, a, and X can be calculated.

The choice

m/n/ = m + (u+%V)(n-l-3n-1/3n;213);
/3.9/

n_ = —E7 A-3; ¥ and v are constant
° an

-1
gives the solutions of Ref. 3 with C = -(6n2) Km N .
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The Hookean limit of Carter and Quintana’s formalism is the choice [2]

2
_ 1 §a2—Azl
m/n/ = mo +m A‘ (9\)0 + 6‘]0) /3-10/
because
1 az—Az‘ o
e =5 25 —(gIK ); 1=1,2,3 /3.11/
a VO (o]

This function fulfils the positivity conditions /3.2/ for any n /of course,
except the third, whose left hand side is undefined now, because we have not
assumed anything for the s-dependence of m/. This function is to be substi-
tuted into eq. /3.7/ or /3.8/. Since the [3.7/ integral cannot be analytically
calculated, in the following section we shall deal with the approximation

of the solutions.

4. THE MOTION

The time-radius function can be obtained as

a
e - oal/2 |2t 2o o k2= - 8 -
- 75 aay) i} ’ T T k(Bv )
fo) /p4\;3r H2 Qv0‘+6uo K v°+2u° | .
a, &L
P4ial = a4-AAK-2a3-2A2a2-3kAK'2a+A4(l+q2) /4.1/

The polinomial P4/al may have zero, one /[double/ or two positive
roots. Since P4/al>0, there are the following possibilities:

A/ Two positive roots: Motion is possible either between zero
and the smaller root /Case 1/ or between
the greater root and infinity /Case 2/

B/ One double positive root The situation is similar, but there is
also a third possibility: static behaviour
according to eq. /3.8/.

C/ There is no positive root Radius monotinously varies between zero
and infinity. /Case 3/

Since the correct function t/a/ cannot be analytically calculated,
we are going to deronstra*te its kehaviour by means of an approximating
function, which is correct at the limiting points and can be obtained by
ijnoring scme part of P4/a/.




Case 1: Motion between O and a, {the smaller positive root of P4I.

a a f -
t-tl-KAl/Z\l p4(—1).-i érc sin(1-2-2-) + 1-(1—29——)2
2 2 ay a,

Case 2: M»otion between a, /the greater root/ and infinity.

a t-t
a~a,cos 2< !‘——2— _2 /4.2/
A 2K

Case 3: Motion between O and =.

2 K aztu - l(a:”2 AlIz

t = & —

1+q? 2KaZ?/3(1+q2)-a "2t all2 2xka

[V

>

where te = l<(1+q2)-1/2‘Zx]"12(1+x4).ll2 dx.

It can be seen that the time of a half cycle is finite for every case.

Static solutions exist for special values of A only, which can be
obtained from eq. /3.8/. A simple consideration shows that this solution is
unstable: since there is no further positive root, "a" cannot vanish at any
other points, thus an oscillation with small amplitude is not possible.

6. THE VISCO-ELASTIC PROBLEM

One of the visco-elastic media, the Kelvin-Voigt system, can be
described by a simple addition of the energy-momentum tensors of an elastic
medium and a pressureless viscous fluid. It might be obvious to sum up these
known terms. However, there is a cubstantial difficulty.

Carter and Quintana’s paper has explicitly supposed that Tik does
not depend on anything except the deformations. But, when temperature plays
essential role, the elastic coetfficients Jand also hikl may dzpend on
the temperature. For this case the formalism has been not worked out.

/In Rayner’s theory, where the constancy conditions for hgk and Ciklm are

required ab ovo, this problem is formally out of question./

hevertheless, if we were to use the simple sum of the elastic term

for a cold Hookean matter [2] and the viscous term for a fluid having viscous

1/2

coefficients proportional to n [3], we would obtain the following equations:

.
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22
k-ES - 37 v 22 3v+2y (1 A ) + Aaz =0Q ;
a a 2A a
2

/5.1/

However now we will not deal with the investigation of the solutions
of /5.1/ because even the approximating solutions analogous with /4.3/can be

obtained by means of numerical integration only.

6. CONCLUSIONS

The obtained solutions have a character similar to the previous
series of the Rayner-type Hookean ones [3]: there are solutions in which the
radius varies between zero and a finite value, or between a finite value and
infinity, there are solutions with a radius varying from zero to infinity,
and there are unstable static solutions. The motion needs a finite time.

The only essential difference in the behaviour of the solutions is that now
the stable static solution of Ref. 3 /for k = -1/ has not been obtained,
because the density for this solutions was negative. [In Ref., 3 we did not

investigate the behaviour of p because it was not possible for the approxi-
mated cases./

Since the matter fulfils a well-behaving and realistic equation
of state p=p/n/, we will not check the reality of the solutions by means
of Hawking’s energy conditions.
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